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Delone set: point set Λ in Rd , with R > r > 0 such that

I each ball of radius r contains at most one point of Λ
(uniformly discrete)

I each ball of radius R contains at least one point of Λ
(relatively dense)

(Aka “separated nets”. Can also live in Hd , (Qp)d ...)

crystallographic disordered
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Relation between Delone sets:

Λ
bd∼ Λ′ (bounded distance equivalent):

There is g : Λ→ Λ′ bijective with

∃C > 0 ∀x ∈ Λ : |x − g(x)| < C

Lemma
Bounded distance equivalence is an equivalence relation.
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Example: Two rectangular lattices Λ,Λ′. Is Λ
bd∼ Λ′?
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Dimension 1

Question: Let Λ,Λ′ ⊂ R. When is Λ
bd∼ Λ′? Always?

No:

Examples:

I {. . .− 3,−2,−1, 0, 1, 2, 3, . . .} 6bd∼ {. . . ,−6,−4,−2, 0, 2, 4, 6, . . .}
I {. . .− 3,−2,−1, 0, 2, 4, 6, . . .} 6bd∼ {. . .− 6,−4,−2, 0, 1, 2, 3, . . .}

Density matters. Preliminary definition:

dens(Λ) := lim
r→∞

1

2r
#(Λ ∩ [−r , r ]),

if it exists. Does not need to exist:

0 2 4 6 8 10 12 14 16 18

Oscillates between 2
3 and 5

6 .
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Question: If dens(Λ)=dens(Λ′), is Λ
bd∼ Λ′?

Theorem (Duneau-Oguey 1990)

Let Λ,Λ′ be periodic. Then dens(Λ)=dens(Λ′) implies Λ
bd∼ Λ′.

(True even in Rd for d ≥ 2)

Interesting examples are non-periodic.

Theorem (Kesten 1966)

Let ξ ∈ [0, 1], 0 ≤ a < b ≤ 1 and define

Λ := {k ∈ Z | a ≤
(
kξ mod 1

)
< b}.

Then the deficiency D(n) := #(Λ ∩ [1, n])− n(b − a) is bounded,
if and only if b − a = kξ mod 1 for some k ∈ Z.

(if-part: Hecke 1921, Ostrowski 1927)
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Choose ξ ∈ [0, 1] irrational, let 0 < b ≤ 1 and define

Λb := {k ∈ Z | 0 ≤
(
kξ mod 1

)
< b}.

Then the deficiency D(n) := #(Λ ∩ [1, n])− nb is bounded, if and
only if b = kξ mod 1 for some k ∈ Z.

1

b

The image shows {(k , kξ mod 1) | k = 0, 1, 2, . . .}.

In particular:

I Deficiency bounded ⇔ Λb
bd∼ 1

bZ,

I Any b 6= kξ mod 1 yields a (nonperiodic!) Delone set Λb such

that Λb 6
bd∼ cZ. Even when dens(Λb) exists!
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Higher Dimensions

Cool! Alexey Garber and I started to study some problems in this
field. E.g.

1. Are the vertices of the Penrose tiling bounded distance
equivalent to some lattice?

2. Which cut-and-project sets are bounded distance equivalent to
some lattice?

3. Which substitution tilings (resp. their vertex sets) are
bounded distance equivalent to some lattice?
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Recall: Interesting examples are non-periodic.
Like the Penrose tiling:
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The Penrose tiling is indeed non-periodic:
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Theorem (F-Garber 2011 unpublished)

If Λ is a linearly repetitive Delone set in R2, then Λ
bil∼ Z2.

(where
bd∼ implies

bil∼)

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011)

If Λ is a linearly repetitive Delone set in Rd , then Λ
bil∼ Zd .

Corollary (F-Garber 2011 unpublished)

Let ΛP be the vertices of the Penrose tiling. ΛP
bil∼ Z2.

Theorem (Solomon 2007)

ΛP
bd∼ cZ2.

Theorem (Deuber-Simonovits-Sós 1995)

ΛP
bd∼ cZ2.

Well. Then let us generalise Kesten’s Theorem to higher
dimensions.
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Dirk Frettlöh Bounded distance equivalence of cut-and-project sets



Theorem (F-Garber 2011 unpublished)

If Λ is a linearly repetitive Delone set in R2, then Λ
bil∼ Z2.

(where
bd∼ implies

bil∼)

Theorem (Aliste-Prieto, Coronel, Gambaudo 2011)

If Λ is a linearly repetitive Delone set in Rd , then Λ
bil∼ Zd .

Corollary (F-Garber 2011 unpublished)

Let ΛP be the vertices of the Penrose tiling. ΛP
bil∼ Z2.

Theorem (Solomon 2007)

ΛP
bd∼ cZ2.

Theorem (Deuber-Simonovits-Sós 1995)

ΛP
bd∼ cZ2.

Well. Then let us generalise Kesten’s Theorem to higher
dimensions.
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Cut-and-Project Sets

E|| = Rd π1←− Rd × Re π2−→ Re = E⊥
∪ ∪ ∪
Λ Γ W

I Γ a lattice in
Rd × Re

I π1, π2 projections
I π1|Γ injective
I π2(Γ) dense

I W compact
(”window”,
somehow nice, e.g.
∂W has zero
measure)

Then Λ = {π1(x) | x ∈ Λ, π2(x) ∈W } is a (regular)
cut-and-project set (CPS).
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2(l  , l   )2
*

(1,1)

window

E

E||
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The last one uses d = e = 1 (E|| = R1,E⊥ = R1).

An example with d = 1, e = 2:

σ : S → ML, M → SML, L→ LML
S M LLM L M L M L S

...uses a window W that looks like a fractal:

Now let us generalize Kesten to Rd (at least ”if”-part)
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1

b

(looks almost like a cut-and-project set!)

One can state the argument in purely algebraic terms:

I X = Rd+1

I X = Vp + Vi (here: horizontal + vertical), W ⊂ Vi compact
set (here W = [0, b]),

I πp projection to Vp (here: ↓),

I πi projection to Vi (here: ←),

I Γ discrete cocompact subgroup (here: black and white points)

Dirk Frettlöh Bounded distance equivalence of cut-and-project sets



1

b

(looks almost like a cut-and-project set!)
One can state the argument in purely algebraic terms:

I X = Rd+1

I X = Vp + Vi (here: horizontal + vertical), W ⊂ Vi compact
set (here W = [0, b]),

I πp projection to Vp (here: ↓),

I πi projection to Vi (here: ←),

I Γ discrete cocompact subgroup (here: black and white points)
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...then πp(Y )
bd∼ πZ (Y ).

Other colleagues had the same idea: Haynes-Koivusalo 2014,
Haynes-Kelly-Koivusalo 2017.

Last October I’ve learned from Alan Haynes that this was done
already in

C. Godrèche and C. Oguey:
Construction of average lattices for quasiperiodic structures by the
section method, J. Phys. France 51 (1990) 21-37

So much on Question 2.
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Dirk Frettlöh Bounded distance equivalence of cut-and-project sets



Only briefly regarding Question 3:

A one-dimensional tile substitution, producing tilings of the line by
intervals. The endpoints form some Delone set.

a

b

a ab

b ba a a

I Mσ =
(

2 3
1 2

)
I Inflation factor 2 +

√
3

I length(a) = 1, length(b) =
√

3
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Dirk Frettlöh Bounded distance equivalence of cut-and-project sets



A one-dimensional substitution tiling with inflation factor λ is a
Pisot substitution, if all eigenvalues of Mσ other than λ are less
than one in modulus.

Theorem (F-Garber 2017 preprint)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to some lattice.

