Stochastic equation of fragmentation and branching processes related to avalanches

Oana Lupașcu

Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy, Romania

Atelier de travail en stochastique et interferences avec EDP Bucharest, September 13th, 2017

Aim:

- A unifying approach for constructing branching processes in continuous time, on the space of all fragmentation sizes induced by:
 - continuous fragmentation kernels;
 - a discontinuous one, related to the avalanches.
- A stochastic model for the fragmentation phase of an avalanche.
- To establish a specific stochastic equation of fragmentation.
- Numerical approach.

Branching processes on the space of all fragmentation sizes

Consider E := [0,1] and fix a sequence $(d_n)_{n \ge 1} \subset (0,1)$ of thresholds for the fragmentation dimensions, strictly decreasing to zero.

Let
$$E_n := [d_n, 1]$$
 and $E'_n := [d_{n+1}, d_n), E'_0 := E_1$.

Hypotheses:

- For each $n \ge 1$ there exists a right Markov process X^n with state space E_n and transition function $(P_t^n)_{t \ge 0}$ such that $P_{t,x}^{n+1} = P_{t,x}^n$ for all $n \ge 1, t \ge 0$, and $x \in E_n$.
- For every $n \ge 0$ the set E'_n is absorbing in E_{n+1} with respect to process X^{n+1} .

Continuous time branching process

The space \widehat{E} of finite configurations of $E \subset [0,1]$:

$$\widehat{E}:=\left\{\mu \text{ positive measure on } E \ : \ \mu=\sum_{k=1}^m \delta_{x_k}, \ x_1,\dots,x_m \in E\right\} \cup \{\mathbf{0}\}.$$

Branching process: a Markov process X on \widehat{E} is a *branching process* if for each two measures $\mu_1, \mu_2 \in \widehat{E}$:

$$X^{\mu_1+\mu_2} \stackrel{\text{(d)}}{=} X^{\mu_1} + X^{\mu_2}.$$

For all $n\geqslant 1$ it is given a Markovian kernel B^n from $\widehat{E_n}$ to E_n such that $\sup_{x\in E_n}B^nl_1(x)<\infty \text{ and } B^{n+1}_x=B^n_x \text{ for all } x\in E_n, n\geqslant 1,$

where for a function $f \in p\mathcal{B}(E_n)$ we consider the mapping $I_f : \widehat{E_n} \longrightarrow \mathbb{R}_+$ defined as $I_f(\mu) := \int f d\mu$, $\mu \in \widehat{E_n}$.

• The kernel B^n will control the non-local branching of a forthcoming process with state space the finite configurations of E_n :

Theorem 1. For each $n \ge 1$, there exists a branching process \widehat{X}^n on \widehat{E}_n , induced by the base process X^n on E_n and by the kernel B^n .

[L. Beznea & O. Lupașcu, Trans. Amer. Math. Soc., 2016]

The space of all fragmentation sizes

The space S^{\downarrow} of all fragmentation sizes (J. Bertoin):

$$S^{\downarrow} := \{ \mathbf{x} = (x_k)_{k \geqslant 1} \subseteq [0,1] : (x_k)_{k \geqslant 1} \text{ decreasing}, \lim_k x_k = 0 \}.$$

- \bullet x \in S^{\downarrow} : "the sizes of the fragments resulting from the split of some block with unit size" .
- We identify a sequence $\mathbf{x}=(x_k)_{k\geqslant 1}$ from S^\downarrow with the σ -finite measure $\mu_{\mathbf{x}}$ on [0,1], defined as

• The mapping $\mathbf{x} \longmapsto \mu_{\mathbf{x}}$ identifies each $\widehat{E_n}$ with a subset of S^{\downarrow} .

Define the mapping $\alpha_n: S^{\downarrow} \longmapsto \widehat{E_n}$ as

$$\alpha_n(\mathbf{x}) := \mu_{\mathbf{x}}|_{E_n}, \ \mathbf{x} = \mu_{\mathbf{x}} \in S^{\downarrow}.$$

and

$$S_{\infty} := \{ (\mathbf{x}^n)_{n \geqslant 1} \in \prod_{n \geqslant 1} \widehat{E_n} : \mathbf{x}^n = \alpha_n(\mathbf{x}^m) \text{ for all } m > n \geqslant 1 \}.$$

ullet The mapping $i:S^\downarrow\longmapsto S_\infty$, defined as

$$i(\mathbf{x}) := (\alpha_n(\mathbf{x}))_{n \geqslant 1}, \ \mathbf{x} \in S^{\downarrow},$$

is a bijection.

