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Derivation of the Porous Medium Equation

Physical Model: a continuum (fluid or population) with density
distribution u(x , t) ≥ 0 and velocity field v(x , t).

Continuity equation ut = ∇(u ⋅ v).
Darcy’s law: v derives from a potential (fluids in porous media):
v = −∇p.
The relation between p and u: for gasses in porous media, Leibenzon
and Muskat (1930) derived a relation in the form of the state law

p = f (u),

where f is a nondecreasing scalar function. f (u) is linear when the
flow is isothermal and is a higher power of u when the flow is
adiabatic, i.e. f (u) = cum−1 with c > 0 and m > 1.

The linear dependence f (u) = cu Ð→ Boussinesq (1903) modelling
water infiltration in an almost horizontal soil layer Ð→ ut = c∆u2.

The model ut = (c/m)∆um.

The Porous Medium Equation ut = ∆um.
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Porous Medium Equation / Fast Diffusion Equation

PME/FDE ut(x , t) = ∆um(x , t) x ∈ RN , t > 0

Self Similar solutions: U(x , t) = t−
N

N(m−1)+2 F (∣x ∣t−
1

N(m−1)+2 )

Slow Diffusion m > 1

F (y) ∼ (R2 − ∣y ∣2)
1/(m−1)
+

Fast Diffusion m < 1

F ∼ (R2 + ∣y ∣2)−1/(1−m)
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The Fractional Version
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Definition of the Fractional Laplacian

Several equivalent definitions of the nonlocal operator (−∆)s (Laplacian
of order 2s):

1 Fourier transform ̂(−∆)sg(ξ) = (2π∣ξ∣)2s ĝ(ξ).

[ can be used for positive and negative values of s ]

2 Singular Kernel (−∆)sg(x) = cN,s P.V.∫
RN

g(x) − g(z)
∣x − z ∣N+2s

dz

[ can be used for 0 < s < 1 , where cN,s is a normalization constant. ]
3 Heat semigroup

(−∆)sg(x) = 1

Γ(−s) ∫
∞

0
(et∆g(x) − g(x)) dt

t1+s .

4 Generator of the 2s-stable Levy process:

(−∆)sg(x) = lim
h→0

1

h
E[g(x) − g(x +Xh)].
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Porous medium with nonlocal pressure

The pressure p = (−∆)−s(u), 0 < s < 1:

(−∆)−s(u) = Ks ⋆ u = ∫
RN

u(y)
∣x − y ∣N−2s

dy , Ks(x) = CN,s ∣x ∣−(N−2s).

The model:

∂tu = ∇ ⋅ (u∇p), p = (−∆)−s(u).
Difficulties: no maximum principle, no uniqueness.

References:

1D: crystal dislocations model, Biler, Karch and Monneau,
Comm.Math.Phys. 2010.

Existence and finite speed of propagation: Caffarelli and Vázquez,
ARMA 2011.

Asymptotic behavior: Caffarelli and Vázquez, DCDS 2011.

Regularity: Caffarelli, Soria and Vázquez, JEMS 2013.

Exponential convergence towards stationary states in 1D: Carrillo,
Huang, Santos and Vázquez, JDE 2015.
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Porous Medium with nonlocal pressure

∂tu = ∇ ⋅ (um−1∇p), p = (−∆)−s(u). (M1)

for x ∈ RN , t > 0, N ≥ 1. We take m > 1, 0 < s < 1 and u(x , t) ≥ 0.

The initial data u(x ,0) = u0(x) for x ∈ RN , u0 ∶ RN → [0,∞) is assumed
to be a bounded integrable function.
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Existence of solutions
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New idea: existence for all m > 1 when u0 ∈ L1(RN) ∩ L∞(RN)

Based on suitable energy methods.

Formally:

∫
RN

up0(x)dx − ∫RN
u(x , t)pdx = C1 ∫

t

0
∫
RN

um+p−2(−∆)1−su dx dt

≥ C2 ∫
t

0
∫
RN

∣(−∆)
1−s

2 u
m+p−2

2 ∣
2
dxdt

by the Stroock-Varoupolos Inequality.

Here C1 = (p − 1)/(m + p − 2).
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New approximation method

ut = ∇ ⋅ (um−1∇(−∆)−1(−∆)1−su) (P)

Then we approximate the operator L = (−∆)1−s by

L1−s
ε (u)(x) = CN,1−s ∫

RN

u(x) − u(y)

(∣x − y ∣2 + ε2)
N+2−2s

2

dy .

