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The stochastic model for the one dimensional

fragmentation

e The model describes the fragmentation phenomenon for an
infinite particles system.

e Each particle is characterized by its size and, at some
random times, it can split into two particles by conserving the
total mass.

e If c(t, x) the concentration of particles of size x at time ¢ in the
system then the evolution in time of ¢(t, x) is governed by the
fragmentation equation:



o 1 1 X
9 ot x) = / F(x.y — x)e(t,y)dy — Le(t.x) / F(y.x — y)dy,
ot ; > 0

for all £=0 and x € [0, 1],
c(0, x) = cy(x) for all x € [0, 1].

e The fragmentation kernel F : [0,1]> — R, is a symmetric
function, F(x, y) represents the rate of fragmentation of a
particle of size x + y into two particles of size x and y.

e In the first line of the fragmentation equation, the first term on
the right hand side is counting the creation of particles of size
x, due to the fragmentation of particles of larger size, say y,
with y > x, into two parts x and y — x.

e The second term counts for the particles of size x which
disappears after splitting into two smaller particles of size y and
x —y, fory < x.



e We emphasize a pure jump Markov process on R.. , denoted
by (Xt):=0 whose law is the solution, in some sense, to the
fragmentation equation. This process will describe the
evolution of the size of a typical particle in the system.

e We study fragmentation equations for which the total mass
will be preserved; for all >0

1 1
/Oxc(t,x)dx:/O Xco(x)dx

and from normalization reason f01 xco(x)dx = 1, thus if we
denote by p(t, x) = xc(t, x); x € [0,1], then p(t, x)dx is a
probability measure for each t.
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Weak solution of the fragmentation equation

A family (Q¢)s=0 of probability measures on [0, 1] is solution in
the weak sense of the fragmentation equation if:

t
(Qué) = (Qo. ) + /0 (Qs, Fo)ds, ¢ € C'(0.1]),£20, (0.1)

where (Q¢, ¢) = f01 #(y)Q:i(dy) and for any x € [0, 1]

Fot) = [ 60— y) — S0 Y Fly.x — y)dy|

X

e We describe the process having the distribution (Q¢)¢o.



Weak solution of the stochastic differential equation of

fragmentation (SDEF)

Let Qp be a probability measure on [0, 1].

X is a weak solution of the stochastic differential equation
of fragmentation (abbreviated (SDEF)) if:

e X = (Xi)t=0 is an adapted process on (€2, G, (Gt)t=0, P) whose
paths belong to D([0, +0), [0, 1]).

o £(Xo) = Qu.



e There exists a Poisson measure N(ds, dy, du) adapted to
(Gt)t=0 On [0,400) x [0,1) x [0, 1) respectively with intensity
measure dsdydu such that the following stochastic
differential equation holds:

t 1 e
Xi = XO — fO fO fO yﬂ{ye(o’XS—)}]l{ugXi(’:yF(y,Xs_fy)}N(ds’ dy, dU)

e The process X can be seen as the size of a sort of typical
particle. This means that at some random instants the typical
particle breaks into two smaller particles: we thus subtract y
from X for some y € (0, Xs_) at rate F(y, Xs— — y) %=~

e There exists a weak solution X = (Xt)t=o of the (SDEF);
[Fournier, Giet, 2003].

Let Qi := L(X;), t=0. Then the family {Q;}+~0 is a solution in
the weak sense of the fragmentation equation.

e If Q;, t>0, has a density with respect to the Lebesgue
measure on [0, 1] and if we set ¢(t, x) := f(‘Tcig, then c(t, x) is a

solution of the fragmentation equation.




Multiple-fragmentation: Introduction

A fragmentation model closer to the real life should also take
into account the spatial position and movement of the fragments.

For coagulation of particles with position and spatial diffusion see
[Deaconu, Fournier, Stochastic Proc. Appl., 2002].

Aim: To study stochastic multiple-fragmentation processes
driven by a spatial flow.

e The final goal is actually to make a numerical simulation of
the time evolution of a system of particles located on an
Euclidean surface.

e We take into account not only the fragmentation of the mass
of a particle, but also of the kinetic energy and of the velocity.

e There is a loss of energy which occurs.



