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Aim:
A unifying approach for constructing branching processes in
continuous time, on the space of all fragmentation sizes induced by:
– continuous fragmentation kernels;

– a discontinuous one, related to the avalanches.

A stochastic model for the fragmentation phase of an avalanche.

To establish a specific stochastic equation of fragmentation.

Numerical approach.
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Branching processes on the space of all
fragmentation sizes

Consider E := [0, 1] and fix a sequence (dn)n>1 ⊂ (0, 1) of thresholds for
the fragmentation dimensions, strictly decreasing to zero.

Let En := [dn, 1] and E ′n := [dn+1, dn), E ′0 := E1.

Hypotheses:

For each n>1 there exists a right Markov process X n with state
space En and transition function (Pn

t )t>0 such that Pn+1
t,x = Pn

t,x for
all n>1, t>0, and x ∈ En.

For every n>0 the set E ′n is absorbing in En+1 with respect to
process X n+1.
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Continuous time branching process

The space Ê of finite configurations of E ⊂ [0, 1]:

Ê :=

{
µ positive measure on E : µ =

m∑
k=1

δxk , x1, . . . , xm ∈ E

}
∪ {0}.

Branching process: a Markov process X on Ê is a branching process if
for each two measures µ1, µ2 ∈ Ê :

Xµ1+µ2
(d)
= Xµ1 + Xµ2 .
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For all n > 1 it is given a Markovian kernel Bn from Ên to En such that

sup
x∈En

Bnl1(x) <∞ and Bn+1
x = Bn

x for all x ∈ En, n > 1,

where for a function f ∈ pB(En) we consider the mapping lf : Ên −→ R+

defined as lf (µ) :=
∫
f dµ, µ ∈ Ên.

• The kernel Bn will control the non-local branching of a forthcoming
process with state space the finite configurations of En:

Theorem 1. For each n>1, there exists a branching process X̂ n on Ên,
induced by the base process X n on En and by the kernel Bn.

[L. Beznea & O. Lupaşcu, Trans. Amer. Math. Soc., 2016]

Oana Lupaşcu Stochastic equation of fragmentation and branching processes related to avalanches



The space of all fragmentation sizes

The space S↓ of all fragmentation sizes (J. Bertoin):

S↓ := {x = (xk)k>1 ⊆ [0, 1] : (xk)k>1 decreasing, lim
k

xk = 0}.

• x ∈ S↓: "the sizes of the fragments resulting from the split of some
block with unit size" .

• We identify a sequence x = (xk)k>1 from S↓ with the σ-finite measure
µx on [0, 1], defined as

µx :=


∑
k

δxk , if x 6= 0,

0 , if x = 0,

• The mapping x 7−→ µx identifies each Ên with a subset of S↓.
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Define the mapping αn : S↓ 7−→ Ên as

αn(x) := µx|En , x = µx ∈ S↓.

and

S∞ := {(xn)n>1 ∈
∏
n>1

Ên : xn = αn(xm) for all m > n>1}.

• The mapping i : S↓ 7−→ S∞, defined as

i(x) := (αn(x))n>1, x ∈ S↓,

is a bijection.
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Construction of fragmentation-branching processes on the
space of all finite configurations

Theorem 2. (i) There exists a branching semigroup (P̂t)t>0 on S↓,
obtain as the projective limit of the sequence (P̂n

t )n>1, i.e.,
- the sequence of probability measures (P̂n

t,xn)n>1 is projective with
respect to (Ên, αn)n>1 for every x ∈ S↓, xn := αn(x) ∈ Ên, n>1, and
t > 0;
- its limit is P̂t,x, that is

P̂n+1
t,xn+1 ◦ α−1

n = P̂n
t,xn and P̂t,x ◦ α−1

n = P̂n
t,xn for all n>1.

(ii) Suppose that for every n > 1 (P̂n
t )t>0 is the transition function of a

Markov process with state space Ên and Pn
t (1(x,1])(x) = 0 for all t > 0

and x ∈ En.