Unfortunately:

Theorem (Holton-Zamboni 1998)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to some lattice.

We did not give up....

Dirk Frettlöh Bounded distance equivalence of cut-and-project sets



A one-dimensional substitution tiling with inflation factor λ is a
Pisot substitution, if all eigenvalues of Mσ other than λ are less
than one in modulus.

Theorem (F-Garber 2017 preprint)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to some lattice.

Unfortunately:

Theorem (Holton-Zamboni 1998)

All one-dimensional Pisot substitution tilings are bounded distance
equivalent to some lattice.

We did not give up....
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New result

Take some CPS Λ and give each point a weight. One convenient
way to write it: Dirac comb

δw ,Λ =
∑
x∈Λ

w(x)δx (w(x) ∈ R, δx the Dirac measure in x)

If w(x) = h(x∗) for h : W → R continuous, then δw ,Λ is called a
weighted CPS.

h

W
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Theorem (F-Garber 2017 preprint)

Let δw ,Λ be a weighted CPS with e = d = 1. Let W = [a, b],
w(x) = h(x∗) and h(a) = h(b) = 0. If h is

1. piecewise linear, or

2. twice differentiable,

then δw ,Λ is bounded distance equivalent to cµ for some c > 0,
where µ denotes the one-dimensional Lebesgue measure.

Finally, our first new result!

(At least we hope so...)
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More here:

D.F., Alexey Garber:
Bounded distance and bilipschitz equivalence of Delone sets,
preprint,
www.math.uni-bielefeld.de/∼frettloe/papers/bilip-draft.pdf

and references therein.

∗ ∗
∗

Thank you!
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Kazuyuki Enomoto

(Tokyo Univ. of Science, Japan)

Total mixed curvature 

of open curves in   3E

Jin-ichi Itoh

(Kumamoto Univ. , Japan)
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Fenchel (1929)  2 if     is closed.

closed convex plane curve=



Enomoto-Itoh-Sinclair (2008)

)},,,,(:inf{ LTTqpC qp 

determines

where

),,,,( LTTqpC qp is the set of all curves such as

p

q

Llength

qp,

qp TT , fixed

pT

qT





A piecewise linear curve with 2 edges  

)},,,,(:inf{ LTTqpC qp (as the limit) .gives

321)},,,,(:inf{   LTTqpC qp

1

2

3

Enomoto-Itoh-Sinclair (2008)



In most cases, it is the only curve that gives

the infimum. 

(most= except for the case when there exists

a plane convex arc tangent to     at    ,  to   

at     , including the case when the curve

is closed.)

pT p

qqT



Enomoto-Itoh (2013)

)},,,,(:inf{ LBBqpC qp 

determines

where

),,,,( LBBqpC qp is the set of all curves such as

p

q

Llength

qp,

qp BB , fixed pB

qB



Enomoto-Itoh (2013)

)},,,,(:inf{ LBBqpC qp 

p

q

is attained by a curve (as the limit)  

shown below.

pB

qB



Enomoto-Itoh (2017)

),(22

qp NN 

for ),,,( qp NNqpC

qp,

qp NN ,
fixed

p

q

pN

qN



Enomoto-Itoh (2017)

.),(22

qp NN 

there always exists ),,,( qp NNqpC

Such

If
2

),(


 pNpq ,
2

),(


 qNpqand

such that

is a subarc of a generalized

helix.



Enomoto-Itoh (2017)

)},,,,(:inf{ 22 LNNqpC qp 

is attained by a curve which is a union  

of plane curves and generalized helices.



For more details, please see

Illinois J. Math. 52 (2008). 

for “total absolute curvature” 

Illinois J. Math. 57 (2013)

for “total absolute torsion” 

Geom. Dedicata (to appear) 

for “total mixed curvature” 



Homomorphisms of abelian

p-groups produce p-automatic

recurrent sequences

Mihai Prunescu

Bucharest, September 4 - 7, 2017



Definition

(A, f,1): A finite, f : A3 → A, 1 ∈ A

Recurrent double sequence (a(i, j)):

• ∀i ∀j a(i,0) = a(0, j) = 1

• i > 0 ∧ j > 0 :

a(i, j) = f(a(i−1, j), a(i−1, j−1), a(i, j−1))



Passoja-Lakhtakia Carpet modulo 9

(Z/9Z, x+ y + z,1)



Christol-Salon Theorem

Theorem 1 a : Nn → A, A finite, p prime.

Then the following are equivalent:

1. a is p-automatic.

2. ∃ (B, E, b1,Θ), Θ(bi) ∈ Bp
n
, Θ(b1)(~0) =

b1, b = lim
i→∞

Θi(b1), g : B → A, a = g(b).

3. ∀ embedding ι : A → K in a sufficiently

large finite field K of characteristic p,

S =
∑
ι(a(~x)) ~X~x algebraic / K( ~X).

4. ∃ embedding ι : A → K in a sufficiently

large finite field K of characteristic p;

S =
∑
ι(a(~x)) ~X~x algebraic / K( ~X).



Denef-Lipshitz Theorem

Theorem 2 p prime, k > 0, a : Nn → Zp,∑
a(~x) ~X~x algebraic / Zp( ~X).

Then (a(~x) mod pk) p-automatic.

∀ b : Nn → Z/pkZ p-automatic ∃ a : Nn → Zp
∀ ~x ∈ Nn, a(~x) ≡ b(~x) mod pk and∑
a(~x) ~X~x algebraic / Zp( ~X).



Main Result

Theorem 3 p prime, m ≥ 1,

H = Z/pd1Z× · · · × Z/pdsZ,

f : Hm → H a shifted homomorphism.

(H, f,~v1, . . . , ~vm, c) n-dimensional recurrence,

c : CP → H satisfies ∀ i = 1, . . . , n, ∀ a ∈ N,

if (xi = a) ∩ Nn ⊂ CP , c | (xi = a) ∩ Nn is

p-automatic.

Then (H, f,~v1, . . . , ~vm, c) produces a p-automatic

n-dimensional sequence.

Corollary 4 The sequence can be defined

by a substitution of type pa → pb, a < b.

There is an algorithm able to find it.



Sierpinski’s Carpet

(Z/3Z, x+ y + z,1)



Passoja-Lakhtakia Carpet modulo 9

(Z/9Z, x+ y + z,1)



Sierpinski’s Carpet

F =

1 1 1
1 0 2
1 2 1


Fn = F ⊗ F · · · ⊗ F

s(F ) =

1 1 1
1 0 1
1 1 1


Sn = s(Fn) = s(F )⊗ s(F ) · · · ⊗ s(F )

L = {(x, y) ∈ N2 | s(x, y) = 0}

L = A∗
(1
1

)
A∗

A = {
(0
0

)
,
(0
1

)
,
(0
2

)
,
(1
0

)
,
(1
1

)
,
(1
2

)
,
(2
0

)
,
(2
1

)
,
(2
2

)
}



Passoja-Lakhtakia Carpet modulo 9

In this case the algorithm finds out a square

substitution of type 3→ 9 with 57 rules.

s : Z/9Z → {0,1} given by s(0) = 0 and

∀x 6= 0, s(x) = 1.

(s(a(m,n))) is also 3-automatic.

There exist 3 × 3 matrices with A 6= B and

Σ(A) 6= Σ(B) such that s(A) = s(B) but

still s(Σ(A)) 6= s(Σ(B)).

Happily (a(m,n)) is also given by another

system of substitutions of type 9→ 27 which

has also 57 rules.

By application of s, this system of substitu-

tions collapses successfully on a consistent

system of substitutions of type 9→ 27 with

8 rules.



