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The stochastic model for the one dimensional
fragmentation

• The model describes the fragmentation phenomenon for an
infinite particles system.

• Each particle is characterized by its size and, at some
random times, it can split into two particles by conserving the
total mass.

• If c(t , x) the concentration of particles of size x at time t in the
system then the evolution in time of c(t , x) is governed by the
fragmentation equation:




∂

∂t
c(t , x) =

∫ 1

x
F (x , y − x)c(t , y)dy − 1

2
c(t , x)

∫ x

0
F (y , x − y)dy ,

for all t>0 and x ∈ [0,1],

c(0, x) = c0(x) for all x ∈ [0,1].

• The fragmentation kernel F : [0,1]2 −→ R+ is a symmetric
function, F (x , y) represents the rate of fragmentation of a
particle of size x + y into two particles of size x and y .

• In the first line of the fragmentation equation, the first term on
the right hand side is counting the creation of particles of size
x , due to the fragmentation of particles of larger size, say y ,
with y > x , into two parts x and y − x .

• The second term counts for the particles of size x which
disappears after splitting into two smaller particles of size y and
x − y , for y < x .



•We emphasize a pure jump Markov process on R+ , denoted
by (Xt )t>0 whose law is the solution, in some sense, to the
fragmentation equation. This process will describe the
evolution of the size of a typical particle in the system.

•We study fragmentation equations for which the total mass
will be preserved; for all t>0∫ 1

0
xc(t , x)dx =

∫ 1

0
xc0(x)dx

and from normalization reason
∫ 1

0 xc0(x)dx = 1, thus if we
denote by p(t , x) = xc(t , x); x ∈ [0,1], then p(t , x)dx is a
probability measure for each t .



Stochastic approach of the coagulation/fragmentation
models

[Deaconu, Fournier, Stoch. Process. Appl., 2002]

[Deaconu, Fournier, Tanré, Ann. Probab., 2002]

[Fournier, Giet, J. Stat. Physis, 2003]

[Bertoin, Random Fragmentation and Coagulation Processes.
Cambridge Univ. Press, 2006]

[L.B., Deaconu, Lupaşcu, Stoch. Proc. Appl. 2015]

[L.B., Deaconu, Lupaşcu, J. Stat. Physics 2016]



Weak solution of the fragmentation equation

A family (Qt )t>0 of probability measures on [0,1] is solution in
the weak sense of the fragmentation equation if:

〈Qt , φ〉 = 〈Q0, φ〉+

∫ t

0
〈Qs,Fφ〉ds, φ ∈ C1([0,1]), t>0, (0.1)

where 〈Qt , φ〉 =
∫ 1

0 φ(y)Qt (dy) and for any x ∈ [0,1]

Fφ(x) =

∫ x

0
[φ(x − y)− φ(x)]

x − y
x

F (y , x − y)dy .

•We describe the process having the distribution (Qt )t>0.



Weak solution of the stochastic differential equation of
fragmentation (SDEF)

Let Q0 be a probability measure on [0,1].

X is a weak solution of the stochastic differential equation
of fragmentation (abbreviated (SDEF)) if:

• X = (Xt )t>0 is an adapted process on (Ω,G, (Gt )t>0,P) whose
paths belong to D([0,+∞), [0,1]).

• L(X0) = Q0.



• There exists a Poisson measure N(ds,dy ,du) adapted to
(Gt )t>0 on [0,+∞)× [0,1)× [0,1) respectively with intensity
measure dsdydu such that the following stochastic
differential equation holds:

Xt = X0 −
∫ t

0

∫ 1
0

∫ 1
0 y1{y∈(0,Xs−)}1{u6Xs−−y

Xs−
F (y ,Xs−−y)}

N(ds,dy ,du)

• The process X can be seen as the size of a sort of typical
particle. This means that at some random instants the typical
particle breaks into two smaller particles: we thus subtract y
from X for some y ∈ (0,Xs−) at rate F (y ,Xs− − y)Xs−−y

Xs−
.

• There exists a weak solution X = (Xt )t>0 of the (SDEF);
[Fournier, Giet, 2003].