Then (P̂t)t>0 is the transition function of a branching process X̂ = (X̂t)t>0
with state space S↓, and the following fragmentation property holds: if
x ∈ Ê and y ∈ S↓, y 6 x, then Py–a.s. X̂t 6 x.
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Sketch of the proof.

• For each t > 0 the sequence of probability measures (P̂n
t,xn)n>1 is

projective.

• Since S↓ is identified with S∞, by Bochner-Kolmogorov Theorem
there exists a transition function (P̂t)t>0 on S↓, as the limit of the
(P̂n

t )t>0.

• (P̂t)t>0 is the transition function of a branching process with state
space S↓.

[L. Beznea, M. Deaconu & O. Lupaşcu, Stochastic Process. Appl., 2015]
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The case of a continuous fragmentation kernel

Fragmentation kernel: F : (0, 1]2 −→ R+, symmetric
• F (x , y): the rate of fragmentation of a particle of size x + y into two
particles of size x and y .

Hypothesis
• F is continuous from [0, 1]2 to R+ ∪ {+∞}.

The rate of loss of mass of particles of mass x :

ψ(x) =


1
x

∫ x

0
y(x − y)F (y , x − y)dy if x > 0,

0 if x = 0.

• F is such that ψ is continuous on [0, 1].

• Example: F (x , y) := x + y

[Fournier, Giet, J. Stat. Physis, 2003].
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Let

F f (x) =

∫ x

0
[f (x − y)− f (x)]

x − y

x
F (y , x − y)dy , x ∈ [0, 1].

We have F = ÑF , where

Ñf (x) :=

∫
E

[f (y)− f (x)]Nx(dy)

for all f ∈ bpB(E ) and x ∈ E , and

NF f (x) :=

∫ x

0
f (z)

z

x
F (x − z , z)dz .

Truncated fragmentation kernels:

Fn(x , y) := 1(dn,1](x ∧ y)F (x , y), x , y ∈ E := [0, 1], n ≥ 1.

• ÑF n is the generator of a jump Markov process with state space E
(since NF n

is bounded kernel).
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Proposition 3. If k>1 then Ek is an absorbing set with respect to the
Markov process generated by ÑF k and let X k = (X k

t )t>0 be the
restriction of this process to E ′k .

(i) Let Ln be the infinitesimal generator of (Pn
t )t>0, regarded as a

C0-semigroup of contractions on bB(En).
Then for every φ ∈ bB(En) we have

Lnφ =
∑n

k=1 1E ′k−1
Fkφ,

where Fk is the operator F with Fk instead of F . In particular, for each
probability ν on E ′n, the process

φ(X n
t )−

∑n
k=1

∫ t

0 (1E ′k−1
Fkφ)(X n

s )ds, t>0,

is a martingale under Pν =
∫
Pxν(dx), with respect to the filtration of X n.

(ii) For every x ∈ En the stochastic equation of fragmentation with
the initial distribution δx ,

Xt = X0 −
∫ t

0

∫ 1
0

∫ 1
0 y1{y∈(0,Xs−)}1{u6 Xs−−y

Xs− Fn(y ,Xs−−y)}
p(ds, dy , du), t > 0,

has a solution which is equal in distribution with (X n,Px), where
p(ds, dy , du) is an adapted Poisson measure on [0,+∞)× [0, 1)× [0, 1)
with intensity measure dsdydu.
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The case of (discontinuous) fragmentation kernels for
avalanches

• F : (0, 1]2 −→ R+, a fragmentation kernel

• Assume that there exists a function Φ : (0,∞) −→ (0,∞) such that

F (y , α) = Φ
( y
α

)
, ∀ y , α > 0, and Φ(x) = Φ

(
1
x

)
, ∀ x > 0.

• Example: Let r , 0 < r < 1, and consider the fragmentation kernel
F r : [0, 1]2 −→ R+, defined as

F r (x , y) :=

{ 1
2 (δr (

x
y ) + δ1/r (

x
y )), if x , y > 0,

0 , if xy = 0.

We have F r (x , y) = Φr ( x
y ) for all x , y > 0, where Φr : (0,∞) −→ (0,∞)

is defined as
Φr (z) :=

1
2

(δr (z) + δ1/r (z)), z > 0.