A =



1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 0 1 1 1 1 1
1 0 1 1 1 1 1 0 1
1 1 1 1 1 0 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1



B =



1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 0 1 0 1 0 1 0 1
1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1





C =



1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 1 1
1 0 1 1 1 1 1 0 1
1 1 1 0 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1
1 1 1 1 1 1 1 1 1



D =



0 0 0 1 1 1 1 1 1
0 0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0 0
1 1 1 1 1 1 0 0 0





E =



1 1 1 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1
1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 0 0 0
0 0 0 1 0 1 0 0 0
0 0 0 1 1 1 0 0 0
1 1 1 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1
1 1 1 0 0 0 1 1 1



F =



1 1 1 1 1 1 0 0 0
1 0 1 1 0 1 0 0 0
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 1 1





G =



0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0



H =



1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1





Σ(A) =

A B C
B D B
C B A

 Σ(B) =

A B C
B E B
C B A



Σ(C) =

A B C
B F B
C B A



Σ(D) =

G H H
H H H
H H G

 Σ(E) =

H G H
G H G
H G H



Σ(F ) =

H H G
H H H
G H H



Σ(G) =

G G G
G G G
G G G

 Σ(H) =

H H H
H G H
H H H


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About the proof of dimH EC ≥ d − 2
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Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

notations, definitions

I d is an integer ≥ 2 (often think d = 2!).

I B denotes the set of all convexe bodies of the Euclidean space
Ed+1, i. e. the compact convex subsets with non empty
interior.
It is endowed with the Pompeiu-Hausdorff metric dH.

I The boundary Σ = ∂C of C ∈ B is a convex surface, it is
endowed with its inner geodesic metric.

I EC or EΣ denotes the set of all endpoints of Σ, that is the
points which are not in the interior of some shorter path in Σ.

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest
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Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

Some Examples

I EΣ = ∅ if Σ is of class C2 (no endpoints in Σ).

I EΣ is always negligible : Hd(EΣ) = 0. Otsu and Shioya 1994.

I When a ∈ Σ is conical, that is when the tangent cone TaΣ
contains no line, then a ∈ EΣ.
The set of conical points of Σ is always countable.

I If Ed+1 = E ⊕ F with dimF = 2, r > 0 and
C = conv(SE ∪ rSF ), then SE ⊂ EΣ.
Here dimH EΣ = d − 2 and Hd−2(EΣ) > 0.

I a ∈ Σ is said regular when TaΣ is isometric to Ed .
The set RΣ of regular points is always strongly convex in Σ.
Petrunyn 1998 (Milka 1983 enough for us).
This is used to check that SE ⊂ EΣ in the above example.

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest
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Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

Typical case

I We said that most, or typical, elements of a Baire space share
a property when the exceptional set is meager (i.e. included in
the union of countably many closed sets with empty interiors).

I dimH denotes the Hausdorff dimension and Hs the Hausdorff
measure in dimension s.

I For most C ∈ B, most elements of ∂C are endpoints.
Zamfirescu 82.

I Most C ∈ B satisfy dimH EC ≥ max(d − 2, d/3).
Riv 2015/2014.

I Remarks
• d − 2 = d/3⇔ d = 3 and d − 2 > d/3⇔ d ≥ 4.
• Proof of dimH EC ≥ d − 2 uses exple conv(SE ∪ rSF ).
• Proof of dimH EC ≥ d/3 uses classical conical points.

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest
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Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

Some questions

I Does it exist a convex body C ∈ B satisfying
dimH EC > max(d − 2, d/3)
When d = 2 can we have H2/3(EC ) > 0?

I Are there convex bodies C0,C ∈ B and a ∈ ∂C ∩ ∂C0 such
that C0 ⊂ C , a ∈ EC but a 6∈ EC0 . (yes known ?)

I Can we also ask C0 to be a Euclidean ball ?

I Can we also ask C0 to be flat at a (a ∈ U0(∂C0)), that is
containing for every R > 0 a neighborhood of a in a Euclidean
ball B of radius R?

I Can we also ask that d = 2 and C to be of revolution around
an axe containing a ? (no known ?)

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest
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About the proof of dimH EC ≥ d − 2

I For C ∈ B and ε > 0, let MC ,ε be the set of all the points of
∂C which are the middle of some shorter path of ∂C with
length 2ε, and EC ,ε = ∂C \MC ,ε.

Then we have EC =
⋂
ε>0

EC ,ε

I We can restrict our study to B0 = {C ∈ B | 0 ∈ intC}
I For ‖x‖ = 1 we set {ΦC (x)} = R+x ∩ ∂C .
I We look for a compact set K of the unit sphere, with

dimH K = d − 2, and such that the following Gδ is dense in
B0:

GK = {C ∈ B0 | ΦC (K ) ⊂ EC} =
⋂
ε>0

GK ,ε

where GK ,ε = {C ∈ B0 | ΦC (K ) ⊂ EC ,ε}.
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About the proof of dimH EC ≥ d − 2

About the proof of dimH EC ≥ d − 2

I For Ed+1 = E ⊕ F like in the exemple, we can find K ⊂ SE
with dimH K = d − 2, and with K strongly radially porous.
This means that for each ε > 0 and n ≥ 1, K has a finite
covering by pairwise disjointed balls Bi (ci , ri ) and such that
K ∩ B(ai , ri ) ⊂ B(ai , ri/n)

I Using our exemple and the strong porosity, we can check the
wanted density.
In this point, Riv2015 is rather clumsy !
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About the proof of dimH EC ≥ d − 2

About the proof of density of GK

I First we have a dense set of smooth C ∈ B0 such that for
some 0 < r < R and all a ∈ ∂C , there are closed balls
containing a in their boundary spheres, and such that
B(c, r) ⊂ C ⊂ B(c ′,R).

I Given such a C and ε > 0, we find a finite family of half
spaces Hi such that if C ′ = C ∩

⋂
Hi , then dH(C ,C ′) < ε and

C ′ ∩ ΦC (K ) = ∅, because of the strong porousity of K .

I Then we get C ′′ ∈ GK with dH(C ,C ′′) < ε by substituting to
each Hi some Ci congruent to our exemple associated with
Ed+1 = E ⊕ Fi .
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About the proof of dimH EC ≥ d − 2

Why d/3?

β

β/2

Γ ∩ Σ′

v
Σ−

α
α

I Our modified sphere is the boundary Σ′ of the largest convex
set among all those whose boundaries contain the truncated
sphere Σ− (of radius 1).

I For a small α, the smallest possible distance rα from the
vertex v to a shorter path γ, in Σ′ and between points of Σ−

satisfies rα ∼ π
4α

3 and εa = 4 tanα ∼ 4α
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About the proof of dimH EC ≥ d − 2

Why d/3?

β

β/2

Γ ∩ Σ′

v
Σ−

α
α

I Because of this we choose a function h > 0 with h(t) = o(t3)
(like t3/| ln t| near zero), and then K h-radially porous, that
is: for all x ∈ K , there is a sequence of balls such that for
each n we have BK (x , rn) ⊂ BK (x , h(rn)), and with the radius
sequence (rn) decreasing of null limit.

I We can also ask dimH K = d/3.
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1959: V. Klee, A generic C.S. is C 1 and strictly convex.
1977: P. Gruber, . . . and not C 2.
1979: R. Schneider, 1980,1988: T. Zamfirescu, 2012: K.
Adiprasito and T. Zamfirescu, 2015: Schneider 2015.
Study of directional curvature. (extrinsic property)
1982: T. Zamfirescu, A generic point is an endpoint.
1995: T. Zamfirescu, A generic point has a single farthest
point, to whom it is joined by exactly 3 segments.
1988,91: P. Gruber, A generic C.S. has no (simple) closed
geodesic.