Multiple-fragmentation processes and their SDEs

We consider n first order integral operators 7%, k = 1, n,
ne N*, FK: C/(Ex) — Bp(Ek),

FKE(x) :/ [f(z) — F(x)]NK(dz), f e Ci(Ek), x € Ex,
Ej

where N¥ is a kernel on Ex := [0, I], Ik € R*, with

sup, [g [x — z|Nf(dz) < oo

In our application to fragmentation processes the kernels N¥
will be either of the form

z
NE(dz) = ;Fk(x —2,2)1(0,(2)0z,

where F¥ are continuous fragmentation kernels or bounded
kernels on Ej of the form

NE = Me(BiX0g,x + (1= Bi)X(1-g,)x):
where 5k € (0, 1) is a rupture factor and A, is a constant which
depends on S, Ak i= % (B2 + (1 — Bk)?), with 0 < 0 < 1.
The factor 0, is a "rate of loss of fragmentation sizes".



n-dimensional fragmentation process

e Assume that each F*, 1 < k < n, is the generator of a right
Markov process X* = (X} ),>0 with state space Ex.
X is actually a one-dimensional fragmentation process.

e We consider the n-dimensional fragmentation process
X = (X)r=0 With state space E := [[;_, Ex, defined as
Xt = (X],..., X]).

It is also a right Markov process and its generator is the
operator F : C/(E) — Bp(E), defined as

/ [9(2) — g()INx(02), g € CI(E). x € E,

where N is the kernel on E defined by

n
= Z/ g(X17"'an—'Ivzan—Hv"'7Xn)N)l((k(dZ)‘
k=1"Ek



Let further nc € N, 0 < n¢ < n, it will represent the number of
continuous fragmentation kernels we shall take into account.

Assume that each F¥ is given by a continuous fragmentation
kernel F¥ on E, if 1 < k < n; and by a bounded discontinuous
kernel N¥ if n, < k < n.



Stochastic differential equation of n-dimensional
fragmentation

t lk 1 n
1 1 dsdy;du),
/0 /0 /0 Y ot [u<x5kx‘k_”Fk(yk,X§—yk)1p(.Z i)

i=1
if 1<k<ng,

Ik
// ( _ [Yk <Xk <1] +,8 _ [.Vk <Xk .Vk ]) p(z dey,

i=1
if ng < k <

where p( °, dsdy;du) is a Poisson measure with intensity
qg=>r, dsdy,du



Proposition

The stochastic differential equation of n-dimensional
fragmentation with the initial distribution éx, x € E, has a weak
solution which is equal in distribution with the n-dimensional
fragmentation process (X, P¥).




Multiple-fragmentation driven by a spatial Markov

process

Let F be a Lusin topological space and consider a right Markov

process Y = (Y;, ', F', F},P?) with state space F.

Let (T:)s0 be the transition function of the process Y,

Tif(z) = E#(f(V1);t< (), t>0,z€ F.

Letd: F — (0, 0) be a (finely) continuous function and
consider the continuous additive functional A? = (A?)so

induced by d: A? = [ d(Ys)ds, t > 0.

Assume that 0 < A%(w) < oo for allw € Q' and t > 0. Consider

the inverse (77)s0 of A9, (78)(w) := inf{s > 0 : A(w) > t}.

Let Y9 = (Y?,Q',P¥) be the Markov process obtained from Y
by time change with the inverse of A?,

Ye =Y t>0

.
and let (L9, D(LY)) be the generator of Y9, L9 = LL.



Let X = (X;, Q, F, Ft, PX) be a right Markov process with state
space E, a Lusin topological space.

Let c: E — (0, ) be a finely continuous function ¢ > « > 0.

Consider X¢ = (Xf, Q,P¥) the right Markov process with state
space E, obtained from X by time change with the inverse 77,
t > 0, of the additive functional A® = (Af);-o induced by c:

Ac—fo c(Xs)ds, 7f :=inf{s > 0: Ag > t}, X7 := X;e, 1 > 0.