• Φr is not continuous.
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• By approximating the function Φr with a sequence of continuous
functions, one can see that the kernel NF r

associated with F r is:

NF r

x := λo(βxδβx + (1− β)xδ(1−β)x),

where λo := β2+(1−β)2
4 with β := r

1+r .

• Assume that d1 < β 6 1/2 and dn+1/dn < β for all n > 1. Then
En =

⋃n
k=1 E

′
k−1.

• Define the kernel N r
n on En as N r

nf :=
∑n

k=1 1E ′k−1
NF r

(f 1E ′k−1
) for all

f ∈ bpB(En).

• The integral operator
F r

n f (x) := Ñ r
nf (x) =

∫
En

[f (y)− f (x)]N r
n(dy) for all f ∈ bpB(En), x ∈ En.

is the generator of a jump Markov process X r ,n = (X r ,n
t )t>0.

• Its transition function is P r ,n
t := eF

r
n t , t > 0.

• For every x ∈ [0, 1] let
Eβ,x := {βi (1−β)jx : i , j ∈ N}∪{0} and Eβ,x,n := Eβ,x ∩En for n > 1.
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Theorem 4. En is an absorbing set with respect to the Markov process
X r ,n with state space En and the following assertions hold.

(i) For every φ ∈ bpB(En) and each probability ν on En, the process
φ(X r ,n

t )−
∫ t

0 F
r
nφ(X r ,n

s )ds, t>0, is a martingale under Pν .

(ii) If x ∈ En, n > 1, then the following stochastic equation of
fragmentation for avalanches with the initial distribution δx has a
solution which is equal in distribution with (X r ,n,Px):

Xt = X0 −
∫ t

0

∫∞
0 p(dα,ds)Xα−

∑n
k=1((1− β)1

[
dk
β 6Xα−<dk−1,

s
λoβ

<Xα−]

+ β1
[

dk
1−β6Xα−<

dk
β ,

s
1−β<Xα−6 s

β ]∪[
dk
β 6Xα−<dk−1, s<Xα−6 s

β ]
), t > 0,

where p(dα,ds) is a Poisson measure with intensity q := dαds.

(iii) If x ∈ En then Px -a.s. X r ,n
t ∈ Eβ,x,n for all t > 0.
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Sketch of the proof.

• Define the bounded kernel K n on R;
K n
x := λox [β1E ′k−1

(βx)δ(β−1)x + (1− β)1E ′k−1
((1− β)x)δ−βx ] if

x ∈ E ′k−1, 1 6 k 6 n, and K n
x := 0 else.

• F r
n f (x) =

∫
R[f (x + y)− f (x)]K n

x (dy) for all f ∈ bpB(R) and
x ∈ R.

• To prove the existence of the corresponding stochastic differential
equation we use the existence of the solution of the martingale problem
associated to the operator F r

n .

[L. Beznea, M. Deaconu and O. Lupaşcu, Stochastic equation of fragmentation
and branching processes related to avalanches, J. Stat. Phys., 162 (2016),
824-841]
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Fragmentation-branching processes related to
avalanches

• Let d > 0, define further the kernel Bd : pB([̂d , 1]) −→ pB([d , 1]) as

Bdh(x) :=
6
x3

∫ x

0
y(x − y)d(h(2))(y)dy , x ∈ [d , 1].

• The kernel Bd is Markovian and consider the kernel Bn from Ên to
En defined as

Bnh :=
n∑

k=1

1E ′k−1
Bdkh, h ∈ bpB(Ên).

• Define the Markovian kernel B r ,n from Ên to En as

B r ,nh(x) :=
1

a(x)

∑
16k6n

∑
Eβ,x3y≤x

1E ′k−1
(x)dkh(y , y)y(x−y), h ∈ bpB(Ên), x ∈ En,

where a(x) :=
∑

Eβ,x3y≤x y(x − y) <∞ for all x ∈ En.

• If x1, . . . , xk ∈ E and x = δx1 + . . .+ δxk ∈ Ê , we put
Eβ,x :=

⋃k
j=1 Eβ,xj and Eβ,x,n :=

⋃k
j=1 Eβ,xj ,n.
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Corollary 5. (i) There exists a branching process with state space Ên,
induced by the transition function (Pn

t )t>0 and by the kernel Bn.