Work in progress.
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1988: J. A. Wieaker, Most compacta are homeomorphic to
a cantor set.
1989: P. Gruber, generic dimension of compacta and
continua.
1997: A. V. Kuz’minykh, Most compacta are totally
anisometric : d(a, b) = d(a′, b′) > 0⇒ {a, b} = {a′, b′}
1989–2005: Results on the embedding: E.S. De Blasi, P.
Gruber, J. Myjak & R. Rudnick, J. A. Wieaker, T.
Zamfirescu, N.V. Zhivkov.

Work in progress.
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Baire Categories

Let X be a topological space.
R ⊂ X is rare or nowhere dense iff int (cl (R)) = ∅.
M ⊂ X is meager or of first category iff it is included in a
countable union of rare sets.
X is a Baire space iff any meager set have empty interior.
The Baire’s theorem states that any complete metric space
is a Baire space.

Convention
We say that

most x ∈ X are . . .
or that a generic x ∈ X is . . .

to express that the set of those x ∈ X which are not . . . form a
meager set in X .
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Length spaces I

Preliminary Remark
During this talk, a length space is supposed to be compact.
(unlike most authors)

Definition
Let γ : [a, b]→ X . The length of γ is

L(γ) = sup
(t0,...,tn)∈S

n

∑
i=1

d(γ(ti−1),γ(ti )),

where
S = {(t0, . . . , tn) ∈ Rn |n ∈N, a = t0 < t1 < . . . < tn = b}
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Length spaces II

Theorem
Let X be a compact metric space. Denote by Γ(x , y) the set of
curves from x to y . The following statements are equivalent:

existence of segments: ∀x , y ∈ X∃γ ∈ Γ(x , y) s.t.
d(x , y) = L(γ).
existence of midpoints: ∀x , y ∈ X∃z ∈ X s.t.

d(x , z) = d(z , y) =
1
2
d(x , y).

intrinsic metric: ∀x , y ∈ X , d(x , y) = infγ∈Γ(x ,y ) L(γ).

Definition
A compact metric space satisfying these properties is called a
(compact) length space.
The set of length spaces is denoted by L.
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Length spaces III
Examples

(Counter)example{
x ∈ R2

∣∣‖x‖ = 1
}
endowed with the metric

d0(x , y) = ‖x − y‖ is not a length space, but endowed with
d1(x , y) = arccos 〈x , y〉 is a length space.

Example

R2/Z2 endowed with
d ((x1, y1), (x2, y2)) =min (|x1 − x2| , 1− |x1 − x2|)

+min (|y1 − y2| , 1− |y1 − Y2|) .

Example

More generally, any reversible (compact) Finsler manifold, and
so any (compact) Riemannian manifold.
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Length space IV
Finite metric graphs

Start with a finite combinatorial
graph: (V ,E ), E ⊂ P2(V )×N

Assign lengths to edges: choose
λ : E →]0,+∞[

The set of points is
G = V∪]0, 1[×E

Define the length of a simple path:
`G (γ) = ∑∆∈E λ(δ)`]0,1[(γE ), where γE = γ ∩ E .
Define d(u, v) = infγ`(γ), where the infimum is taken
over all the simple paths γ from u to v .

Any finite metric graph is a length space,
We denote by G the set of finite metric graphs.
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Length space IV
Finite metric graphs

Start with a finite combinatorial
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We denote by G the set of finite metric graphs.
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Length space V
Geodesics in length spaces

Definition
A geodesic is a path which is locally a segment.

Finsler torus R2/Z2 endowed with
|| ||1.

A metric graph.

Geodesics may branch.
No injectivity radius.

Geodesics may stop.
Existence of endpoints.
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Geodesics in length spaces

Definition
A geodesic is a path which is locally a segment.

Finsler torus R2/Z2 endowed with
|| ||1.

A metric graph.

Geodesics may branch.
No injectivity radius.
Geodesics may stop.
Existence of endpoints.
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Length space VI
Angles in length spaces 1

One can define lower and upper
angles between segments.

](σ, ζ) = lim inf
s,t→0

θ(δ(s, t); s, t)

](σ, ζ) = lim sup
s,t→0

θ(δ(s, t); s, t)

When the two angles agree, we say that the segments
make a well-defined angle.
In Alexandrov spaces, all angle are well-defined.
In Riemannian manifold, this notion of angles is equivalent
to the usual one.
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Length space VII
Angles in length spaces 2

For instance, in (R2/Z2, ‖ ‖1), the angles
between σ : Y = 0 and ζ : Y = aX are
](σ, ζ) = 0,

](σ, ζ) = arccos
(
1− a

1+ a

)
.

In any length space, if σ1 and σ2 are
two parts of a same segment then
](σ1, σ1) = ](σ1, σ1) = 0,

](σ1, σ2) = ](σ1, σ2) = π.
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Space of length spaces I
The Gromov-Hausdorff metric

Notation. Let Z be a metric space.

K(Z ) denotes the set of nonempty compact subsets of Z
for A ∈ K(Z ) and ρ ∈ R+,

A+ ρ
def
= {y ∈ Z |∃x ∈ A s.t. d(x , y) ≤ ρ}

Definition
for A,B ∈ K(Z ), the Pompeiu-Hausdorff distance is:

dZ
PH(A,B) = inf {ε |A ⊂ B + ε,B ⊂ A+ ε}

for X ,Y compact metric spaces, the Gromov-Hausdorff
distance is: dGH(X ,Y ) = inf

Z ,f ,g
dZ
PH(f (X ), g(Y )),

where the infimum is taken over all metric spaces Z and all
isometric embeddings f : X → Z , g : Y → Z .
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Space of Length spaces II

Theorem
The set GH of all compact metric spaces, up to isometries,
endowed with dGH is a complete metric space.

Theorem
L is closed in GH and so, is a complete metric space.

Theorem
G is dense in L.

Theorem
The set of Riemannian surfaces is dense in L.
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Definition of f -tangency I

motivation
No differential structure
No angle

Definition
A comparison function is smooth increasing function
f :]0,∞[→]0,∞[ s.t. f (x) = o(x) when x goes to 0 .

Notation
The set of segments emanating from a point x will be denoted
by Σx .
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Definition of f -tangency II

Definition
Let f be a comparison function, σ,γ ∈ Σx

1 σ, γ are said to be weakly f -tangent if there exists a
sequence of positive numbers tn tending to 0 such that
σ (tn) γ (tn) < f (tn).

2 σ, γ are said to be f -tangent if there exists τ > 0 such
that for any t ∈ [0, τ] σ (t) γ (t) ≤ f (t).

3 σ, γ are said to be strongly f -tangent if there exists τ > 0
such that for any s, t ∈ [0, τ]
σ (t) γ (s) ≤ |s − t|+ f (min (s, t)).
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f -tangency and angles

Proposition

For any comparison function f ,

1 If σ,γ ∈ Σx are strongly f -tangent then ] (σ,γ) = 0.

2 If σ,γ ∈ Σx are weakly f -tangent then ] (σ,γ) = 0.

Theorem

Let f be a comparison function. For most X ∈ L, if σ, γ ∈ Σx

are f -tangent, then either σ ⊂ γ or γ ⊂ σ.

Corollary
In a generic length space geodesics do not bifurcate.
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A generic result about angles

Theorem
In a generic length space, at any point x , any two segments
σ,γ ∈ Σx satisfy ] (σ,γ) = 0 or ] (σ,γ) = π.

