Espaces de type Dirichlet sur le Polydisque

Aurelian Gheondea

IMAR, București

Bilkent Université, Ankara

Espaces de fonctions et théorie des opérateurs 19 décembre 2017

- Dirichlet Type Spaces on the Polydisc
 - Holomorphic Functions on the Polydisc
 - Dirichlet Type Spaces on the Polydisc
 - Reproducing Kernel
 - \mathcal{D}_0 is the Hardy Space $H^2(\mathbb{D}^N)$
 - The Operator T_{α} : Radial Derivative
 - ullet Triplets of Dirichlet Type Spaces with $lpha \geq {\bf 0}$
- **2** A Rigging of $H^2(\mathbb{D}^N)$ by Dirichlet Type Spaces
- Triplets of Dirichlet Type Spaces: The General Case
- Triplets of Hilbert Spaces: The Abstract Case
- 5 Futher Results

Holomorphic Functions on the Polydisc

Let N be a fixed natural number.

The unit polydisc $\mathbb{D}^N = \mathbb{D} \times \cdots \times \mathbb{D}$, where $\mathbb{D} = \{z \in \mathbb{C} \mid |z| < 1\}$.

For any multi-index
$$k = (k_1, ..., k_N) \in \mathbb{Z}_+^N$$
 and any $z = (z_1, z_2, ..., z_N) \in \mathbb{C}^N$ let $z^k = z_1^{k_1} \cdots z_N^{k_N}$.

Consider $H(\mathbb{D}^N)$ the algebra of all functions $f: \mathbb{D}^N \to \mathbb{C}$ that are holomorphic in each variable, equivalently, there exists $(a_k)_{k \in \mathbb{Z}_+^N}$ with the property that

$$f(z) = \sum_{k \in \mathbb{Z}_+^N} a_k z^k, \quad z \in \mathbb{D}^N,$$
 (2.1)

where the series converges absolutely and uniformly on any compact subset in \mathbb{D}^N .

W. Rudin et al.

Dirichlet Type Spaces on the Polydisc

Let $\alpha \in \mathbb{R}^N$ be fixed. The *Dirichlet type space* \mathcal{D}_{α} consists on all functions $f \in \mathcal{H}(\mathbb{D}^N)$ subject to the condition

$$f(z) = \sum_{k \in \mathbb{Z}_+^N} a_k z^k, \quad z \in \mathbb{D}^N, \quad \sum_{k \in \mathbb{Z}_+^N} (k+1)^\alpha |a_k|^2 < \infty, \tag{2.2}$$

where, with an abuse of notation, $(k+1)^{\alpha}=(k_1+1)^{\alpha_1}\cdots(k_N+1)^{\alpha_N}$. \mathcal{D}_{α} is naturally organized as a Hilbert space with inner product $\langle\cdot,\cdot\rangle_{\alpha}$

$$\langle f, g \rangle_{\alpha} = \sum_{k \in \mathbb{Z}_{+}^{N}} (k+1)^{\alpha} a_{k} \overline{b_{k}},$$
 (2.3)

where f has representation (2.2) and similarly $g(z) = \sum_{k \in \mathbb{Z}_+^N} b_k z^k$, and norm $\|\cdot\|_{\alpha}$

$$||f||_{\alpha}^{2} = \sum_{k \in \mathbb{Z}_{N}^{N}} (k+1)^{\alpha} |a_{k}|^{2}.$$
 (2.4)

G.D. Taylor 1966 (for N=1) and D. Jupiter, D. Redett 2006 (for $N \ge 2$)

Reproducing Kernel

For any $\alpha \in \mathbb{R}^N$, on the polydisc \mathbb{D}^N one can define the following kernel

$$K^{\alpha}(w,z) = \sum_{k \in \mathbb{Z}_{+}^{N}} (k+1)^{-\alpha} \overline{w}^{k} z^{k}, \quad z, w \in \mathbb{D}^{N},$$
 (2.5)

where, for $w = (w_1, \dots, w_N) \in \mathbb{D}^N$ one denotes $\overline{w} = (\overline{w}_1, \dots, \overline{w}_N)$.

As usually, we let $K_w^{\alpha} = K^{\alpha}(w, \cdot)$.