(ii) There exists a branching process X̂ r ,n = (X̂ r ,n
t )t>0 with state space

Ên, induced by the transition function (P r ,n
t )t>0 and by the kernel B r ,n.

For every x ∈ Ên, y ∈ Êβ,x,n , and t > 0 we have Py–a.s. X̂ r ,n
t ∈ Êβ,x,n.

(iii) There exists a branching right (Markov) process with state space S↓,
having càdlàg trajectories, as stated in Theorem 2, associated to a
continuous fragmentation kernel F .

(iv) There exists a branching right process X̂ r = (X̂ r
t )t>0 with state

space S↓, having càdlàg trajectories, as stated in Theorem 2, associated
to the discontinuous fragmentation kernel F r for avalanches. For each
x ∈ Ê , the set S↓β,x := {y = (yk)k>1 ∈ S↓ : yk ∈ Eβ,x for all k>1} is
absorbing in S↓, that is, if y ∈ S↓β,x then Py–a.s. X̂ r

t ∈ S↓β,x for all t > 0.
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Remark

• The last part of assertion (iv) emphasizes a fractal property of an
avalanche, closed to its real physical properties: if we regard the
fragmentation–branching process X̂ r on the set S↓β,x, then independent to
the sequence of sizes x of the initial fragments, from the moment when
the avalanche started, and remaining constant in time, the ratio between
the resulting fragments are all powers of β.

• A fractal model for grain size distribution of a snow avalanche is
developed in the paper
[J. Faillettaz, F. Louchet, J.R. Grasso, Two-threshold model for scaling laws of
noninteracting snow avalanches, Phys. Rev. Lett. (2004)]

• The fractal character of the snow has been studied in the paper
[V., De Biagi, B., Chiaia, B., Frigo, Fractal Grain Distribution in Snow
Avalanche Deposits, J.of Glaciology, 2012].
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Simulation for fragmentation processes

1. Continuous fragmentation kernel

• approximate the process according to the probabilistic interpretation
for the solution of the stochastic differential equation of fragmentation.

Xt = X0 −
∫ t

0

∫ 1
0

∫ 1
0 y1{y∈(0,Xs−)}1{u6 Xs−−y

Xs− F (y ,Xs−−y)}
p(ds,dy , du), t > 0,

X : at some random instants a particle breaks into two smaller particles,
we thus subtract y from Xs−, y ∈ (0,Xs−), at rate F (y ,Xs− − y)Xs−−y

Xs−
.
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The fragmentations occur at some Poisson random instants smaller than
a final time T

Algorithm
Initialization: Sample the initial particle X0 ∼ Q0. Set T0 = 0.
Step p: Sample a random variable y ∼ U([0,Xp−1]).

Compute mp =
Xp−1 − y

Xp−1
F (y ,Xp−1 − y).

Sample a random variable Sp ∼ Exp(mp).
Set Tp = Tp−1 + Sp.
Sample a random variable u ∼ U([0, 1]).
If u ≤ mp, then a fragmentation occurs and set

Xp = Xp−1 − y .
Else set Xp = Xp−1.

Stop: When Tp > T .
Outcome: The approximated particle mass at T , Xp−1.
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Numerical results
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Figure : The paths of the fragmentation process for
F (x , y) = x + y ,F (x , y) = 2,F (x , y) = 1/(x + y + 1),F (x , y) = 2/(x + y)3,
with Q0 ∼ U([0, 1]) and T = 50.
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The evolution in time of E(XT ), T = 50
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Figure : The path of the Monte Carlo estimator t 7→ ÎM(t)
forF (x , y) = x + y ,F (x , y) = 2,F (x , y) = 1/(x + y + 1),F (x , y) = 2/(x + y)3

for t ∈ [0, 50], the Monte Carlo parameter is 104.
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Comparison with the exact solution of the fragmentation
equation

• F (x , y) = 2 for x , y ∈ [0,∞).The deterministic fragmentation equation
∂

∂t
c(t, x) = 2

∫ ∞
x

c(t, y)dy − xc(t, x) for all x > 0,

c(0, x) = c0(x) for all x > 0.
(1)

• For the initial condition c(0, x) = e−x , the exact solution is

c(t, x) = (1 + t)2e−x(1+t) for all t > 0 and x > 0.