Problem

How common/rare are the pairs (σ,γ) ∈ Σ2
x such that

] (σ,γ) = 0 and ] (σ,γ) = π?
How common/rare are the pairs of segments with a
well-defined angle ?



Generic
Lengths
Spaces

Joël Rouyer

Introduction

Meaning of
generic

Length
spaces

Tangency

Cusps

Dimension

Farthest
points

Definition of f -cusp

Definition
Let f be a comparison function.
If x ∈ X ∈ L is such that any two segments σ,γ emanating
from x are (resp. weakly, resp. strongly) tangent we call x a
(resp. weak, resp. strong) f -cusp.

Example

If X ∈ G , its (weak/strong) f -cusp are exactly its endpoints.
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Cusp properties

Proposition
1 A strong f -cusp is a f -cusp.
2 A f -cusp is a weak λf -cusp for any λ > 1.

Proposition
A weak f -cusp is interior to no segment.

Theorem
Let f be a comparison function. In a generic length space,

1 there is no f -cusp,
2 a generic point x ∈ X is a weak f -cusps.
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Dimensions
The many names dimension

Names are: box dimension, box-counting ∼, capacity ∼, fractal
∼, Kolmogorov ∼, Minkowski ∼, Minkowski-Bouligand, . . .

Notation
N (X , ε) = min {card (F ) |F ⊂ X ∀x ∈ X d (x ,F ) ≤ ε}

M (X , ε) = max
{

card (F )

∣∣∣∣F ⊂ X and
∀x , y ∈ F x 6= y ⇒ xy ≥ ε

}
,

Theorem and definition
The upper and lower box dimension of a compact metric space
X are defined as

dimB (X ) = lim sup
ε→0

logN (X , ε)

− log ε
= lim sup

ε→0

logM (X , ε)

− log ε

dimB (X ) = lim inf
ε→0

logN (X , ε)

− log ε
= lim inf

ε→0

logM (X , ε)

− log ε
.

where
Note that this notion appears with many other names in the
literature.
It is well-known that the Hausdorff dimension is lower than or
equal to the lower box dimension, which, obviously, is lower
than or equal to the upper box dimension.
If we define

N (X , ε) ≤ M (X , ε) ≤ N (X , ε/3) ,
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Generic dimension

dimT ≤ dimH ≤ dimB ≤ dimB

Theorem
Let X be a generic length space.

dimB(X ) = 1 and dimB(X ) = ∞.
H1(X ) = ∞

Theorem
In a generic compact length space,
∀x ∈ X , ∀ρ > 0, dimB(Sx (ρ)) = 0.

Question
What can one say (generically) of
dimB Sx (ρ) ?

Notation
For x ∈ X ∈ L,
Sx (ρ) is the sphere
centred at x with
radius ρ, that is
{y ∈ X |d(x , y) = ρ}
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Farthest points

Notation

ρx = maxy∈Xd(x , y)

Fx = Sx (ρx )

Theorem
For a generic X ∈ L and a generic x ∈ X , card(Fx ) = 1.

Embedded
in Rn

Abstract

Convex
surfaces
T.Z. (1995)

Alex. Surfaces
J.R & C.V.

(2018?)

Continua

?

Length
spaces
J.R.(2019?)

Compacta
Kuz’minykh
(1997)

compact
metric spaces
J.R. (2011)
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Farthest points

Notation

ρx = maxy∈Xd(x , y)

Fx = Sx (ρx )

Theorem
For a generic X ∈ L and a generic x ∈ X , card(Fx ) = 1.

Embedded
in Rn

Abstract

Convex
surfaces
T.Z. (1995)

Alex. Surfaces
J.R & C.V.

(2018?)

Continua

?

Length
spaces
J.R.(2019?)

Compacta
Kuz’minykh
(1997)

compact
metric spaces
J.R. (2011)



Generic
Lengths
Spaces

Joël Rouyer

Introduction

Meaning of
generic

Length
spaces

Tangency

Cusps

Dimension

Farthest
points

Proof I
Preliminary

Theorem
On a compact manifold endowed with a generic Riemannian
structure, a generic point has a single farthest point.

J. Rouyer (2003).

Lemma
The function F is upper semi-continuous, that is

lim
x→x0

Fx ⊂ Fx0 .
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Proof II

Denote by δ(A) the diameter of A.

M def
= {X |{x ∈ X |#Fx > 1} non meager}
=
⋃
p

{X |int{x ∈ X |δ (Fx ) ≥ 1/p} 6= ∅}

=
⋃
p

⋃
q

{
X

∣∣∣∣∃y ∈ X B̄

(
y ,

1
q

)
⊂ {x ∈ X |δ (Fx ) ≥ 1/p}

}
def
=
⋃
p

⋃
q

Mpq.

Mpq has empty interior.
It remains to prove that it is closed.
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Proof III

Mpq =

{
X

∣∣∣∣∃y ∈ X B̄

(
y ,

1
q

)
⊂ {x ∈ X |δ (Fx ) ≥ 1/p}

}
Mpq 3 Xn ∈ Mpq →

GH
X ∈ L.

W.l.g., we can assume that Xn,X ⊂ Z and Xn →
PH

X .

Take yn ∈ Xn s.t. B̄
(
yn,

1
q

)
⊂ {x ∈ Xn|δ (Fx ) ≥ 1/p}

Take a converging sub-sequence; let y ∈ X be the limit.
We claim that B̄

(
y , 1

q

)
⊂ {x ∈ Xn|δ (Fx ) ≥ 1/p}, and

so, X ∈ Mpq.
z ∈ B̄

(
y , 1

q

)
← zn ∈ B̄

(
yn,

1
q

)
⊂
{
x ∈ Xn

∣∣∣δ(Fx ) ≥ 1
p

}
δ(Fzn ) ≥ 1

p .
By semi-continuity of F , δ(Fz ) ≥ 1

q

z ∈
{
x ∈ X

∣∣∣δ(Fx ) ≥ 1
p

}
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Thank you very much for your attention !
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Motivation

Airborne laser scanning provides a cloud of points
situated in the 3D-space (LiDAR data).

Such data sets contain a lot of information
useful in practical problems.

− Challenge: explore the opportunity of using tools from
Discrete Differential Geometry.

− Aim: perform numerical experiments based on true terrain
data.
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Geo-spatial data - format and representation

Point clouds (LiDAR data)
− rich in information (+)
− appropriate algorithms (+)
− lack of 2D correspondent (–)

Triangulated terrains (TIN)
− still carry a lot of information (+)
− 2D correspondent possible (+)
− high computational costs (–)

Regularly spaced grids
− easy to handle (+)
− standard patch-corridor model (+)
− lack of details (–)
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Digital models of the terrain

Three representations of the same study site (contour lines,
combined, TIN), as provided by GIS-software
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TIN representations and terrain variability

• Triangulated terrains in GIS [e.g. de Floriani et al., 1997]

Ridges or valleys are visible in a TIN model

• Recent developments: visibility, computing watersheds [de Berg et
al., 2011; de Berg and Tsirogiannis, 2011]

• Main research question: to what extent is it possible to extract
relevant information from geo-spatial data when triangle meshes are
used? Specifically: how can one measure the lack of flatness?