 K^{α} is the reproducing kernel for the space \mathcal{D}_{α} in the sense that the following two properties hold:

(rk1) $K_w^{\alpha} \in \mathcal{D}_{\alpha}$ for all $w \in \mathbb{D}^N$.

(rk2)
$$f(w) = \langle f, K_w^{\alpha} \rangle_{\alpha}$$
 for all $f \in \mathcal{D}_{\alpha}$ and all $w \in \mathbb{D}^N$.

It follows (this is actually a more general statement) that the set $\{K_w^\alpha \mid w \in \mathbb{D}^N\}$ is total in \mathcal{D}_α and that the kernel K^α is positive semidefinite.

\mathcal{D}_0 is the Hardy Space $H^2(\mathbb{D}^N)$

Let $\mathbb{T}=\partial\mathbb{D}$ denote the one-dimensional torus and let $\mathbb{T}^N=\mathbb{T}\times\cdots\times\mathbb{T}$ be the N-dimensional torus, also called the distinguished boundary of the unit polydisc \mathbb{D}^N (which is only a subset of $\partial\mathbb{D}^N$).

We consider the product measure d $m_N=$ d $m_1\times\cdots\times$ d m_1 on \mathbb{D}^N , where d m_1 denotes the normalized Lebesgue measure on \mathbb{T} , and for any function $f\in H(\mathbb{D}^N)$ and $0\leq r<1$ let $f_r(z)=f(rz)$ for $z\in\mathbb{D}^N$.

Then $f \in H(\mathbb{D}^N)$ belongs to $H^2(\mathbb{D}^N)$ if and only if

$$\sup_{0\leq r<1}\int_{\mathbb{T}^N}|f_r|^2\,\mathrm{d}\,m_N<\infty.$$

W. Rudin at al.

Norm, Inner product, and Reproducing Kernel on $H^2(\mathbb{D}^N)$

The norm $\|\cdot\|_0$ and inner product $\langle\cdot,\cdot\rangle_0$ on the Hardy space $H^2(\mathbb{D}^N)$ are defined by

$$\begin{split} \|f\|_0^2 &= \sup_{0 \le r < 1} \int_{\mathbb{T}^N} |f_r|^2 \, \mathrm{d} \, m_N = \lim_{r \to 1-} \int_{\mathbb{T}^N} |f_r|^2 \, \mathrm{d} \, m_N, \quad f \in H^2(\mathbb{D}^N), \\ \langle f, g \rangle_0 &= \lim_{r \to 1-} \int_{\mathbb{T}^N} f_r \overline{g_r} \, \mathrm{d} \, m_N, \quad f, g \in H^2(\mathbb{D}^N). \end{split}$$

 \mathcal{D}_0 coincides as a Hilbert space with $H^2(\mathbb{D}^N)$.

The reproducing kernel K^0 has a simple representation in this case

$$K^0(w,z) = \frac{1}{1 - \overline{w}_1 z_1} \cdots \frac{1}{1 - \overline{w}_N z_N}.$$

(4日) (個) (量) (量) (量) (9Qで)

The Operator T_{α} : Radial Derivative

Let \mathcal{P}_N denote the complex vector space of polynomial functions in N complex variables, that is, those functions f that admit a representation

$$f(z) = \sum_{k \in \mathbb{Z}_+^N} a_k z^k, \quad \operatorname{supp}\{a_k\}_{k \in \mathbb{Z}_+^N} \text{ finite.}$$

On the additive group \mathbb{R}^N define a representation $T: \mathbb{R}^N \to \mathcal{L}(\mathcal{P}_N)$ by

$$(T_{\alpha}f)(z) = \sum_{k \in \mathbb{Z}_{+}^{N}} (k+1)^{\alpha} a_{k} z^{k}, \quad \alpha \in \mathbb{R}^{N}, \ f \in \mathcal{P}_{N}, \ z \in \mathbb{D}^{N}.$$
 (2.6)

Radial Derivative, cf. F. Beatrous, J. Burbea 1989

◆ロト ◆部ト ◆差ト ◆差ト き めなべ

Triplets of Dirichlet Type Spaces: The Embeddings

Theorem

Let $\alpha \in \mathbb{R}^N$ be positive, in the sense that $\alpha_k \geq 0$ for all k = 1, ..., N and $\alpha_k > 0$ for at least one of them. Then, $(\mathcal{D}_{\alpha}; \mathcal{D}_0; \mathcal{D}_{-\alpha})$ is a triplet of Hilbert spaces with the following properties:

- (a) The embeddings $j_+: \mathcal{D}_{\alpha} \hookrightarrow \mathcal{D}_0$ and $j_-: \mathcal{D}_0 \hookrightarrow \mathcal{D}_{-\alpha}$ are compact.
- (b) The adjoint j_+^* is defined by $j_+^*f = T_{-\alpha}f$ for all $f \in \mathcal{D}_0$.