Construction of fragmentation-branching processes on the space of all finite configurations

- **Theorem 2.** (i) There exists a branching semigroup $(\widehat{P_t})_{t\geqslant 0}$ on S^{\downarrow} , obtain as the projective limit of the sequence $(\widehat{P_t^n})_{n\geqslant 1}$, i.e.,
- the sequence of probability measures $(\widehat{P}_{t,\mathbf{x}_n}^n)_{n\geqslant 1}$ is projective with respect to $(\widehat{E}_n,\alpha_n)_{n\geqslant 1}$ for every $\mathbf{x}\in S^{\downarrow}$, $\mathbf{x}_n:=\alpha_n(\mathbf{x})\in \widehat{E}_n, n\geqslant 1$, and t>0;
- its limit is $\widehat{P_{t,x}}$, that is

$$\widehat{P_{t,\mathbf{x}_{n+1}}^{n+1}} \circ \alpha_n^{-1} = \widehat{P_{t,\mathbf{x}_n}^n} \text{ and } \widehat{P_{t,\mathbf{x}}} \circ \alpha_n^{-1} = \widehat{P_{t,\mathbf{x}_n}^n} \text{ for all } n \geqslant 1.$$

(ii) Suppose that for every $n \ge 1$ $(\widehat{P_t^n})_{t \ge 0}$ is the transition function of a Markov process with state space $\widehat{E_n}$ and $P_t^n(1_{(x,1]})(x) = 0$ for all $t \ge 0$ and $x \in E_n$.

Then $(\widehat{P_t})_{t\geqslant 0}$ is the transition function of a branching process $\widehat{X}=(\widehat{X_t})_{t\geqslant 0}$ with state space S^{\downarrow} , and the following fragmentation property holds: if $\mathbf{x}\in\widehat{E}$ and $\mathbf{y}\in S^{\downarrow}$, $\mathbf{y}\leqslant \mathbf{x}$, then $\mathbb{P}^{\mathbf{y}}$ -a.s. $\widehat{X_t}\leqslant \mathbf{x}$.

Sketch of the proof.

- For each $t \ge 0$ the sequence of probability measures $(\widehat{P}_{t,x_n}^n)_{n \ge 1}$ is projective.
- Since S^{\downarrow} is identified with S_{∞} , by Bochner-Kolmogorov Theorem there exists a transition function $(\widehat{P_t})_{t\geqslant 0}$ on S^{\downarrow} , as the limit of the $(\widehat{P_t^n})_{t\geqslant 0}$.
- $(\widehat{P}_t)_{t\geqslant 0}$ is the transition function of a branching process with state space S^{\downarrow} .

[L. Beznea, M. Deaconu & O. Lupașcu, Stochastic Process. Appl., 2015]

The case of a continuous fragmentation kernel

Fragmentation kernel: $F:(0,1]^2\longrightarrow \overline{\mathbb{R}}_+$, symmetric

• F(x, y): the rate of fragmentation of a particle of size x + y into two particles of size x and y.

Hypothesis

• F is continuous from $[0,1]^2$ to $\mathbb{R}_+ \cup \{+\infty\}$.

The rate of loss of mass of particles of mass x:

$$\psi(x) = \begin{cases} \frac{1}{x} \int_0^x y(x-y)F(y,x-y)dy & \text{if } x > 0, \\ 0 & \text{if } x = 0. \end{cases}$$

- F is such that ψ is continuous on [0,1].
- **Example:** F(x, y) := x + y

[Fournier, Giet, J. Stat. Physis, 2003].

Let

$$\mathcal{F}f(x) = \int_0^x [f(x-y) - f(x)] \frac{x-y}{x} F(y, x-y) dy, \ x \in [0, 1].$$

We have $\mathcal{F} = \widetilde{N^F}$, where

$$\widetilde{N}f(x) := \int_{E} [f(y) - f(x)] N_x(\mathrm{d}y)$$

for all $f \in bp\mathcal{B}(E)$ and $x \in E$, and

$$N^F f(x) := \int_0^x f(z) \frac{z}{x} F(x-z,z) dz.$$

Truncated fragmentation kernels:

$$F_n(x,y) := 1_{(d_n,1]}(x \wedge y)F(x,y), \ x,y \in E := [0,1], n \ge 1.$$

• $\widetilde{N^{F^n}}$ is the generator of a jump Markov process with state space E (since N^{F^n} is bounded kernel).