Let Qt := L(Xt ), t>0. Then the family {Qt}t>0 is a solution in
the weak sense of the fragmentation equation.

• If Qt , t>0, has a density with respect to the Lebesgue
measure on [0,1] and if we set c(t , x) := dQt

xdx , then c(t , x) is a
solution of the fragmentation equation.



Multiple-fragmentation: Introduction

A fragmentation model closer to the real life should also take
into account the spatial position and movement of the fragments.

For coagulation of particles with position and spatial diffusion see
[Deaconu, Fournier, Stochastic Proc. Appl., 2002].

Aim: To study stochastic multiple-fragmentation processes
driven by a spatial flow.

• The final goal is actually to make a numerical simulation of
the time evolution of a system of particles located on an
Euclidean surface.

•We take into account not only the fragmentation of the mass
of a particle, but also of the kinetic energy and of the velocity.

• There is a loss of energy which occurs.



Multiple-fragmentation processes and their SDEs

We consider n first order integral operators Fk , k = 1,n,
n ∈ N∗, Fk : Cl(Ek ) −→ Bb(Ek ),

Fk f (x) =

∫
Ek

[f (z)− f (x)]Nk
x (dz), f ∈ Cl(Ek ), x ∈ Ek ,

where Nk is a kernel on Ek := [0, lk ], lk ∈ R∗, with
supx

∫
Ek
|x − z|Nk

x (dz) <∞.
In our application to fragmentation processes the kernels Nk

will be either of the form

Nk
x (dz) =

z
x

F k (x − z, z)1(0,x)(z)dz,

where F k are continuous fragmentation kernels or bounded
kernels on Ek of the form

Nk
x = λk (βkxδβk x + (1− βk )xδ(1−βk )x ),

where βk ∈ (0,1) is a rupture factor and λk is a constant which
depends on βk , λk := θk

4 (β2
k + (1− βk )2), with 0 < θk 6 1.

The factor θk is a "rate of loss of fragmentation sizes".



n-dimensional fragmentation process

• Assume that each Fk , 1 6 k 6 n, is the generator of a right
Markov process X k = (X k

t )t>0 with state space Ek .
Xk is actually a one-dimensional fragmentation process.

•We consider the n-dimensional fragmentation process
X = (Xt )t>0 with state space E :=

∏n
k=1 Ek , defined as

Xt := (X 1
t , . . . ,X

n
t ).

It is also a right Markov process and its generator is the
operator F : Cl(E) −→ Bb(E), defined as

Fg(x) =

∫
E

[g(z)− g(x)]Nx (dz), g ∈ Cl(E), x ∈ E ,

where N is the kernel on E defined by

Ng(x) =
n∑

k=1

∫
Ek

g(x1, . . . , xk−1, z, xk+1, . . . , xn)Nk
xk

(dz).



Let further nc ∈ N, 0 6 nc 6 n, it will represent the number of
continuous fragmentation kernels we shall take into account.

Assume that each Fk is given by a continuous fragmentation
kernel F k on Ek if 1 6 k 6 nc and by a bounded discontinuous
kernel Nk if nc < k 6 n.



Stochastic differential equation of n-dimensional
fragmentation



X k
t = X k

0−∫ t

0

∫ lk

0

∫ 1

0
yk1[0<yk<X k

s ]
1
[u6

Xk
s−−yk
Xk

s−
F k (yk ,X k

s−−yk )]
p(

n∑
i=1

dsdyidu),

if 1 6 k 6 nc ,

X k
t = X k

0−∫ t

0

∫ lk

0

(
(1− β)X k

s−1[ yk
βλo

<X k
s−61] + βX k

s−1[ yk
λo
<X k

s−6
yk
βλo

]

)
p(

n∑
i=1

dsdyi),

if nc < k 6 n,

where p(
∑nc

i=1 dsdyidu) is a Poisson measure with intensity
q =

∑nc
i=1 dsdyidu.



Proposition

The stochastic differential equation of n-dimensional
fragmentation with the initial distribution δx , x ∈ E, has a weak
solution which is equal in distribution with the n-dimensional
fragmentation process (X ,Px ).