Triplets of Dirichlet Type Spaces: The Kernel Operator

Theorem (continued)

(c) The kernel operator $A_{\alpha} = j_{+}j_{+}^{*}$ is a bounded positive operator on $\mathcal{D}_{0} = H^{2}(\mathbb{D}^{N})$ and is determined, for all $f \in \mathsf{Dom}(A_{\alpha})$, by

$$(A_{\alpha}f)(z) = (T_{-\alpha}f)(z) = \langle f, \overline{K_{\cdot}^{\alpha}(z)} \rangle_{0}$$

= $\lim_{r \to 1-} \int_{\mathbb{T}^{N}} f_{r}(w) K^{\alpha}(rw, z) d m_{N}(w), \quad z \in \mathbb{D}^{N}.$

in particular, it is an integral operator with kernel K^{α} ,

Triplets of Dirichlet Type Spaces: Hamiltonian and Spectra

Theorem (continued)

(d) The Hamiltonian operator $H_{\alpha} = A_{\alpha}^{-1}$ is a positive selfadjoint operator

$$H_{\alpha}f = T_{\alpha}f$$
, for all $f \in \mathsf{Dom}(H_{\alpha}) = \{f \in \mathcal{D}_0 \mid T_{\alpha}f \in \mathcal{D}_0\}.$

(e) The operator $T_{\alpha} : \mathcal{D}_{\alpha} \to \mathcal{D}_{-\alpha}$ is the canonical unitary identification of \mathcal{D}_{α} with $\mathcal{D}_{-\alpha}$.

In addition,

$$\sigma(A_{\alpha})\setminus\{0\}=\{(k+1)^{-\alpha}\mid k\in\mathbb{Z}_{+}^{N}\}$$

and

$$\sigma(H_{\alpha}) = \{ (k+1)^{\alpha} \mid k \in \mathbb{Z}_+^N \},\,$$

are all eigenvalues.

A Projective Limit of Dirichlet Type Spaces

For any $\alpha \geq 0$, $\mathcal{D}_{\alpha}(\mathbb{D}^{N})$ is continuously embedded in $H^{2}(\mathbb{D}^{N}) = \mathcal{D}_{0}(\mathbb{D}^{N})$ and, if $\alpha \neq 0$ then the embedding $\mathcal{D}_{\alpha}(\mathbb{D}^{N}) \hookrightarrow H^{2}(\mathbb{D}^{N})$ is contractive and compact.

The same is true for the embedding $\mathcal{D}_{\beta}(\mathbb{D}^{N}) \hookrightarrow \mathcal{D}_{\alpha}(\mathbb{D}^{N})$ whenver $\beta \geq \alpha$ and $\beta \neq \alpha$.

With respect to continuous embeddings, the family $\{\mathcal{D}_{\alpha}(\mathbb{D}^{N})\}_{\alpha\geq 0}$ is a projective system of Hilbert spaces and let

$$\mathcal{S}(\mathbb{D}^N) = \limsup_{\alpha \geq 0} \mathcal{D}_{\alpha}(\mathbb{D}^N),$$

that is,

$$\mathcal{S}(\mathbb{D}^N) = \bigcap_{\alpha \geq 0} \mathcal{D}_{\alpha}(\mathbb{D}^N),$$

with the locally convex topology defined by the family of quadratic norms $\{\|\cdot\|_{\alpha} \mid \alpha \in \mathbb{R}^N\}$, with norms $\|\cdot\|_{\alpha}$ defined at (2.4) and restricted to $\mathcal{S}(\mathbb{D}^N)$.

$$\mathcal{S}(\mathbb{D}^N) = \limsup_{\alpha \geq 0} \mathcal{D}_{\alpha}(\mathbb{D}^N)$$
 is a Nuclear Fréchet Space

To see this we construct a scale of continuously embedded Dirichlet type spaces that has the same projective limit and with corresponding nuclear embeddings.