Proposition 3. If $k \geqslant 1$ then E_k is an absorbing set with respect to the Markov process generated by N^{F^k} and let $X^k = (X_t^k)_{t \geqslant 0}$ be the restriction of this process to E'_k .

(i) Let L^n be the infinitesimal generator of $(P_t^n)_{t\geqslant 0}$, regarded as a C_0 -semigroup of contractions on $b\mathcal{B}(E_n)$. Then for every $\phi \in b\mathcal{B}(E_n)$ we have

$$L^n \phi = \sum_{k=1}^n 1_{E'_{k-1}} \mathcal{F}_k \overline{\phi},$$

where \mathcal{F}_k is the operator \mathcal{F} with F_k instead of F. In particular, for each probability ν on E'_n , the process

$$\phi(X_t^n) - \sum_{k=1}^n \int_0^t (1_{E_{k-1}'} \mathcal{F}_k \overline{\phi})(X_s^n) \mathrm{d}s, \ t \geqslant 0,$$

is a martingale under $\mathbb{P}^{
u}=\int\mathbb{P}^{x}
u(\mathrm{d}x)$, with respect to the filtration of X^{n} .

(ii) For every $x \in E_n$ the stochastic equation of fragmentation with the initial distribution δ_x ,

$$X_{t} = X_{0} - \int_{0}^{t} \int_{0}^{1} \int_{0}^{1} y 1_{\{y \in (0, X_{s-})\}} 1_{\{u \leqslant \frac{X_{s-} - y}{X_{s-}} F_{n}(y, X_{s-} - y)\}} p(\mathrm{d}s, \mathrm{d}y, \mathrm{d}u), \ t \geqslant 0.$$

has a solution which is equal in distribution with (X^n, \mathbb{P}^x) , where $p(\mathrm{d}s, \mathrm{d}y, \mathrm{d}u)$ is an adapted Poisson measure on $[0, +\infty) \times [0, 1) \times [0, 1)$ with intensity measure $\mathrm{d}s\mathrm{d}y\mathrm{d}u$.

Oana Lupascu

The case of (discontinuous) fragmentation kernels for avalanches

- $F:(0,1]^2\longrightarrow \overline{\mathbb{R}}_+$, a fragmentation kernel
- Assume that there exists a function $\Phi:(0,\infty)\longrightarrow(0,\infty)$ such that

$$F(y,\alpha) = \Phi\left(\frac{y}{\alpha}\right), \ \forall \ y,\alpha > 0, \quad \text{and} \quad \Phi(x) = \Phi\left(\frac{1}{x}\right), \ \forall \ x > 0.$$

• **Example:** Let r, 0 < r < 1, and consider the fragmentation kernel $F^r : [0,1]^2 \longrightarrow \mathbb{R}_+$, defined as

$$F^{r}(x,y) := \begin{cases} \frac{1}{2} \left(\delta_{r} \left(\frac{x}{y} \right) + \delta_{1/r} \left(\frac{x}{y} \right) \right), & \text{if } x, y > 0, \\ 0, & \text{if } xy = 0. \end{cases}$$

We have $F^r(x,y) = \Phi^r(\frac{x}{y})$ for all x,y>0, where $\Phi^r:(0,\infty) \longrightarrow (0,\infty)$ is defined as

$$\Phi^{r}(z) := \frac{1}{2}(\delta_{r}(z) + \delta_{1/r}(z)), \quad z > 0.$$

• Φ^r is not continuous.

• By approximating the function Φ^r with a sequence of continuous functions, one can see that the kernel N^{F^r} associated with F^r is:

$$N_x^{F^r} := \lambda_o(\beta x \delta_{\beta x} + (1 - \beta) x \delta_{(1-\beta)x}),$$

where $\lambda_o := \frac{\beta^2 + (1-\beta)^2}{4}$ with $\beta := \frac{r}{1+r}$.