• Main hypothesis: discrete curvatures for triangle meshes could
provide relevant numerical descriptors (morphometric variables, e.g.
slope, curvatures) quantifying terrain features. Two tracks: (i)
comparisons for various methods; (ii) identification of specfic
structures.
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TIN representations and terrain variability

• Triangulated terrains in GIS [e.g. de Floriani et al., 1997]

Ridges or valleys are visible in a TIN model

• Recent developments: visibility, computing watersheds [de Berg et
al., 2011; de Berg and Tsirogiannis, 2011]

• Main research question: to what extent is it possible to extract
relevant information from geo-spatial data when triangle meshes are
used? Specifically: how can one measure the lack of flatness?

• Main hypothesis: discrete curvatures for triangle meshes could
provide relevant numerical descriptors (morphometric variables, e.g.
slope, curvatures) quantifying terrain features. Two tracks: (i)
comparisons for various methods; (ii) identification of specfic
structures.
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Morphometric variables − the discrete approach
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Notation: 1-ring Nv
v

vi−1

vi

vi+1

vi−2

vi+2

ni−1

ni

θi

αi

βi

ηi

1

Geometric elements around a vertex v:

• Edges / faces incident to v (or associated measures −
lengths, areas).

• Angles (θi )i between edges incident to v.

• Angles (ηi )i between normals of faces incident to v.

• Angles (αi )i , (βi )i between edges of the 1-ring that are not
incident to v.



Context Discrete curvatures: alternative definitions Comparative analyses Detecting structures in spatial-data

Notation: 1-ring Nv
v

vi−1

vi

vi+1

vi−2

vi+2

ni−1

ni

θi

αi

βi

ηi

1

Geometric elements around a vertex v:

• Edges / faces incident to v (or associated measures −
lengths, areas).

• Angles (θi )i between edges incident to v.

• Angles (ηi )i between normals of faces incident to v.

• Angles (αi )i , (βi )i between edges of the 1-ring that are not
incident to v.



Context Discrete curvatures: alternative definitions Comparative analyses Detecting structures in spatial-data

Notation: 1-ring Nv
v

vi−1

vi

vi+1

vi−2

vi+2

ni−1

ni

θi

αi

βi

ηi

1

Geometric elements around a vertex v:

• Edges / faces incident to v (or associated measures −
lengths, areas).

• Angles (θi )i between edges incident to v.

• Angles (ηi )i between normals of faces incident to v.

• Angles (αi )i , (βi )i between edges of the 1-ring that are not
incident to v.



Context Discrete curvatures: alternative definitions Comparative analyses Detecting structures in spatial-data

Notation: 1-ring Nv
v

vi−1

vi

vi+1

vi−2

vi+2

ni−1

ni

θi

αi

βi

ηi

1

Geometric elements around a vertex v:

• Edges / faces incident to v (or associated measures −
lengths, areas).

• Angles (θi )i between edges incident to v.

• Angles (ηi )i between normals of faces incident to v.

• Angles (αi )i , (βi )i between edges of the 1-ring that are not
incident to v.



Context Discrete curvatures: alternative definitions Comparative analyses Detecting structures in spatial-data

Notation: 1-ring Nv
v

vi−1

vi

vi+1

vi−2

vi+2

ni−1

ni

θi

αi

βi

ηi

1

Geometric elements around a vertex v:

• Edges / faces incident to v (or associated measures −
lengths, areas).

• Angles (θi )i between edges incident to v.

• Angles (ηi )i between normals of faces incident to v.

• Angles (αi )i , (βi )i between edges of the 1-ring that are not
incident to v.



Context Discrete curvatures: alternative definitions Comparative analyses Detecting structures in spatial-data

Method 1: Gauss-Bonnet scheme (1) GB1

• Gaussian curvature at v

Kv =
2π −

∑
vi∈Nv

θi
1
3A

, (1)

where 2π −
∑

vi∈Nv
θi is the angular defect at v, and A is the

total area of the triangles in the 1-ring neighborhood of v

• Mean curvature at v

Hv =
1
4

∑
vi∈Nv

‖−→vvi‖ηi
1
3A

(2)

(measures the variation of the normals along the edges
incident to v)
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Method 1: Gauss-Bonnet scheme (1) GB1

Used by [Dyn et al., 2001]; [Kim et al., 2002] for simplifying
triangle meshes

Helicopter model. (a) Original. (b), (c) Simplified versions. In (c) the discrete curvatures were used.

Source: [S.J. Kim, C.H. Kim, D. Levin, Computers & Graphics, 2002]
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Method 2: Gauss-Bonnet scheme (2) GB2

• Proposed by [Meyer et al., 2003]; considers for averaging
Amixed − area of a region determined by circumcenters
instead of barycenters (adapted for obtuse triangulations).

• Gaussian curvature at v

Kv =
2π −

∑
vi∈Nv

θi

Amixed
. (3)

Each triangle of Nv “contributes” to Amixed. If ∆vvi−1vi , is non-obtuse,

its contribution is 1
8
(‖−→vvi‖2cot(v̂vi−1vi ) + ‖ −→vvi−1‖2cot(v̂vivi−1)). If ∆is

obtuse: (i) at v: 1
2
A(∆), (ii) at a vertex different of v: 1

4
A(∆).

• The mean curvature Hv = 1
2‖Hv‖ is the norm of the mean

curvature operator

Hv =
1

2Amixed

∑
vi∈Nv

(cot(v̂vi−1vi ) + cot(v̂vi+1vi ))
−→
viv. (4)
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Method 3: approach based on Euler’s theorem ET

• Proposed by [Watanabe & Belyaev, 2001], based on integral
formulas derived from Euler’s theorem

H =
1

2π

∫ 2π

0
κν(ϕ)dϕ; K = 3H2 − 1

π

∫ 2π

0
κν(ϕ)2dϕ,

κν(ϕ) is the normal curvature of the normal section curve
corresponding to the angle ϕ.

• Approximate κν(ϕ) along the edges of the 1-ring by

κν,i '
2 < nv ,

−→
vvi>

‖ −→vvi ‖2
(5)

(nv weighted normal; weights are relative areas).
• Use approximation and put

Hv =
1

2π

n∑
i=1

κν,i
θ(i−1) mod n + θi

2
; Kv = 3H2

v −
1

π

n∑
i=1

κ2
ν,i

θ(i−1) mod n + θi

2
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Method 4: the tensor approach TA

• Proposed by [Taubin, 1995]

• Define the normal curvature κν,i along the edge
−→
vvi as in (5).

• Approximate the corrsponding tangent vector by normalizing
the projecton of

−→
vvi onto the plane orthogonal to

→
nv, that is

→
t i = (I3−

→
n v
→
n
t

v )(vi−v)

‖(I3−
→
n v
→
n
t

v )(vi−v)‖
.

• Define the matrix Mv as a weighted sum,

Mv =
∑dv

i=1 ρiκν,i
→
t i

→
t
t

i , where the weight ρi the relative area

of the faces that are adjacent to the edge
−→
vvi .

• By the construction of Mv, one of its eigenvalues is 0, with
associated eigenvector

→
nv. Let λ and µ be the other

eigenvalues of Mv. Put
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Method 5: paraboloid fitting PF

Assume that v = 0 and nv = (0, 0, 1); take its 1-ring neighborhood
and find a paraboloid z = ax2 + bxy + cy2 that better fits this data
(using least squares fitting, e.g. [Hamann, 1993]); then compute
Kv ,Hv by using standard formulas for the smooth paraboloid

Kv = 4ac − b2; Hv = a + c . (6)

vi−1

vi

vi+1

v
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Method 6: Shape Operator SO

• Proposed by [Hildebrandt & Polthier, 2004]

• One defines the mean curvature for an edge e
He = 2‖e‖ cos ηe2 .