For each $n \in \mathbb{N}$ let, with an abuse of notation, \mathcal{D}_n denote the Dirichlet type space corresponding to the multi-index $(n, \ldots, n) \in \mathbb{N}^N \subset \mathbb{R}^N$. Because, for each $\alpha \in \mathbb{R}^N$ there exists $n \in \mathbb{N}$ with $\alpha \leq (n, \ldots, n)$, it follows that

$$\mathcal{S}(\mathbb{D}^N) = \limsup_{n \in \mathbb{N}} \mathcal{D}_n,$$

hence $\mathcal{S}(\mathbb{D}^N)$ is metrizable and complete (standard argument).

$$\mathcal{S}(\mathbb{D}^N) = \limsup_{\alpha \geq 0} \mathcal{D}_{\alpha}(\mathbb{D}^N)$$
 is a Nuclear Fréchet Space

We actually have a (left) scale of Hilbert spaces

$$\cdots \hookrightarrow \mathcal{D}_{n+1} \hookrightarrow \mathcal{D}_n \hookrightarrow \cdots \mathcal{D}_1 \hookrightarrow \mathcal{D}_0 = H^2(\mathbb{D}^N).$$

All the embeddings are continuous, actually compact, and each space in the scale is dense in its successor (and hence in all of its successors).

Moreover, for any $n \ge 1$, letting A denote the kernel operator of the embedding $\mathcal{D}_{n+2} \hookrightarrow \mathcal{D}_n$, we have

$$\sigma(A) = \{(1+k_1)^{-2} \cdots (1+k_N)^{-2} \mid k \in \mathbb{Z}_+^N\} \cup \{0\},\$$

hence A is a trace-class (nuclear) operator, which makes the corresponding embedding $\mathcal{D}_{n+2} \hookrightarrow \mathcal{D}_n$ to be a Hilbert-Schmidt (quasi-nuclear) operator. Therefore, the projective limit $\mathcal{S}(\mathbb{D}^N)$ is a nuclear Fréchet space.

$$\mathcal{S}(\mathbb{D}^N) = \limsup_{lpha \geq 0} \mathcal{D}_lpha(\mathbb{D}^N)$$

The algebra \mathcal{P}_N of polynomials in N indeterminates is contained in $\mathcal{S}(\mathbb{D}^N)$, in particular, $\mathcal{S}(\mathbb{D}^N)$ is dense in $H^2(\mathbb{D}^N)$, but $\mathcal{S}(\mathbb{D}^N)$ does not coincide with \mathcal{P}_N .

Also, $\mathcal{S}(\mathbb{D}^N) \subset A(\mathbb{D}^N)$, where $A(\mathbb{D}^N)$ denotes the *disk algebra* on the polydisc, more precisely, it consists of all functions $f \in H(\mathbb{D}^N)$ that have continuous extensions to the boundary $\partial \mathbb{D}^N$.

$$\mathcal{S}^*(\mathbb{D}^N) = \liminf_{\alpha \geq 0} \mathcal{D}_{-\alpha}$$

The conjugate dual spaces $\mathcal{D}_{-\alpha} = \mathcal{D}_{\alpha}^*$, indexed by the directed set $\alpha \geq 0$, make an inductive system of Hilbert spaces and let

$$\mathcal{S}^*(\mathbb{D}^N) = \liminf_{\alpha \geq 0} \mathcal{D}_{-\alpha},$$

where

$$\mathcal{S}^*(\mathbb{D}^N) = \bigcup_{\alpha \geq 0} \mathcal{D}_{-\alpha},$$

endowed with the strongest topology that makes all the embeddings $\mathcal{D}_{-\alpha} \hookrightarrow \mathcal{S}^*(\mathbb{D}^N)$ continuous.