Multiple-fragmentation driven by a spatial Markov
process

Let F be a Lusin topological space and consider a right Markov
process Y = (Yt ,Ω

′,F ′,F ′t ,Pz) with state space F .
Let (Tt )t>0 be the transition function of the process Y ,
Tt f (z) = Ez(f (Yt ); t < ζ), t > 0, z ∈ F .

Let d : F −→ (0,∞) be a (finely) continuous function and
consider the continuous additive functional Ad = (Ad

t )t>0

induced by d : Ad
t =

∫ t
0 d(Ys)ds, t > 0.

Assume that 0 < Ad
t (ω) <∞ for all ω ∈ Ω′ and t > 0. Consider

the inverse (τd
t )t>0 of Ad , (τd

t )(ω) := inf{s > 0 : Ad
s (ω) > t}.

Let Y d = (Y d
t ,Ω

′,Px ) be the Markov process obtained from Y
by time change with the inverse of Ad ,

Y d
t = Yτd

t
, t > 0

and let (Ld ,D(Ld )) be the generator of Y d , Ld = 1
d L.



Let X = (Xt ,Ω,F ,Ft ,Px ) be a right Markov process with state
space E , a Lusin topological space.

Let c : E −→ (0,∞) be a finely continuous function c > α > 0.
Consider X c = (X c

t ,Ω,Px ) the right Markov process with state
space E , obtained from X by time change with the inverse τ c

t ,
t ≥ 0, of the additive functional Ac = (Ac

t )t>0 induced by c:

Ac
t =

∫ t
0 c(Xs)ds, τ c

t := inf{s > 0 : Ac
s > t}, X c

t := Xτ c
t
, t > 0.

Let further (D,D(D)) be the weak generator of X and (St )t>0
(resp. (Sc

t )t>0) the transition function on E of the process X
(resp. of the process X c).
If ϕ : F × E −→ R we write ϕx (z) := ϕ(z, x) =z ϕ(x) for all
(z, x) ∈ F × E .



Proposition. Let Z ′ = (Z ′t ,Ω
′ × Ω,Pz × Px ) be the cartesian

product of the processes Y d and X c , Z ′t = (Y d
t ,X

c
t ).

Let further a(z, x) :=
1

d(z)c(x)
and Z = (Zt ,Ω

′ ×Ω,Pz × Px ) be

the right Markov process obtained from Z ′ by time change with
the continuous additive functional Aa = (Aa

t )t>0 of Z ′, induced

by a: Aa
t =

∫ t
0

1
c(X c

s )d(Y d
s )

ds, t ≥ 0.

Assume that c and d are bounded functions and let (N̄,D(N̄)
be the generator of Z .

Let Dc(L) (resp. Dc(D)) be the space of those elements from
D(L) (resp. D(D)) which are finely continuous on F (resp. on
E).



Then the following assertions hold.
(i) Dc(L)×Dc(D) is a subspace of Dc(N̄) and for every
ϕ ∈ Dc(L)×Dc(D)

N̄ϕ(z, x) = c(x)Lϕx (z) + d(z)Dzϕ(x) for all (z, x) ∈ F × E .

(ii) For every ϕ ∈ Dc(L)×Dc(D) the process(
ϕ(Zt )−

∫ t

0
[c(X ′′u )LϕX ′′u (Y ′′u ) + d(Y ′′u )D(Y ′′u ϕ)(X ′′u )]du

)
t>0

is an (F ′t ×Ft )t>0-martingale under Pz × Px for all
(z, x) ∈ F × E , where Zt = (Y ′′t ,X

′′
t ) ∈ F × E .