- Assume that $d_1 < \beta \leqslant 1/2$ and $d_{n+1}/d_n < \beta$ for all $n \geqslant 1$. Then $E_n = \bigcup_{k=1}^n E'_{k-1}$.
- Define the kernel N_n^r on E_n as $N_n^r f := \sum_{k=1}^n 1_{E_{k-1}'} N^{F^r} (f 1_{E_{k-1}'})$ for all $f \in bp\mathcal{B}(E_n)$.
- The integral operator

 $\mathcal{F}_n^r f(x) := N_n^r f(x) = \int_{E_n} [f(y) - f(x)] N_n^r (\mathrm{d}y)$ for all $f \in bp\mathcal{B}(E_n)$, $x \in E_n$. is the generator of a jump Markov process $X^{r,n} = (X_t^{r,n})_{t \geqslant 0}$.

- Its transition function is $P_t^{r,n} := e^{\mathcal{F}_n^r t}$, $t \ge 0$.
- For every $x \in [0,1]$ let $E_{\beta,x} := \{ \beta^i (1-\beta)^j x : i,j \in \mathbb{N} \} \cup \{0\}$ and $E_{\beta,x,n} := E_{\beta,x} \cap E_n$ for $n \geqslant 1$.

Theorem 4. E_n is an absorbing set with respect to the Markov process $X^{r,n}$ with state space E_n and the following assertions hold.

- (i) For every $\phi \in bp\mathcal{B}(E_n)$ and each probability ν on E_n , the process $\phi(X_t^{r,n}) \int_0^t \mathcal{F}_n^r \phi(X_s^{r,n}) \mathrm{d}s, \ t \geqslant 0$, is a martingale under \mathbb{P}^{ν} .
- (ii) If $x \in E_n$, $n \geqslant 1$, then the following stochastic equation of fragmentation for avalanches with the initial distribution δ_x has a solution which is equal in distribution with $(X^{r,n}, \mathbb{P}^x)$:

$$\begin{split} X_t &= X_0 - \!\!\int_0^t \!\!\int_0^\infty \!\! p(\mathrm{d}\alpha,\mathrm{d}s) X_{\alpha-} \sum_{k=1}^n ((1-\beta) \mathbf{1}_{[\frac{d_k}{\beta} \leqslant X_{\alpha-} < d_{k-1}, \frac{s}{\lambda_o \beta} < X_{\alpha-}]} \\ &+ \beta \mathbf{1}_{[\frac{d_k}{\mathbf{1}-\beta} \leqslant X_{\alpha-} < \frac{d_k}{\beta}, \frac{s}{\mathbf{1}-\beta} < X_{\alpha-} \leqslant \frac{s}{\beta}] \cup [\frac{d_k}{\beta} \leqslant X_{\alpha-} < d_{k-1}, s < X_{\alpha-} \leqslant \frac{s}{\beta}]}), \ t \geqslant 0, \end{split}$$

where $p(d\alpha, ds)$ is a Poisson measure with intensity $q := d\alpha ds$.

(iii) If
$$x \in E_n$$
 then \mathbb{P}^x -a.s. $X_t^{r,n} \in E_{\beta,x,n}$ for all $t \geqslant 0$.

Sketch of the proof.

• Define the bounded kernel K^n on \mathbb{R} ;

$$K_{x}^{n} := \lambda_{o}x[\beta 1_{E_{k-1}}(\beta x)\delta_{(\beta-1)x} + (1-\beta)1_{E_{k-1}}((1-\beta)x)\delta_{-\beta x}]$$
 if $x \in E_{k-1}', 1 \leqslant k \leqslant n$, and $K_{x}^{n} := 0$ else.

- $\mathcal{F}_n^r f(x) = \int_{\mathbb{R}} [f(x+y) f(x)] K_x^n(\mathrm{d}y)$ for all $f \in bp\mathcal{B}(\mathbb{R})$ and $x \in \mathbb{R}$.
- To prove the existence of the corresponding stochastic differential equation we use the existence of the solution of the martingale problem associated to the operator \mathcal{F}_n^r .