Let further (D, D(D)) be the weak generator of X and (St)r~0
(resp. (S7)t=0) the transition function on E of the process X
(resp. of the process X°).

If o : F x E— R we write px(2) := ¢(z2, x) =z¢(x) for all
(z,x) e Fx E.



Proposition. Let Z/ = (Z/, Y x Q,P? x P¥) be the cartesian
product of the processes Y9 and X¢, Z] = (Y7, XF).

1
Let further a(z, x) := dDex) and Z = (Z;, Y x Q,P% x P¥) be

the right Markov process obtained from Z’ by time change with
the continuous additive functional A% = (A%), of Z’, induced
by a: A? = 7d t>0.

y fo d( Yd) -
Assume that ¢ and d are bounded functions and let (N, D(N)
be the generator of Z.

Let D¢(L) (resp. D¢(D)) be the space of those elements from
D(L) (resp. D(D)) which are finely continuous on F (resp. on
E).



Then the following assertions hold.

(/) De(L) x D¢(D) is a subspace of D¢(N) and for every
¢ € De(L) x De(D)

Ny(z,x) = c(x)Lox(2) + d(z2)Dp(x) forall (z,x) € F x E.
(if) For every ¢ € Dg(L) x D¢(D) the process
t
(20 [ et Loxg (Y5 + dY)Dl) (X ol )
0 0

is an (F't x Ft)e=0-martingale under P? x P* for all
(z,x) € Fx E,where Z; = (Y{', X{') € F x E.



Random fragmentation and flow of particles on a

surface

Geometrical description of the surface. We describe the
surface Sy, given through a general parametric representation
by rp(x1,x2) = Bi(x)eq + Ba(x)c2 + Bz(x)cs, where

x = (xq, X2) are the parametric coordinates belonging to a two
dimensional domain Q ¢ R? and {¢y, ¢», €3} which is the
cartesian basis with the vertical in the ¢3 direction.

Let My, = MNp(x) be the two dimensional vectorial space tangent
to the bottom surface Sy, (i.e., Mp(x) := Sp{b1(x), b2(x)}).

We denote by b4, b, the covariant physical basis and by 5 the
unit normal vector on S, and by k the curvature tensor. We
denote by

bi(x) = 92(x),  ba(x) = 52(x)

the covariant basic vectors and by

g11 = |b1[?, g2 = |b2|?, g12 = by - by, the covariant
fundamental magnitudes of the first order.



We denote by g the element of area in the tangent plane

a(x) = 1/ 911922 — G5,

We denote also by 31, 8> the covariant physical basis and by S5
the unit normal vector on Sp:

1 by AN b
by, BzZEbz, f3 = 1g 2

where L4, L, are the Lamé coefficients defined as

Li(x) = Vg1, La(X) = \/G2z.

T

ﬁ1=L1




To introduce the contra-variant tangent basis, denoted by
b', b?, and the contra-variant fundamental magnitudes of the
first order

922 9 912
—’b1‘2 22 22:“)2’2:L217 12:b1'b2:_gg'

g g

The fundamental magnitudes of the second order are given by

K 82I‘b 82I‘b . 82rb
1 N 0X10Xo

B3, koo = B3, Ky2 = Ko

- B3.

defining the curvature tensor

k:=kb' @b = kib; ® b = k'b; ® b;, with summation on i
and j from 1 to 2, while the Christoffel symbols are

k azrb ) bk.

T 0x0x;




Motion equations between two fragmentation

moments

We shall consider a motion of N particles on the surface S,
during the time interval [ty, t].

During this time interval the number of particles N will be
constant.

We denote by rP(t) = ry(xP(t)), xP(t) = (X{ (1), x5(t)) the
position of each particle p at t € [ty, t1].