• The Shape Operator at the vertex v

S(v) =
1

2

∑
ei∈Nv

ωeiHei

→
tei
→
tei

t
,

where ωe = 〈nv,ne〉, and
→
te is the versor of the projection on

the “tangent” plane at v of the vector
→
e × →ne .

• The Gaussian curvature and the mean curvature, respectively,
are defined by

Kv = det(S(v)); Hv =
1

2
tr(S(v)). (7)
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Concept

• Comparisons between the methods: realized for surfaces such
as plane, sphere, cone, cylinder [Magid, Soldea, Rivlin, 2007].

• Aim: computation and comparisons for geo-spatial data,
obtained thrhough in situ measurements − true terrains, with
unknown geometry of the underlying surface.

• Two complementary approaches: refining and coarsening.
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Approach 1 - approximation accuracy
• Generate a discrete height function starting from the elevation digital

model of a site situated in a mountainous region (cca. 23 km2).

• Produce a smooth surface S by standard interpolation techniques.

• Select on S , through jittered sampling with decreasing cell size (i.e.,
increasing resolution), sets of random points (‘pseudo-LiDAR data sets’).
Four cell sizes were used throughout the experiments having a size equal
to a ratio of 1, 0.5, 0.25 and 0.125 to the original cell size. These values
correspond to real cell sizes of 18 m, 9 m, 4.5 m and 2.25 m, respectively.

• Generate a 2.5D triangular irregular network for each point set, obtained
for each of the four levels of resolution.

• Compare the discrete Gaussian curvature and discrete mean curvature
with the ‘true’ smooth ones. For each method, at each of the four levels
of resolution, two numerical quantities were computed: (i) the absolute
error (normalized L1-norm of the vector of differences between ‘discrete’
and ‘smooth’ curvatures); (ii) the correlation coefficients between the
discrete and the smooth curvatures.
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Results (1): Gaussian curvature

− In the computation of the absolute error and of the correlation
coefficient all points are taken into account
− Gauss-Bonnet scheme: best approximation
− Paraboloid fitting: bad behavior (occurrence of outliers)
− Hierarchy is similar for spline interpolation
− The results for SO-method are not included in the diagrams
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Results (1): Gaussian curvature - outliers removed

− In the computation of the absolute error and of the correlation
coefficient the ‘outliers’ were removed
− Gauss-Bonnet scheme: best approximation
− Paraboloid fitting: sensitive to occurrence of outliers
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Results (1): mean curvature

− In the computation of the absolute error and of the correlation
coefficient all points are taken into account
− Method using Euler’s theorem and the tensor approach:
best approximation
− Paraboloid fitting: bad behavior
− Hierarchy is similar for spline interpolation
− The results for SO-method are not included in the diagrams
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Results (1): mean curvature - outliers removed

− In the computation of the absolute error and of the correlation
coefficient ‘outliers’ are removed
− Method using Euler’s theorem: good approximation / not
sensitive to outliers
− Paraboloid fitting: best approximation / sensitive to
occurrence of outliers
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Approach 2 - smoothening

• Numerical experiments based on true terrain data: high resolution point
cloud of size 427K; surface of cca. 2.5 ha.

• Preprocess data: crop and a rectangle having sizes 128 m and 160 m.

• For cell sizes equal to 0.5 m, 1 m, 2 m, 4 m, 8 m, 16 m, regularly spaced
grids were generated. For each cell C, a single point was obtained, by
averaging the coordinates of the points of the original cloud situated in C.

• For each point set, obtained for each of the six levels of resolution, a
2.5D Delaunay triangulation was generated.

• The values of the discrete Gaussian and mean curvatures for the vertices
of each set and for the corresponding regularly spaced grids were
computed. For each method, the discrete Gaussian curvature and discrete
mean curvature were compared with the ones computed for the
corresponding regular grids. The comparison was achieved by computing
two numerical quantities: (i) the absolute error (normalized L1-norm of
the difference vectors), (ii) the correlation coefficients. For a better
relevance, border vertices or vertices for which some of the methods could
not provide any value were removed from the statistics.
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Results (2): Gaussian curvature

− Absolute error and correlation coefficients: GB1, GB2, ET, TA
comparable results (smoothening effect).
− The results for SO-method are not included in the diagrams
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Results (2): mean curvature

− Method using Euler’s theorem and the tensor approach:
best approximation
− Weak correlations for GB1, GB2 (only positive values).
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Conclusions

For the Gaussian curvature, the best approximation was given by
the Gauss-Bonnet schemes, while in the case of the mean
curvature, the tensor approach and the method based on Euler’s
theorem provided an accurate estimate. These findings are
consistent for both approaches and they are consistent with
previous studies conducted for smooth surfaces with known
underlying geometry.



Context Discrete curvatures: alternative definitions Comparative analyses Detecting structures in spatial-data

Problem statement

Vegetation structures (e.g. trees) are visible in a high density point
cloud and in the associated triangulation.
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Methodology
• The high resolution LiDAR point cloud was used; a 2.5

Delaunay triangulation was generated direclty from the
original point cloud ((x , y)-duplicates, due to vegetation, were
eliminated).

• Compute the values of discrete curvatures for the triangle
mesh associated to the original point cloud. For each discrete
curvature get a grid of averaged curvatures (cell size 1m).

• Construct regular grids (cell size 1m) of curvatures.
Construirea unor “grile regulate de curburi”, având celula cu
dimensiunea de 1m. For each method and cell one considered
the vertices lying in that cell and then one computed the
average value of the curvatures corresponding to these
vertices.

• Use pattern recognition techniques (the Hough transform,
implemented in Matlab, sensitivity factor 0.85) for detecting
circles: horizontal projections of tree crowns usually yield
circular shapes.
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Tree detection − results

LiDAR point cloud (colours represent height above ground, in particular trees are coloured in red).

Grid generated by using the mean curvature, as provided by the shape operator method. The red circles represent

trees detected by using Matlab’s circle detection function.
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Tree detection − results

The point cloud (3D representation).

Grid of mean curvatures for SO (3D representation).



Context Discrete curvatures: alternative definitions Comparative analyses Detecting structures in spatial-data

Comparisons − mean curvature grids

Point cloud. ET

GB1 GB2

SO TA
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Comments and conclusions

• Mean curvature - makes it possible to detect trees and the
size of their crowns.

• Good results for SO; similar results for GB1, GB2.

• Advantages:

• The method presented is independent on any a priori
knowledge, while state of the art techniques require a
preliminary field survey, enabling an appropriate calibration and
developing suitable regression models, (e.g. [Popescu, 2003]).

• Independence on tree species, while other approaches are
species sensitive: [Falkowski et al., 2006] an aaproach on the
Mexican Hat wavelet appropriate for coniferous trees.
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Thank you!
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Definitions

Convex body K = a compact convex set with interior points in
E = R2 (or in Rd).

|K | = the area (d-volume) of K ;

∂K = the boundary of K .

α ∈]0, 1[
α-section of K = an oriented line ∆ ⊂ E cutting K in two parts,

K− (to the right) of area |K−| = α|K |, and
K+ (to the left) of area |K+| = (1− α)|K |;
K± = compact sets, so K+ ∩ K− = ∆ ∩ K .

Kα is the α-core of K = the intersection of all K+.

mα = the envelope of all α-sections of K .

Costin V̂ılcu (IMAR) Envelopes of α-sections 3 / 14



Definitions

Convex body K = a compact convex set with interior points in
E = R2 (or in Rd).

|K | = the area (d-volume) of K ;

∂K = the boundary of K .

α ∈]0, 1[
α-section of K = an oriented line ∆ ⊂ E cutting K in two parts,

K− (to the right) of area |K−| = α|K |, and
K+ (to the left) of area |K+| = (1− α)|K |;
K± = compact sets, so K+ ∩ K− = ∆ ∩ K .