[L. Beznea, M. Deaconu and O. Lupașcu, Stochastic equation of fragmentation and branching processes related to avalanches, J. Stat. Phys., 162 (2016), 824-841]

Fragmentation-branching processes related to avalanches

• Let d>0, define further the kernel $B_d:p\mathcal{B}(\widehat{[d,1]})\longrightarrow p\mathcal{B}([d,1])$ as

$$B_d h(x) := \frac{6}{x^3} \int_0^x y(x-y)_d(h^{(2)})(y) dy, \ x \in [d,1].$$

• The kernel B_d is Markovian and consider the kernel B^n from \widehat{E}_n to E_n defined as

$$B^n h := \sum_{k=1}^n 1_{E'_{k-1}} B_{d_k} h, \ h \in bp \mathcal{B}(\widehat{E_n}).$$

• Define the Markovian kernel $B^{r,n}$ from $\widehat{E_n}$ to E_n as

$$B^{r,n}h(x):=\frac{1}{a(x)}\sum_{1\leqslant k\leqslant n}\sum_{E_{\beta,x}\ni y\leq x}1_{E_{k-1}'}(x)_{d_k}h(y,y)y(x-y),\ h\in bp\mathcal{B}(\widehat{E_n}),\,x\in E_n$$

where $a(x) := \sum_{E_{\beta,x} \ni y \le x} y(x-y) < \infty$ for all $x \in E_n$.

• If $x_1, \ldots, x_k \in E$ and $\mathbf{x} = \delta_{x_1} + \ldots + \delta_{x_k} \in \widehat{E}$, we put $E_{\beta, \mathbf{x}} := \bigcup_{i=1}^k E_{\beta, x_i}$ and $E_{\beta, \mathbf{x}, n} := \bigcup_{i=1}^k E_{\beta, x_i, n}$.

- **Corollary 5.** (i) There exists a branching process with state space \widehat{E}_n , induced by the transition function $(P_t^n)_{t\geqslant 0}$ and by the kernel B^n .
- (ii) There exists a branching process $\widehat{X^{r,n}} = (\widehat{X^{r,n}_t})_{t\geqslant 0}$ with state space $\widehat{E_n}$, induced by the transition function $(P^{r,n}_t)_{t\geqslant 0}$ and by the kernel $B^{r,n}$. For every $\mathbf{x} \in \widehat{E_n}$, $\mathbf{y} \in \widehat{E_{\beta,\mathbf{x},n}}$, and $t\geqslant 0$ we have $\mathbb{P}^\mathbf{y}$ -a.s. $\widehat{X^{r,n}_t} \in \widehat{E_{\beta,\mathbf{x},n}}$.
- (iii) There exists a branching right (Markov) process with state space S^{\downarrow} , having càdlàg trajectories, as stated in Theorem 2, associated to a continuous fragmentation kernel F.
- (iv) There exists a branching right process $\widehat{X^r} = (\widehat{X^r_t})_{t\geqslant 0}$ with state space S^\downarrow , having càdlàg trajectories, as stated in Theorem 2, associated to the discontinuous fragmentation kernel F^r for avalanches. For each $\mathbf{x} \in \widehat{E}$, the set $S^\downarrow_{\beta,\mathbf{x}} := \{\mathbf{y} = (y_k)_{k\geqslant 1} \in S^\downarrow: y_k \in E_{\beta,\mathbf{x}} \text{ for all } k\geqslant 1\}$ is absorbing in S^\downarrow , that is, if $\mathbf{y} \in S^\downarrow_{\beta,\mathbf{x}}$ then $\mathbb{P}^\mathbf{y}$ -a.s. $\widehat{X^r_t} \in S^\downarrow_{\beta,\mathbf{x}}$ for all $t\geqslant 0$.

Remark

- The last part of assertion (iv) emphasizes a **fractal property of an avalanche**, closed to its real physical properties: if we regard the fragmentation-branching process $\widehat{X^r}$ on the set $S_{\beta,\mathbf{x}}^{\downarrow}$, then independent to the sequence of sizes \mathbf{x} of the initial fragments, from the moment when the avalanche started, and remaining constant in time, the ratio between the resulting fragments are all powers of β .
- A fractal model for grain size distribution of a snow avalanche is developed in the paper [J. Faillettaz, F. Louchet, J.R. Grasso, Two-threshold model for scaling laws of noninteracting snow avalanches, Phys. Rev. Lett. (2004)]
- The fractal character of the snow has been studied in the paper [V., De Biagi, B., Chiaia, B., Frigo, Fractal Grain Distribution in Snow Avalanche Deposits, *J. of Glaciology*, 2012].