● Convergence: L1−s
ε [u] → (−∆)1−su pointwise in RN as ε→ 0

● Generalized Stroock-Varopoulos Inequality for Ls
ε : Let u ∈ Hs

ε (RN).
Let ψ ∶ R→ R such that ψ ∈ C 1(R) and ψ′ ≥ 0. Then

∫
RN
ψ(u)Ls

ε[u]dx ≥ ∫RN
∣(Ls

ε)
1
2 [Ψ(u)]∣

2
dx ,

where ψ′ = (Ψ′)2.
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Approximating problem

We consider the approximating problem (PεδµR)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(U1)t = δ∆U1 +∇ ⋅ ((U1 + µ)m−1∇(−∆)−1L1−s
ε [U1]) for (x , t) ∈ BR × (0,T ),

U1(x ,0) = û0(x) for x ∈ BR ,
U1(x , t) = 0 for x ∈ ∂BR , t ∈ (0,T ),

with parameters ε, δ, µ,R > 0.

● Existence of solutions of (PεδµR) → fixed points of the following map
given by the Duhamel’s formula

T (v)(x , t) = eδt∆u0(x) + ∫
t

0
∇eδ(t−τ)∆ ⋅G(v)(x , τ)dτ,

where G(v) = (v +µ)m−1∇(−∆)−1Ls
ε[v] and et∆ is the Heat Semigroup.

● Existence of solutions of (P)

(PεδµR)
ε→0Ð→ (PδµR)

R→∞Ð→ (Pδµ)
µ→0Ð→ (Pδ)

ε→0Ð→ (P).
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Existence of weak solutions for m > 1

Theorem. Let 1 < m < ∞, N ≥ 1, and let u0 ∈ L1(RN) ∩ L∞(RN) and
nonnegative. Then we prove:
● Existence of a weak solution u ≥ 0 of Problem (M1) with initial data u0.

● Conservation of mass: For all 0 < t < T : ∫
RN

u(x , t)dx = ∫
RN

u0(x)dx .

● L∞ estimate: ∣∣u(⋅, t)∣∣∞ ≤ ∣∣u0∣∣∞, ∀0 < t < T

● Lp energy estimate: For all 1 < p < ∞ and 0 < t < T we have

∫
RN

up(x , t)dx + C(m,p)∫
t

0
∫
RN

∣(−∆)
1−s

2 u
m+p−1

2 ∣
2
dxdt ≤ ∫

RN
up0(x)dx .

● Second energy estimate: For all 0 < t < T we have

1

2 ∫RN
∣(−∆)−

s
2 u(t)∣

2
dx+∫

t

0
∫
RN

um−1 ∣∇(−∆)−su(t)∣2 ≤ 1

2 ∫RN
∣(−∆)−

s
2 u0∣

2
dx .
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Smoothing effect

Theorem

Let u ≥ 0 be a weak solution of Problem (M1) with
u0 ∈ L1(RN) ∩ L∞(RN), u0 ≥ 0, as constructed before. Then

∥u(⋅, t)∥L∞(RN) ≤ CN,s,m,p t
−γp∥u0∥

δp
Lp(RN) for all t > 0,

where γp =
N

(m−1)N+2p(1−s) , δp =
2p(1−s)

(m−1)N+2p(1−s) .

⇒ Existence of weak solutions for only u0 ∈ M
+(RN).

⇒ Existence of weak solutions for only u0 ∈ L1(RN).

15 / 41



Preliminaries on the PME The Fractional Version Existence of solutions Positivity results Transformations Asymptotic Behavior Conclusions

Smoothing effect

Theorem

Let u ≥ 0 be a weak solution of Problem (M1) with
u0 ∈ L1(RN) ∩ L∞(RN), u0 ≥ 0, as constructed before. Then

∥u(⋅, t)∥L∞(RN) ≤ CN,s,m,p t
−γp∥u0∥

δp
Lp(RN) for all t > 0,

where γp =
N

(m−1)N+2p(1−s) , δp =
2p(1−s)

(m−1)N+2p(1−s) .

⇒ Existence of weak solutions for only u0 ∈ M
+(RN).

⇒ Existence of weak solutions for only u0 ∈ L1(RN).