Kα is the α-core of K = the intersection of all K+.

mα = the envelope of all α-sections of K .

Costin V̂ılcu (IMAR) Envelopes of α-sections 3 / 14



Definitions

Convex body K = a compact convex set with interior points in
E = R2 (or in Rd).

|K | = the area (d-volume) of K ;

∂K = the boundary of K .

α ∈]0, 1[
α-section of K = an oriented line ∆ ⊂ E cutting K in two parts,

K− (to the right) of area |K−| = α|K |, and
K+ (to the left) of area |K+| = (1− α)|K |;
K± = compact sets, so K+ ∩ K− = ∆ ∩ K .

Kα is the α-core of K = the intersection of all K+.

mα = the envelope of all α-sections of K .

Costin V̂ılcu (IMAR) Envelopes of α-sections 3 / 14



Definitions

Convex body K = a compact convex set with interior points in
E = R2 (or in Rd).

|K | = the area (d-volume) of K ;

∂K = the boundary of K .

α ∈]0, 1[
α-section of K = an oriented line ∆ ⊂ E cutting K in two parts,

K− (to the right) of area |K−| = α|K |, and
K+ (to the left) of area |K+| = (1− α)|K |;
K± = compact sets, so K+ ∩ K− = ∆ ∩ K .

Kα is the α-core of K = the intersection of all K+.

mα = the envelope of all α-sections of K .

Costin V̂ılcu (IMAR) Envelopes of α-sections 3 / 14



Definitions

Convex body K = a compact convex set with interior points in
E = R2 (or in Rd).

|K | = the area (d-volume) of K ;

∂K = the boundary of K .

α ∈]0, 1[
α-section of K = an oriented line ∆ ⊂ E cutting K in two parts,

K− (to the right) of area |K−| = α|K |, and
K+ (to the left) of area |K+| = (1− α)|K |;
K± = compact sets, so K+ ∩ K− = ∆ ∩ K .

Kα is the α-core of K = the intersection of all K+.

mα = the envelope of all α-sections of K .

Costin V̂ılcu (IMAR) Envelopes of α-sections 3 / 14



Definitions

Convex body K = a compact convex set with interior points in
E = R2 (or in Rd).

|K | = the area (d-volume) of K ;

∂K = the boundary of K .

α ∈]0, 1[
α-section of K = an oriented line ∆ ⊂ E cutting K in two parts,

K− (to the right) of area |K−| = α|K |, and
K+ (to the left) of area |K+| = (1− α)|K |;
K± = compact sets, so K+ ∩ K− = ∆ ∩ K .

Kα is the α-core of K = the intersection of all K+.

mα = the envelope of all α-sections of K .

Costin V̂ılcu (IMAR) Envelopes of α-sections 3 / 14



Two examples

If K is a disk then mα = ∂Kα is a circle.

If K is a polygon then mα is made of arcs of hyperbolae, ∀α ∈ ]0, 1[.
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Related topic: (ir)reducibility theory of convex bodies

Study secants between parallel supporting lines to K , whose
distances to the corresponding lines make a ratio of α/(1− α).

Contributors:

P.C. Hammer, 1951;

V. Klee, 1953;

T. Zamfirescu, 1967.
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Related topic: common tangents and transversals

Contributors:

S.E. Cappell, J.E. Goodman, J. Pach, R. Pollack, M. Sharir, R.
Wenger, 1994;

I. Bárány, A. Hubard, J. Jeronimo, 2008;

J. Kincses, 2008:

Theorem

For any well-separated family of k strictly convex bodies in Rd , k ≤ d,
the space of all α-sections is diffeomorphic to Sd−k .
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Related topic: outer billiards

Definitions

a billiard table = a planar strictly convex body K ;

the billiard map T ;

a caustic = a T -invariant curve.

Contributors:

V. F. Lazutkin, 1973;

J. Moser, 1973;

E. Gutkin, A. Katok, 1995;

S. Tabachnikov, 1995;

D. Fuchs, S. Tabachnikov, 2007:

Theorem

If ` is the envelope of α-sections of a convex set bounded by a curve κ, for
some α, then κ is a caustic for the outer billiard of table L = conv`.
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Related topic: floating bodies

Definitions

the floating body of K is the set K[α] bounded by mα;

the convex floating body of K = our α-core Kα.

Contributors:

C. Dupin, 1822;

C. Schütt, E. Werner, 1990, 1994; E. Werner, 2004:
study estimates for voln(K )− voln(K[α]), voln(K )− voln(Kα),
in relation to the affine surface area and to polygonal approximations.

M. Meyer, S. Reisner, 1991;

A. Stancu, 2006:

Theorem

K ⊂ Rd with boundary of class C≥4; Kδ is homothetic to K,
for some sufficiently small δ > 0, if and only if K is an ellipsoid.
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Related topic: fair partitioning of convex bodies

Fair / balanced / equi- partions of convex bodies (measures) by use of

k-fans;

hyperplanes;

orthogonal lines.

Contributors:

I. Bárány, J. Matousek, 2001;

T. Sakai, 2002;

S. Bereg, 2009;

I. Bárány, P. Blagojević, A. Szúcs, 2010;

P. V. M. Blagojević, G.M. Ziegler, 2014;

R. N. Karasev, A. Hubard, B. Aronov, 2014;
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Fair partitioning of convex bodies II

A. Fruchard, A. Magazinov, 2016:

For a pizza (K , L), with L ⊂ K ⊂ E , use a succession of double
operations:

a cut by a full straight line, followed by

a Euclidean move of one of the pieces.

The final partition is fair if each resulting slice has the same amount of K
and the same amount of L.

Theorem

Given an integer n ≥ 2, there exists a fair partition of any pizza (K , L) into
n parts if and only if n is even.
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Main result: mα for symmetric K

If α > 1/2 then Kα = ∅.

Theorem

If K is symmetric then

mα = ∂Kα for all α ∈
]
0, 1

2

[
;

mα is of class C1 for all α ∈
]
0, 1

2

[
if and only if K is strictly convex.
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Main result: mα for non-symmetric K

We cannot have mα = ∂Kα for all α ∈
]
0, 1

2

[
, because mα exists for all α,

but Kα = ∅ for α close enough to 1
2 .

Theorem

If K is non-symmetric then there exists αB ∈
[
0, 1

2

[
s.t.

mα = ∂Kα for all α ∈ ]0, αB ], and mα is of class C1 for all α ∈ ]0, αB [
iff ∂K doesn’t contain two parallel segments.

mα ) ∂Kα for all α ∈
]
αB ,

1
2

[
, and mα is never C1 for α ∈

]
αB ,

1
2

[
.

The case αB = 0 can occur, e.g., if there exists a triangle containing K
with an edge contained in ∂K.

Corollary

K is non-symmetric iff there exists a triangle containing more than half of
K (in area), with one side in K and the other two disjoint from intK.
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Main result for Kα

Theorem

There exists αK ∈
[

4
9 ,

1
2

]
s.t.

if 0 < α < αK then Kα is strictly convex with nonempty interior,

if α = αK then Kα is reduced to one point, and

if αK < α < 1 then Kα is empty.

Moreover, αK = 1
2 iff K is symmetric and αK = 4

9 iff K is a triangle.

If Kα is a point, it is not necessarily the mass center of K .
Hint: G is the mid-point of at least three secants of K .

K non-symmetric ⇒ αB < αK , K symmetric ⇒ αB = αK = 1
2 .
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Thank you for your attention!
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