Simulation for fragmentation processes

1. Continuous fragmentation kernel

• approximate the process according to the probabilistic interpretation for the solution of the stochastic differential equation of fragmentation.

$$X_{t} = X_{0} - \int_{0}^{t} \int_{0}^{1} \int_{0}^{1} y 1_{\{y \in (0, X_{s-})\}} 1_{\{u \leqslant \frac{X_{s-} - y}{X_{s-}} F(y, X_{s-} - y)\}} p(\mathrm{d}s, \mathrm{d}y, \mathrm{d}u), \ t \geqslant 0,$$

X: at some random instants a particle breaks into two smaller particles, we thus subtract y from X_{s-} , $y \in (0, X_{s-})$, at rate $F(y, X_{s-} - y) \frac{X_{s-} - y}{X_{s-}}$.

The fragmentations occur at some Poisson random instants smaller than a final time T

Algorithm

Initialization: Sample the initial particle $X_0 \sim Q_0$. Set $T_0 = 0$.

Step p: Sample a random variable $y \sim \mathcal{U}([0, X_{p-1}])$.

Compute
$$m_p = \frac{X_{p-1} - y}{X_{p-1}} F(y, X_{p-1} - y)$$
.

Sample a random variable $S_p \sim \operatorname{Exp}(m_p)$.

Set
$$T_p = T_{p-1} + S_p$$
.

Sample a random variable $u \sim \mathcal{U}([0,1])$.

If $u \leq m_p$, then a fragmentation occurs and set

$$X_p = X_{p-1} - y.$$

Else set
$$X_p = X_{p-1}$$
.

Stop: When $T_p > T$.

Outcome: The approximated particle mass at T, X_{p-1} .

Numerical results

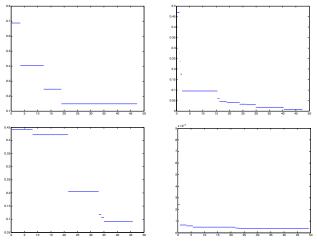


Figure: The paths of the fragmentation process for $F(x,y)=x+y, F(x,y)=2, F(x,y)=1/(x+y+1), F(x,y)=2/(x+y)^3$, with $Q_0 \sim \mathcal{U}([0,1])$ and T=50.

The evolution in time of $\mathbb{E}(X_T)$, T=50

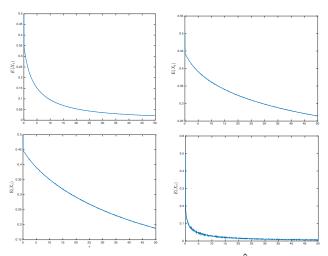


Figure : The path of the Monte Carlo estimator $t \mapsto \hat{I}_M(t)$ for F(x,y) = x + y, F(x,y) = 2, F(x,y) = 1/(x+y+1), $F(x,y) = 2/(x+y)^3$ for $t \in [0,50]$, the Monte Carlo parameter is 10^4 .

Comparison with the exact solution of the fragmentation equation

• F(x,y) = 2 for $x, y \in [0,\infty)$. The deterministic fragmentation equation

$$\begin{cases} \frac{\partial}{\partial t}c(t,x) &= 2\int_{x}^{\infty}c(t,y)\mathrm{d}y - xc(t,x) & \text{ for all } x \geqslant 0, \\ c(0,x) &= c_{0}(x) & \text{ for all } x \geqslant 0. \end{cases}$$
(1)

• For the initial condition $c(0,x) = e^{-x}$, the **exact solution** is

$$c(t,x) = (1+t)^2 e^{-x(1+t)}$$
 for all $t \ge 0$ and $x \ge 0$.

• The theoretical mean of the exact solution, which equals $\frac{2}{1+t}$, and the Monte Carlo mean for $Q_0(\mathrm{d}x)=xe^{-x}$, if $x\geqslant 0$.

t	Mean \widehat{I}_M	Exact solution
50	0.0415	0.0392
70	0.0286	0.0282
150	0.0126	0.0132

Numerical approach for the fragmentation phase of an avalanche

1. Approximate the process by using the stochastic differential equation of fragmentation, with the discontinuous kernel F^r and $\beta < \frac{1}{2}$.

Algorithm

```
Step 0: Sampling the initial particle X_0 \sim Q_0

Step p: Sampling a random variable S_p \sim \operatorname{Exp}(\lambda_0)

Set T_p = T_{p-1} + S_p

Set X_t = X_{p-1} for each t \in [T_{p-1}, T_p)

Set X_p = \beta X_{p-1} with probability \beta X_{p-1},

X_p = (1-\beta)X_{p-1} with probability (1-\beta)X_{p-1},

or X_p = X_{p-1} with probability 1 - X_{p-1}
```

Stop: When $T_p > T$.

