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Introduction

The trigonometric system (eint)n∈Z is an ONB for L2(0, 2π).

Every f ∈ L2(0, 2π) can be written as

f(t) =
∑
n∈Z

f̂(n)eint,

where

f̂(n) =
1

2π

∫ 2π

0
f(t)e−int dt.

Note:
1

2π

∫ 2π

0
|f(t)|2 dt =

∑
n∈Z
|f̂(n)|2.
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What about changing

(eint)n∈Z −→ (eiλnt)n∈Z?

Question:

Does the system (eiλnt)n∈Z form a basis for L2(0, 2π)?

If λn is close to n, is (eiλnt)n∈Z a basis?

In general, the system (eiλnt)n∈Z is not an ONB for L2(0, 2π).

↪→ Maybe a basis in some other way?
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Theorem (Paley–Wiener, 1934)
Let λn ∈ R, n ∈ Z and assume that

sup
n∈Z
|λn − n| <

1

π2
.

Then (eiλnt)n∈Z is a Riesz basis for L2(0, 2π).

Duffin–Eachus (1942): 1
π2 ≈ 0.101 ln(2)/π ≈ 0.22.

Kadets (1964) : ln(2)/π  1/4 = 0.25.

Ingham (1934) : 1/4 is optimal!
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Definition:
(en)n≥1 is a Riesz basis for a Hilbert space H if there is an iso-
morphism U : H −→ H such that (Uen)n≥1 is an ONB for H.

Equivalent to: (en)n≥1 is complete and

c1

∑
n≥1

|an|2 ≤

∥∥∥∥∥∥
∑
n≥1

anen

∥∥∥∥∥∥
2

H

≤ c2

∑
n≥1

|an|2.

An orthonormal basis is a Riesz basis with c1 = c2 = 1.

A Riesz basis is a Schauder basis:

x =
∑
n≥1

〈x, U∗Uen〉en
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Another type of basis

Definition:
We say that (en)n≥1 is an asymptotically orthonormal basis
(AOB) for H if

(en)n≥1 is complete;
For all N ≥ 1, ∃ cN , CN > 0 s.t.

cN
∑
n≥N
|an|2 ≤

∥∥∥∥∥∥
∑
n≥N

anen

∥∥∥∥∥∥
2

H

≤ CN
∑
n≥N
|an|2;

and
lim
N→∞

cN = lim
N→∞

CN = 1.

Note: ONB =⇒ AOB =⇒ Riesz basis.
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Thin sequences

Hardy space of the upper-half plane C+ = {z ∈ C : =(z) > 0}:

H2 =

{
f ∈ Hol(C+) : sup

y>0

∫
R
|f(x+ iy)|2 dx < +∞

}
.

Reproducing kernel: kλ(z) = i
2π

1
z−λ , z, λ ∈ C+.

Theorem (Volberg (1982), Gorkin–McCarthy–Pott–Wick
(2014))
Let (λn)n ⊂ C+. The sequence (kλn/‖kλn‖)n is an AOB for its
closed linear span if and only if (λn)n is thin, i.e.

lim
n→∞

∏
k 6=n

∣∣∣∣λn − λkλn − λk

∣∣∣∣ = 1.
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An approach through complex analysis.

Paley–Wiener: the Fourier transform F maps unitarily H2 onto
L2([0,∞)). Moreover, if a > 0, then

F−1(L2(0, a)) =(ΘaH
2)⊥

=

{
f ∈ H2 :

∫
R
f(t)Θa(t)g(t) dt = 0, ∀g ∈ H2

}
,

where Θa(z) = eiaz.
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A simple computation shows that

F−1
(
e−iλtχ(0,a)

)
(z) =

i

2π

1−Θa(λ)Θa(z)

z − λ
.

Let

KΘa = (ΘaH
2)⊥, and kΘa

λ (z) =
i

2π

1−Θa(λ)Θa(z)

z − λ
.

(eiλnt)n≥1 is an AOB for L2(0, a) if and only if (kΘa
λn

)n≥1 is an
AOB for KΘa .
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Model spaces

Θ : inner function: that is Θ is a bounded and analytic function
in C+ s.t.

lim
y→0
|Θ(x+ iy)| = 1 for almost all x ∈ R.

Model space:
KΘ = (ΘH2)⊥.

Reproducing kernel for KΘ:

kΘ
λ (z) =

i

2π

1−Θ(λ)Θ(z)

z − λ
, λ, z ∈ C+.
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Theorem (Chalendar-F.-Timotin, 2003)
Let (λn)n be a sequence in C+ and Θ be an inner function such
that

sup
n
|Θ(λn)| < 1. (1)

The following are equivalent :
1 (kΘ

λn
/‖kΘ

λn
‖)n is an AOB for KΘ.

2 (λn)n is thin and (kΘ
λn

)n is minimal.

Remark: in the case when Θ = Θa,

(1)⇐⇒ inf
n
=(λn) > 0.



Theorem (F.–Rupam, 2016)
Let (λn)n be a sequence in C+ such that (kΘ

λn
/‖kΘ

λn
‖)n is an

AOB for KΘ. Let (λ′n)n ⊂ C+ such that

lim
n→∞

|λ′n − λn|
=m(λn)

= 0,

and
lim
n→∞

1

‖kΘ
λn
‖2

∫
[λn,λ′n]

ω−2(z)|dz| = 0.

Then (kΘ
λ′n
/‖kΘ

λ′n
‖)n is also an AOB for KΘ.

Here ω is some weight involved in the Bernstein type inequality
proved by Baranov for model spaces.



Corollary (F.–Rupam, 2016)
Let (λn)n be a sequence in C+ such that (kΘ

λn
/‖kΘ

λn
‖)n is an

AOB for KΘ. Let (λ′n)n ⊂ C+ such that, for some γ > 1/3, we
have

lim
n→∞

∣∣∣∣λn − λ′nλn − λ′n

∣∣∣∣ (1− |Θ(λn)|)−γ = 0.

Then (kΘ
λ′n
/‖kΘ

λ′n
‖)n is also an AOB for KΘ.



Theorem (F.–Rupam, 2016)
Let Θ be a meromorphic inner function satisfying the connected
level condition. Let (λn)n and (λ′n)n be two real sequences and
assume that (kΘ

λn
/‖kΘ

λn
‖)n is an AOB for KΘ. If

lim
n→∞

|arg Θ(λn)− arg Θ(λ′n)| = 0,

then (kΘ
λ′n
/‖kΘ

λ′n
‖)n is also an AOB for KΘ.

Corollary (Chalendar-F.-Timotin,2003)
If (λn)n ⊂ R and assume that

lim
n→±∞

|λn − n| = 0.

Then (eiλnt)n is an AOB for L2(0, 2π).
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THANK YOU FOR YOUR ATTENTION!