16 / 41



Preliminaries on the PME The Fractional Version Existence of solutions Positivity results Transformations Asymptotic Behavior Conclusions

Existence for measure data

Let 1 < m < ∞, N ≥ 1 and µ ∈ M+(RN). Then there exists a weak
solution u ≥ 0 of Problem (M1) s.t. the smoothing effect holds for p = 1:

∥u(⋅, t)∥L∞(RN) ≤ CN,s,m t−γµ(RN)δ for all t > 0,

Moreover:
● Regularity: u ∈ L∞((τ,∞) ∶ L1(RN)) ∩ L∞(RN × (τ,∞)) ∩ L∞((0,∞) ∶
M+(RN)) for all τ > 0

● Conservation of mass: For all 0 < t < T , ∫
RN

u(x , t)dx = ∫
RN

dµ(x).
● Lp energy estimate: For all 1 < p < ∞ and 0 < τ < t < T we have

∫
RN

up(x , t)dx+C(m,p)∫
t

τ
∫
RN

∣(−∆)
1−s

2 u
m+p−1

2 ∣
2
dxdt ≤ ∫

RN
up(x , τ)dx .

● Second energy estimate: For all 0 < τ < t < T we have

1

2 ∫RN
∣(−∆)−

s
2 u(t)∣

2
dx+∫

t

τ
∫
RN

um−1 ∣∇(−∆)−su(t)∣2 ≤ 1

2 ∫RN
∣(−∆)−

s
2 u(τ)∣

2
dx .
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Positivity results
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Figure: m = 1.5, s = 0.25

Figure: m = 1.5, s = 0.75

Figure: m = 2, s = 0.25

Figure: m = 2, s = 0.75

Infinite vs. finite speed of propagation
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Finite speed of propagation for m ≥ 2

Theorem

Assume that u0 has compact support and u(x , t) is bounded for all x , t.
Then u(⋅, t) is compactly supported for all t > 0.

If 0 < s < 1/2 and
u0(x) ≤ U0(x) ∶= a(∣x ∣ − b)2,

then there is a constant C large enough s.t.

u(x , t) ≤ U(x , t) ∶= a(Ct − (∣x ∣ − b))2.

For 1/2 ≤ s < 2 ⇒ C = C(t) is an increasing function of t.

Consequence: Free Boundaries!

Figure: u0 ≤ U0 Figure: u(x , t) ≤ U(x , t)
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Infinite speed of propagation for m ∈ (1,2) and N = 1

Theorem. Let m ∈ (1,2), s ∈ (0,1) and N = 1. Let u be the solution
of Problem (PMFP) with initial data u0 ≥ 0 radially symmetric and
monotone decreasing in ∣x ∣. Then u(x , t) > 0 for all t > 0, x ∈ R.

Idea of the proof: Prove that
v(x , t) = ∫

x
−∞ u(y , t)dy > 0 for t > 0, x ∈ R.

The integrated problem

∂tv = −∣vx ∣m−1(−∆)1−sv (IP)

The initial data is given by
v0(x) = ∫

x
−∞ u0(y)dy .

Initial data v0(x) satisfies:
v0(x) = 0 for x < −η,
v0(x) =M for x > η,
v ′0(x) ≥ 0 for x ∈ (−η, η). Figure: Typical initial data for models (P) and (IP).
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Transformations
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Porous Medium with Fractional Pressure

Vt = ∇ ⋅ (Vm−1∇(−∆)−sV )

Self Similar Solutions

V (x , t) = t−α2F2(t−β2x) with
α2 = Nβ2, β2 = 1

N(m−1)+2−2s
,

∇ ⋅ (Fm−1
2 ∇(−∆)−sF2) = −β2∇ ⋅ (y F2).

D. Stan, F. del Teso and J.L. Vázquez,

Non.Analysis, 2015.

Fractional Porous Medium Equation

Ut + (−∆)σUq = 0

Self Similar Solutions

U(x , t) = t−α1F1(t−β1x) with
α1 = Nβ1, β1 = 1

N(q−1)+2σ
,

(−∆)sF q
1 = β1∇ ⋅ (y F1).

J. L. Vázquez. JEMS 2014.

Theorem. Transformation of self similar solutions
If q > N/(N + 2σ), σ ∈ (0,1) then

F2(x) = (β1/β2)
q

1−q (F1(x))q

is a solution to the profile equation (PF2) if we put m = (2q − 1)/q and
s = 1 − σ.
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FPME: The profile F1(y) is a smooth, positive and radial function in
RN , F ′(r) < 0 and for q > N/(N + 2σ), F1(y) ∼ ∣y ∣−(N+2σ) for large
∣y ∣.

Consequences for (M1):

F2 > 0 and

F2(x) ∼ C ∣x ∣−(N+2−2s)/(2−m) if m ∈ ((N − 2 + 2s)/N,2) .

Ô⇒ Infinite Propagation for Self-Similar Solutions of the PMFP in
RN , N ≥ 1, m < 2.