Random fragmentation and flow of particles on a
surface

Geometrical description of the surface. We describe the
surface Sb, given through a general parametric representation
by rb(x1, x2) = B1(x)c1 + B2(x)c2 + B3(x)c3, where
x = (x1, x2) are the parametric coordinates belonging to a two
dimensional domain Ω ⊂ R2 and {c1,c2,c3} which is the
cartesian basis with the vertical in the c3 direction.
Let Πb = Πb(x) be the two dimensional vectorial space tangent
to the bottom surface Sb (i.e., Πb(x) := Sp{b1(x),b2(x)}).
We denote by b1,b2 the covariant physical basis and by β3 the
unit normal vector on Sb and by k the curvature tensor. We
denote by
b1(x) = ∂rb

∂x1
(x), b2(x) = ∂rb

∂x2
(x)

the covariant basic vectors and by
g11 = |b1|2,g22 = |b2|2,g12 = b1 · b2, the covariant
fundamental magnitudes of the first order.



We denote by g the element of area in the tangent plane

g(x) =
√

g11g22 − g2
12.

We denote also by β1, β2 the covariant physical basis and by β3
the unit normal vector on Sb:

β1 =
1
L1

b1, β2 =
1
L2

b2, β3 =
b1 ∧ b2

g
,

where L1,L2 are the Lamé coefficients defined as
L1(x) =

√
g11, L2(x) =

√
g22.



To introduce the contra-variant tangent basis, denoted by
b1,b2, and the contra-variant fundamental magnitudes of the
first order

g11 = |b1|2 =
g22

g2 , g22 = |b2|2 =
g11

g2 , g12 = b1 ·b2 = −g12

g2 .

The fundamental magnitudes of the second order are given by

k11 =
∂2rb

∂x2
1
· β3, k22 =

∂2rb

∂x2
2
· β3, k12 = k21 =

∂2rb

∂x1∂x2
· β3.

defining the curvature tensor
k := kijbi ⊗ bj = k i

j bi ⊗ bj = k ijbi ⊗ bj , with summation on i
and j from 1 to 2, while the Christoffel symbols are

Γk
ij =

∂2rb

∂xi∂xj
· bk .



Motion equations between two fragmentation
moments

We shall consider a motion of N particles on the surface Sb
during the time interval [t0, t1].
During this time interval the number of particles N will be
constant.
We denote by rp(t) = rb(xp(t)), xp(t) = (xp

1 (t), xp
2 (t)) the

position of each particle p at t ∈ [t0, t1].
We can compute the velocity and the acceleration of each
particle to be:

vp =
d
dt

rp = ẋp
1 b1(xp) + ẋp

2 b2(xp),

ap =
d
dt

vp = ẍp
1 b1(xp)+ẋ1

∂b1(xp)

∂x1
ẋ1+ẋ1

∂b1(xp)

∂x2
ẋ2+ẍ2b2(xp)+

ẋ2
∂b2(xp)

∂x1
ẋ1 + ẋ2

∂b2(xp)

∂x2
ẋ2.



Let Fp = Fp(r1, ..., rN ,v1, ...,vN) be the force acting on the
particle p.
The movement of a particle is described by the Newton
evolution equation

mpap = Fp(r1, ..., rN ,v1, ...,vN)+Mp(t)β3, for all p = 1, ...,N,
(0.2)

where Mp is the reaction force of the surface Sb.



Multiplying now by b1, respectively b2, we obtain the system:



ẍp
1 + Γ1

11(ẋp
1 )2 + Γ1

22(ẋp
2 )2 + ẋp

1 ẋp
2 (Γ1

21 + Γ1
12) =

Fp(r1, ..., rN ,v1, ...,vN) · b1(xp)

ẍp
2 + Γ2

11(ẋp
1 )2 + Γ2

22(ẋp
2 )2 + ẋp

1 ẋp
2 (Γ1

21 + Γ1
12) =

Fp(r1, ..., rN ,v1, ...,vN) · b2(xp)
(0.3)

for all p = 1, ...,N.
We have to complete the above second order nonlinear system
equations with the initial conditions

rp(t0+) = rp
0 and vp(t0+) = vp

0, for all p = 1, ...,N.
(0.4)



Random binary fragmentation

Our aim is to introduce a random binary fragmentation process
for N particles characterized by their mass m1, ....,mN , their
positions r1, ...., rN , and their velocities v1, ...,vN .
Let define t1 the first random fragmentation time greater then t0,
having a Poisson distribution. The position r1(t1−) and the
velocity v1(t1−) are computed solving the nonlinear system
(0.3), described in the previous section. Let us describe what
we mean by a fragmentation process. A fragmentation process
Fp of a particle p is the function which associates at each
(mp, rp,vp) the couple [(mp

1 , r
p
1,v

p
1), (mp

2 , r
p
2,v

p
2)],

Fp(mp, rp,vp) = [(mp
1 , r

p
1,v

p
1), (mp

2 , r
p
2,v

p
2)],

which represents the masses, the positions, and the velocities
of the resulting two particles at t = t1+.