• The theoretical mean of the exact solution, which equals 2
1+t , and the

Monte Carlo mean for Q0(dx) = xe−x , if x > 0.

t Mean ÎM Exact solution
50 0.0415 0.0392
70 0.0286 0.0282
150 0.0126 0.0132
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Numerical approach for the fragmentation phase of an
avalanche

1. Approximate the process by using the stochastic differential
equation of fragmentation, with the discontinuous kernel F r and β < 1

2 .

Algorithm

Step 0: Sampling the initial particle X0 ∼ Q0
Step p: Sampling a random variable Sp ∼ Exp(λ0)

Set Tp = Tp−1 + Sp
Set Xt = Xp−1 for each t ∈ [Tp−1,Tp)
Set Xp = βXp−1 with probability βXp−1,

Xp = (1− β)Xp−1 with probability (1− β)Xp−1,
or Xp = Xp−1 with probability 1− Xp−1

Stop: When Tp > T.
Outcome: The approximated particle mass at time T , Xp−1.

Oana Lupaşcu Stochastic equation of fragmentation and branching processes related to avalanches



β=1/6,	
  T=50	
   β=4/9,	
  T=50	
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Figure : The paths of the fragmentation process with discontinuous kernel F r

and the size of the initial particle 1.
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Compute the distribution of the branching process, P̂n
t :

approximate ht = P̂n
t ϕ̂|En by Picard iterations hkt , k > 0, t 6 T , ϕ ≤ 1

and Pn
t ϕ with iterations pkt (ϕ), k > 0.

• Initialization step: Set h0
t = e−tPtϕ, p0

t (ϕ) = ϕ

• Step k, k ≥ 1:

hkt = e−tPtϕ+
∫ t

0 e−(t−u)Pt−uBĥ
k−1
u du , pkt (ϕ) :=

∑k
i=0

t i

i!F
iϕ, (2)

h′kt := e−tpkt (ϕ) +

∫ t

0
e−(t−u)pk−1

t−u (Bĥk−1
u ) du.

• Fix m > 1 and compute ĥkt |E (m) , k > 0, which will approximate the
distribution P̂t of the branching process. The connection between the
transition functions of X and of the branching process:

P̂t ϕ̂|E (m) = ĥt |E (m) .

• Stop the algorithm at k and t0, such that
∑

i>0
(2t0)k+i−1+(µo t0)

k+i−1

(k+i−1)! < ε
2m .
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The following proposition shows that the above algorithm approximates
indeed the distribution of the branching process.

Proposition Let k having a convenient value, take ϕ = 1A with
A ∈ B(E ), x ∈ E (j), and j 6 m. Then ĥ′kt (x) approximates with error less
than ε the probability that the branching process X̂ starting from x lies
at the time moment t in the set Aj , i.e.,

|Ex(X̂t ∈ Aj)− ĥ′kt (x)| < ε.

[L. Beznea, M. Deaconu, O. Lupaşcu, Numerical approach for stochastic
differential equations of fragmentation; application to avalanches, preprint,
2017]
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Numerical results.
• m = 2, n = 1, E = E1 = [ 1

4 , 1],

β = 4
9 , µo = 2λo = 6

25 , x = (1, 1, . . .), and
A := E 4

9 ,1
∩ E1 =

{
( 5
9 )2, 4

9 ,
5
9 , 1
}
.

• We know Ex(X̂t ∈ Â) = P̂t(1Â)(x) = 1.

• Using the algorithm for k = 1, ε = 0.5, t0 = 0.05, we obtain
h′1t0 = 0.9998.

• the approximate value of Ex(X̂t0 ∈ Â) (= the probability that the
branching process X̂ starting from x lies in the set Â at the time moment
t0) is ĥ′1t0(x) = 0.9996, which is indeed a value from the error interval
(1− ε, 1].
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