Similar results are proved for smaller values of parameters.
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Related models for m > 2

vt + v2(−∆)1−svm = 0, x ∈ RN , t > 0. (M3)

v = 1
w

⇒ wt − (−∆)1−sw−m = 0

[Bon-Seg-Vaz 2017]: this equation does not admit integrable solutions!
Self-similar solutions:

v(x , t) = t−aψ(y), y = x tb, a = bN, b = 1

N(m + 1) + 2(1 − s)
,

b(Nψ − y∇ψ) = ψ2(−∆)1−sψm.

Let V is a self Similar Solution to (M1): V (x , t) = t−α2F2(t−β2x)

Transformation. From (M1) we obtain self-similar solutions to (M3)

ψ ∶= 1

c
Fm−2

2 , m = 1

m − 2
, c = (β2

b
)

1/(m−1)
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Asymptotic Behavior
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Asymptotic Behavior

Uniqueness of weak solutions is proved in the one-dimensional case.

Theorem

Let m ∈ (1,+∞), s ∈ (0,1), N = 1 and µ ∈ M+(RN). Then there exists a
unique weak solution to Problem (M1).

The proof is done via the integrated problem.
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Theorem

Let m ∈ (1,∞), s ∈ (0,1) and N = 1. Assume that u0 ∈ L1(R),
∥u0∥L1(R) =M and let u be the corresponding weak solution of (M1).
Then

t
N(1− 1

p
)

(m−1)N+2−2s ∥u(⋅, t) −UM(⋅, t)∥Lp(RN) → 0 as t →∞

for any p > 1, where UM is the unique self-similar solution of (M1) with
initial data µ =Mδ0.

Notice that UM can be transformed into a self-similar solution of (M2)
(for m < 2) or (M3) (for m > 2).

Proof. Rescale uλ(x , t) = λNu(λx , λbt), for λ > 0. Then use the four step
method:
(I) compactness estimates + convergence in L2(BR),
(II) tail control in RN ∖BR ,
(III) convergence in Lp(R),
(IV) Put t = 1 and then λ is the new time.

33 / 41



Preliminaries on the PME The Fractional Version Existence of solutions Positivity results Transformations Asymptotic Behavior Conclusions

Theorem

Let m ∈ (1,∞), s ∈ (0,1) and N = 1. Assume that u0 ∈ L1(R),
∥u0∥L1(R) =M and let u be the corresponding weak solution of (M1).
Then

t
N(1− 1

p
)

(m−1)N+2−2s ∥u(⋅, t) −UM(⋅, t)∥Lp(RN) → 0 as t →∞

for any p > 1, where UM is the unique self-similar solution of (M1) with
initial data µ =Mδ0.

Notice that UM can be transformed into a self-similar solution of (M2)
(for m < 2) or (M3) (for m > 2).

Proof. Rescale uλ(x , t) = λNu(λx , λbt), for λ > 0. Then use the four step
method:
(I) compactness estimates + convergence in L2(BR),
(II) tail control in RN ∖BR ,
(III) convergence in Lp(R),
(IV) Put t = 1 and then λ is the new time.

34 / 41



Preliminaries on the PME The Fractional Version Existence of solutions Positivity results Transformations Asymptotic Behavior Conclusions

Theorem

Let m ∈ (1,∞), s ∈ (0,1) and N = 1. Assume that u0 ∈ L1(R),
∥u0∥L1(R) =M and let u be the corresponding weak solution of (M1).
Then

t
N(1− 1

p
)

(m−1)N+2−2s ∥u(⋅, t) −UM(⋅, t)∥Lp(RN) → 0 as t →∞

for any p > 1, where UM is the unique self-similar solution of (M1) with
initial data µ =Mδ0.

Notice that UM can be transformed into a self-similar solution of (M2)
(for m < 2) or (M3) (for m > 2).

Proof. Rescale uλ(x , t) = λNu(λx , λbt), for λ > 0. Then use the four step
method:
(I) compactness estimates + convergence in L2(BR),
(II) tail control in RN ∖BR ,
(III) convergence in Lp(R),
(IV) Put t = 1 and then λ is the new time.
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● We proved existence of suitable weak solutions of problem (M1) and
finite vs infinite speed of propagation depending on m. Asymptotic
behavior in 1D by means of an integrated version of the problem.

● Uniqueness in several dimensions: OPEN!. Once this result is available,
the existence of selfsimilar solutions together with the asymptotic
behaviour would follow.

● Another pending issue is continuity of weak solutions. In the case m = 2
Hölder continuity is proved in [CSV, CV2].

● Recently, the problem posed in a bounded domain was considered in
[NguyenVaz 2017] for dimension N ≥ 1. Further work is to be done on
that issue.
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