Let us describe our choice of fragmentation process.
First of all, we suppose that the position at t = t1+ of the
resulting two particles coincide with the position of the mother
particle, i.e.

rp
1(t1+) = rp

2(t1+) = rp(t1). (0.5)

For the mass and the velocity fragmentation we choose a
random procedure. We take the mass of the fragments to be

mp
1 = ξmp, mp

2 = (1− ξ)mp, (0.6)

where ξ is a fixed uniform random variable. Note that we have
the mass conservation property, i.e.

mp
1 + mp

2 = mp.

Concerning the velocity fragmentation the process needs more
physichal restrictions. We assume that a part (1− θ)Ep of the
particle kinetic energy Ep = 1

2mp|vp(t1−)|2 is lost in the
fragmentation process, where θ ∈ (0,1) is a fixed rupture
parameter.



The resulting two fragments will have the kinetic energy
Ep

1 = θγEp and Ep
2 = θ(1− γ)Ep with Ep

1 + Ep
2 = θEp, where γ is

a fixed uniform random variable. If the first energy corresponds
to the first choice of the mass fragmentation then we have

Ep
1 = 1

2mp
1 |v

p
1(t1+)|2 = θγEp

Ep
2 = 1

2mp
2 |v

p
2(t1+)|2 = θ(1− γ)Ep,

(0.7)

The other choice of the corresponding energy is similar with the
last one by replacing γ with 1− γ.
Finally, as for the mass distribution we will suppose that we
have an additive law:

vp
1(t1+) + vp

2(t1+) = vp(t1+). (0.8)



Let prove now that if the fragmentation parameters θ, ξ, γ satisfy
the following inequality

θγξ(1− ξ)2 − θ2γ2(1− ξ)2 − θγ(1− ξ)b − 1
4

b2 ≥ 0, (0.9)

with b := (ξ − ξ2 − γ(ξ + θ − 2ξθ)),

there exist exactly two possibilities for the resulting
fragmentation process.
We also give a method to compute the resulting velocity
vp

1(t1+) and vp
2(t1+) from the fragmentations laws (0.6),(0.7),

and (0.8).



In that follows we will write vp,vp
1,v

p
2 instead of

vp(t1+),vp
1(t1+),vp

2(t1+).
Replacing the masses mp

1 and mp
2 in (0.7) we have the system

ξ|vp
1|

2 = θγ|vp|2

(1− ξ)|vp
2|

2 = (1− θ)γ|vp|2,
(0.10)

and we can compute the velocities norms to be
|vp

1| =
√

θγ
ξ |v

p|

|vp
2| =

√
1−θ
1−ξγ|v

p|,
(0.11)



From
|vp|2 = |vp

1|
2 + |vp

2|
2 + 2vp

1 ·v
p
2 = θγ

ξ |v
p|2 + 1−θ

1−ξγ|v
p|2 + 2vp

1 ·v
p
2,

we get

2vp
1 · v

p
2 = |vp|2

(
1− γ ξ + θ − 2ξθ

ξ(1− ξ)

)
,

and since 
vp · vp

1 = |vp
1|

2 + vp
2 · v

p
1

vp · vp
2 = |vp

2|
2 + vp

2 · v
p
1,

(0.12)

we can compute vp · vp
1 and vp · vp

2.



Let decompose the velocities vp and vp
1 in the local basis

b1,b2 as vp = ẋpb1 + ẏpb2 and vp
1 = ẋp

1 b1 + ẏp
1 b2.