Outcome: The approximated particle mass at time T, X_{p-1} .

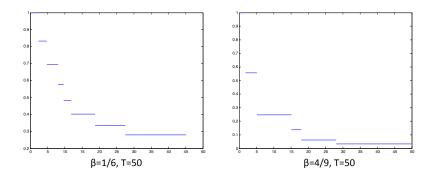


Figure: The paths of the fragmentation process with discontinuous kernel F^r and the size of the initial particle 1.

Compute the distribution of the branching process, \widehat{P}_t^n : approximate $h_t = \widehat{P}_t^n \widehat{\varphi}|_{E_n}$ by Picard iterations h_t^k , $k \geqslant 0$, $t \leqslant T$, $\varphi \leq 1$ and $P_t^n \varphi$ with iterations $p_t^k(\varphi)$, $k \geqslant 0$.

- Initialization step: Set $h_t^0 = e^{-t}P_t\varphi$, $p_t^0(\varphi) = \varphi$
- Step $k, k \geq 1$:

$$\begin{split} \mathbf{h}_t^k &= e^{-t} P_t \varphi + \int_0^t e^{-(t-u)} P_{t-u} B \widehat{h_u^{k-1}} \, \mathrm{d}u \,, \ \ p_t^k(\varphi) := \sum_{i=0}^k \frac{t^i}{i!} \mathcal{F}^i \varphi, (2) \\ h_t'^k &:= e^{-t} p_t^k(\varphi) + \int_0^t e^{-(t-u)} p_{t-u}^{k-1} (B \widehat{h_u^{k-1}}) \, \mathrm{d}u. \end{split}$$

• Fix $m\geqslant 1$ and compute $\widehat{h_t^k}|_{E^{(m)}},\ k\geqslant 0$, which will approximate the distribution $\widehat{P_t}$ of the branching process. The connection between the transition functions of X and of the branching process:

$$\widehat{P_t}\widehat{\varphi}|_{E^{(m)}}=\widehat{h_t}|_{E^{(m)}}.$$

• Stop the algorithm at k and t_0 , such that $\sum_{i\geqslant 0}\frac{(2t_0)^{k+i-1}+(\mu_ot_0)^{k+i-1}}{(k+i-1)!}<\frac{\varepsilon}{2m}$.

The following proposition shows that the above algorithm approximates indeed the distribution of the branching process.

Proposition Let k having a convenient value, take $\varphi = 1_A$ with $A \in \mathcal{B}(E)$, $\mathbf{x} \in E^{(j)}$, and $j \leqslant m$. Then $\widehat{h_t'^k}(\mathbf{x})$ approximates with error less than ε the probability that the branching process \widehat{X} starting from \mathbf{x} lies at the time moment t in the set A^j , i.e.,

$$|\mathbb{E}^{\mathbf{x}}(\widehat{X}_t \in A^j) - \widehat{h_t'^k}(\mathbf{x})| < \varepsilon.$$

[L. Beznea, M. Deaconu, O. Lupașcu, Numerical approach for stochastic differential equations of fragmentation; application to avalanches, preprint, 2017]

Numerical results.

- $\begin{array}{l} \bullet \quad \ \, m=2, \ n=1, \ E=E_1=\left[\frac{1}{4},1\right], \\ \beta=\frac{4}{9}, \mu_o=2\lambda_o=\frac{6}{25}, \mathbf{x}=(1,1,\ldots), \ \text{and} \\ A:=E_{\frac{4}{9},1}\cap E_1=\left\{\left(\frac{5}{9}\right)^2,\frac{4}{9},\frac{5}{9},1\right\}. \end{array}$
- We know $\mathbb{E}^{\mathsf{x}}(\widehat{X}_t \in \widehat{A}) = \widehat{P}_t(1_{\widehat{A}})(\mathsf{x}) = 1.$
- Using the algorithm for $k=1, \varepsilon=0.5, t_0=0.05$, we obtain $h_{t_0}^{\prime 1}=0.9998$.
- the approximate value of $\mathbb{E}^{\mathbf{x}}(\widehat{X}_{t_0} \in \widehat{A})$ (= the probability that the branching process \widehat{X} starting from \mathbf{x} lies in the set \widehat{A} at the time moment t_0) is $\widehat{h'_{t_0}}(\mathbf{x}) = 0.9996$, which is indeed a value from the error interval $(1 \varepsilon, 1]$.