We can compute the velocity and the acceleration of each
particle to be:

d :
v = 217 = 0By (xP) + Kby (xP)
d obi(xP) . . Oby(xP) . .
a’ = gt P—pr1(xp) X1 é)(( )x1+x1 (;)((2 )x2+x2b2(xp)+
P P
8b2(x )X1 + X 8b2(X )Xg

X;
2 0X4 2 OXo



Let FP = FP(r',....rN,v', ..., v") be the force acting on the
particle p.

The movement of a particle is described by the Newton
evolution equation

mPaP =FP(r', ... IV v, vV)+MP(t)Bs, forall p=1,..N,
(0.2)
where MP is the reaction force of the surface Sp.



Multiplying now by b', respectively b?, we obtain the system:

X+ TP 4 Th(X8)? + X5 (T +Tp) =

FP(r',....rN v .. vN). b'(xP)

X + T4 (XF)2 + To5(X5)2 + XPXB(TY, +T1,) =

FP(r,....rN, v, . vN) . b?(xP)
(0.3)

forallp=1,....N.
We have to complete the above second order nonlinear system
equations with the initial conditions

rP(toy) =ry and VvP(t)=vh, forall p=1,. N.
(0.4)



Random binary fragmentation

Our aim is to introduce a random binary fragmentation process
for N particles characterized by their mass m', ..., m", their
positions r',...., rN, and their velocities v', ..., v/V.

Let define t; the first random fragmentation time greater then t,
having a Poisson distribution. The position r;(t;—) and the
velocity vy (t—) are computed solving the nonlinear system
(0.3), described in the previous section. Let us describe what
we mean by a fragmentation process. A fragmentation process
FP of a particle p is the function which associates at each

(mP, rP, vP) the couple [(mf, r{, v0), (m§, 5, V)],
FP(mP, 1P, vP) = [(m], 1], v¥), (m}, 15, v3)],

which represents the masses, the positions, and the velocities
of the resulting two particles at t = t;+.



Let us describe our choice of fragmentation process.
First of all, we suppose that the position at t = t;+ of the
resulting two particles coincide with the position of the mother
particle, i.e.

l"?(ﬁ-‘r) = r§(t1+) = I'p(t1). (0.5)

For the mass and the velocity fragmentation we choose a
random procedure. We take the mass of the fragments to be

mf = fmpv mg = (1 - g)mp? (0.6)

where ¢ is a fixed uniform random variable. Note that we have
the mass conservation property, i.e.

4 mE = .

Concerning the velocity fragmentation the process needs more
physichal restrictions. We assume that a part (1 — 6)&EP of the
particle kinetic energy P = ImP|vP(t—)[? is lost in the
fragmentation process, where 6 € (0,1) is a fixed rupture
parameter.



The resulting two fragments will have the kinetic energy

EP = 0y€P and £5 = 0(1 — ~)&P with P + €8 = 0€P, where v is
a fixed uniform random variable. If the first energy corresponds
to the first choice of the mass fragmentation then we have

&P = ImPIVR(t+) 2 = 0yEP
(0.7)
5 = SmbIvB(ti+)12 = 0(1 — 7)EP,

The other choice of the corresponding energy is similar with the
last one by replacing v with 1 — ~.

Finally, as for the mass distribution we will suppose that we
have an additive law:

vi(ti+) + vh(ti+) = vP(ti+). (0.8)



Let prove now that if the fragmentation parameters 6, £, v satisfy
the following inequality

(1~ EF — (1~ €F —or(1 ~ )b~ 1P >0, (09)

with b := (€ — €2 — ~v(€ + 0 — 2¢6)),

there exist exactly two possibilities for the resulting
fragmentation process.

We also give a method to compute the resulting velocity
ve(ti+) and v5(t+) from the fragmentations laws (0.6),(0.7),
and (0.8).