We can decompose the two velocities in the basis vp and
(vp)⊥ = −ẏpb1 + ẋpb2 as

vp
1 = α1vp + β1(vp)T

vp
2 = α2vp + β2(vp)T ,

(0.13)

where the parameters α1, α2, β1, β2 have to be computed. From
(0.8) we have α1 +α2 = 1 and β1 + β2 = 0 and using (0.12), we
get vp

1 · v
p = α1|vp|2, so

α1 =
vp

1 · v
p

|vp|2
and α2 = 1− α1.

Multiplying the first equation from the system (0.13) by (vp)T ,
we obtain

vp
1 · (v

p)T = β1||(vp)T ||2 = β1g11(ẋp)2 + ẏpg22 + 2g12ẋpẏp.



The parameter β1 can be computed from
vp

1 ·v
p
2 = α1α2|vp|2 +β1β2|(vp)T |2 = −β2

1 |(vp)T |2 +
vp

1·v
p

|vp|2 +vp
2 ·v

p

if and only if (0.9) holds. In this case we deal with two solutions
given by

β1 = ±β, with β =

√
α1(1− α1)|vp|2 − vp

1 · v
p
2

|(vp)T |2
. (0.14)



Replacing |(vp)T |2 = (ẋp)2g22 + (ẏp)2g11 + 2ẋpẏpg12 in (0.14)
we get β1.
The velocity for a first one fragment vp

1 satisfies

vp
1 = α1(ẋpb1+ẏpb2)±β(−ẏpb1+ẋpb2) = ẋp

1 b1+ẏp
1 b2. (0.15)

Multiplying the last equality by b1 we obtain

ẋp
1 b1 · b1 + ẏp

1 b2 · b2 = α1(ẋpb1 · b1 + ẏpb2 · b1)∓ βẏp.

That means

g11ẋp
1 + g12ẏp

1 = α1(ẋpg11 + ẏpg12)∓ βẏp.

Multiplying the equation (0.15) by b2 we obtain

g12ẋp
1 + g22ẏp

1 = α1(ẋpg12 + ẏpg22)± βẋp.



From the last two equations we can compute the components
ẋp

1 , ẏ
p
1 of the velocity vp

1 for the first fragment:


ẋp

1 =
g11[α1(ẋpg11 + ẏpg12)− βẏp]− g12[α1(ẋpg12 + ẏpg22)± βẋp]

g11g22 − g2
12

ẏp
1 =

g11[α1(ẋpg12 + ẏpg22) + βẋp]− g12[α1(ẋpg11 + ẏpg12)∓ βẏp]

g11g22 − g2
12

.

(0.16)



Following the same procedure for vp
2 we get the corresponding

expressions of the components of second fragment


ẋp

2 =
g11[α2(ẋpg11 + ẏpg12)− βẏp]− g12[α2(ẋpg12 + ẏpg22)∓ βẋp]

g11g22 − g2
12

ẏp
2 =

g11[α2(ẋpg12 + ẏpg22) + βẋp]− g12[α2(ẋpg11 + ẏpg12)± βẏp]

g11g22 − g2
12

.

(0.17)



Algorithm for the random binary fragmentation

Problem setting
• set the bottom surface Sb as in Section 1
• set ξ, γ ∼ U([0,1]), and θ ∈ (0,1), satisfying the inequaliy
(0.9)
• set Tfinal and Nmax

Iterative algorithm

Input at tk +
• Nk the number of particles
• the mass of each particle
• the position of each particle
• the velocity of each particle



The transition from tk to tk+1+
• compute the fragmentation time tk+1, having a Poisson
distribution
• solve the differential equations on the interval time (tk , tk +)
with the previous initial conditions, by using a numerical
approach
• fragmentation process: i) Nk+1 = 2Nk

ii) set the mass of each particle
according to (0.6)

iii) choose the position of each
particle according to (0.5)

iv) set the energy of each particle
according to (0.7)

v) compute the velocities of each
particle at tk+1+ following the formula
(0.16) and (0.17)
• update the input at tk+1+

STOP: tk > Tfinal or Nk > Nmax