In that follows we will write vP, v?, v5 instead of
VP(t+), VE(ti+), v3(ti+).
Replacing the masses m{ and m} in (0.7) we have the system

EIVEZ = 04| vP P
(0.10)
(1= OIva2 = (1 — O)y|vPP,

and we can compute the velocities norms to be

0
vl = v

[1—
|Vl2)| = %/ﬂ‘,ph

(0.11)



From
0 _
(VP2 = [VE2 4 VB2 4205 - v8 = VP2 1=ty v - 2vE - v,

we get
oyP . P o E4+0—2¢0
1 Y2 |l' |2<1 76.(16)§>7

and since
ve vl = VP12 4 v VY
(0.12)
2
VP v = VD2 + v - vE,

we can compute v - v& and vP - v§.



Let decompose the velocities vP and v# in the local basis
by, by as vP = xPb; + yPby and vE = xPby + yPb,.
We can decompose the two velocities in the basis v” and
(VvP)L = —yPb! + xPb? as
Vi = aqvP + By (vP)T
(0.13)
P __ P P\ T
vy = aaVP + fBo(VvP) ',
where the parameters a4, as, 51, 82 have to be computed. From

(0.8) we have a1 + ap = 1 and 31 + 5o = 0 and using (0.12), we
get vi - vP = aq|VPJ?, so

b . yp
|74 4
1
o = ———— n as =1 —ay.
1 VP2 and  ap 1

Multiplying the first equation from the system (0.13) by (v*)7,
we obtain

vi - (vP)T = By [|(VP)T[[2 = Brg"! (}P)? + yPg? + 29" XPyP.



The parameter 51 can be computed from

P.yP

Vi v3 = araa| VP[P + 51 52| (vP) T2 = —FI(vP)T P+ e + v vP
if and only if (0.9) holds. In this case we deal with two solutions
given by

Vor(d = an)|ve2 - v8 - v8

By = +8, with g = WP (0.14)




Replacing |(vP)T[? = (xP)2g% + (yP)?g"! + 2xPyPg'? in (0.14)
we get 5.
The velocity for a first one fragment v¥ satisfies
VP = a1 (XPby+yPbo)+B(—yPb' +xPb?) = xPby+yFby. (0.15)
Multiplying the last equality by by we obtain
XPby - by + yiby - by = oy (XPby - by + yPby - by) T ByP.
That means
g1 X + g12yy = a1 (XPgy1 + yPg2) F BYP.
Multiplying the equation (0.15) by b, we obtain

G12X{ + gooyy = o1 (XPgr2 + YPgo2) £ SXP.



From the last two equations we can compute the components
xf, ¥ of the velocity v¥ for the first fragment:

P _ 91t [t (XPg11 + YP12) — BYP] — G12[a1 (XPg12 + YyPgao) £+ SXP]
P

9110922 — 9122

o Gu1la1(XPg12 4 yPgoo) 4 BXP] — g12[at(XPg11 + YPGr2) F BYP]
7= = -
911922 — 95»
(0.16)



Following the same procedure for Vg we get the corresponding
expressions of the components of second fragment

Gi1laa(XPgi1 + yPg12) — BYP] — Gia[aa(XPg12 + YPg22) T BXP]

xP =

2 911922 —9122

o = 9 [a2(XPg12 + ¥Pgee) + BXP] — gralea(XPg11 + YP912) £ BYP]
? 911922 — 9%

(0.17)



Algorithm for the random binary fragmentation

Problem setting

e set the bottom surface Sy as in Section 1

e set ¢, v~ U([0,1]),and 0 € (0, 1), satisfying the inequaliy
(0.9)

e set Tfng and Nmax

Iterative algorithm

Input at #+

o N¥ the number of particles
e the mass of each particle

e the position of each particle
e the velocity of each particle



The transition from f; to ., 1+
e compute the fragmentation time f 1, having a Poisson
distribution
e solve the differential equations on the interval time (i, tx+)
with the previous initial conditions, by using a numerical
approach
e fragmentation process: i) N¥*1 = 2Nk

ii) set the mass of each particle
according to (0.6)

iiil) choose the position of each
particle according to (0.5)

iv) set the energy of each particle
according to (0.7)

v) compute the velocities of each
particle at t, 1+ following the formula
(0.16) and (0.17)
e update the input at t, 1+

STOP: t, > Tina OF NK > Niax