The Rigging
$$\mathcal{S}(\mathbb{D}^N) \hookrightarrow H^2(\mathbb{D}^N) \hookrightarrow \mathcal{S}^*(\mathbb{D}^N)$$

We got a scale that produces a rigging of $H^2(\mathbb{D}^N)$

$$\cdots \hookrightarrow \mathcal{D}_n \hookrightarrow \cdots \mathcal{D}_1 \hookrightarrow H^2(\mathbb{D}^N) \hookrightarrow \mathcal{D}_{-1} \hookrightarrow \cdots \hookrightarrow \mathcal{D}_{-n} \hookrightarrow \cdots$$

In particular,

$$\mathcal{S}^*(\mathbb{D}^N) = \liminf_{\alpha < 0} \mathcal{D}_{\alpha} = \liminf_{n \in \mathbb{N}} \mathcal{D}_{-n}$$

where $\mathcal{D}_{-n}=\mathcal{D}_n^*$ is the Dirichlet type space with index $(-n,\ldots,-n)\in\mathbb{Z}_-^N$ for all $n\in\mathbb{N}$ and is complete (by a classical theorem of L. Schwartz). Note that $H^2(\mathbb{D}^N)$ is also dense in $\mathcal{S}^*(\mathbb{D}^N)$.

The Bergman Spaces $A^2_{\alpha}(\mathbb{D}^N)$

The spaces \mathcal{D}_{α} for $\alpha < 0$ are, to a certain extent, of Bergman type.

More precisely, let d A_1 denote the normalized area measure on the unit disc $\mathbb D$ and let d $A_N=$ d $A_1\times\cdots\times$ d A_1 be the corresponding product measure on $\mathbb D^N$. Then, a function $f\in H(\mathbb D^N)$ is in $\mathcal D_\alpha$, for a fixed $\alpha<0$ in $\mathbb R^N$, if and only if

$$\int_{\mathbb{D}^N} |f(z)|^2 \frac{1}{(1-|z_1|^2)^{1+\alpha_1}} \cdots \frac{1}{(1-|z_N|^2)^{1+\alpha_N}} \, \mathrm{d} \, A_N(z) < \infty,$$

and, in this case, the norm $\|\cdot\|_{\alpha}$ on \mathcal{D}_{α} is equivalent to the norm $\|\cdot\|_{\mathbf{a},\alpha}$ defined by

$$||f||_{\mathrm{a},\alpha}^2 = \int_{\mathbb{D}^N} |f(z)|^2 \frac{1}{(1-|z_1|^2)^{1+\alpha_1}} \cdots \frac{1}{(1-|z_N|^2)^{1+\alpha_N}} \,\mathrm{d}\,A_N(z).$$

- ◀ □ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ ◆ 볼 → ♡ Q ()

The Bergman Spaces $A^2_{\alpha}(\mathbb{D}^N)$

Let $A^2_{\alpha}(\mathbb{D}^N)$ denote the Hilbert space of all functions f holomorphic in \mathbb{D}^N such that

$$||f||_{\mathrm{a},\alpha}^2 = \int_{\mathbb{D}^N} |f(z)|^2 \frac{1}{(1-|z_1|^2)^{1+\alpha_1}} \cdots \frac{1}{(1-|z_N|^2)^{1+\alpha_N}} \, \mathrm{d} \, A_N(z) < \infty.$$

with norm $\|\cdot\|_{a,\alpha}$ defined as before.

So, for $\alpha < 0$, the Bergman space $A_{\alpha}^{2}(\mathbb{D}^{N}) = \mathcal{D}_{\alpha}$ as topological spaces, but not isometrically.

The Bergman Spaces $A^2_{\alpha}(\mathbb{D}^N)$

A calculation shows that, for all $f \in A^2_{\alpha}(\mathbb{D}^N)$, we have

$$||f||_{\mathbf{a},\alpha}^2 = 2^N \sum_{k \in \mathbb{Z}_+^N} \frac{1}{-\alpha \binom{k-\alpha}{-\alpha}} |a_k|^2, \text{ for } f(z) = \sum_{k \in \mathbb{Z}_+^N} a_k z^k, \ z \in \mathbb{D}^N,$$

where we denote $-\alpha \binom{k-\alpha}{-\alpha} = (-\alpha_1)\binom{k_1-\alpha_1}{-\alpha_1}\cdots (-\alpha_n)\binom{k_N-\alpha_N}{-\alpha_N}$ and use the generalized binomial coefficients.

From here it follows that there exists $C_{\alpha} > 0$ such that

$$||f||_{\mathbf{a},\alpha} \leq C_{\alpha}||f||_{2}$$
 for all $f \in H^{2}(\mathbb{D}^{N})$

hence $H^2(\mathbb{D}^N)$ is continuously embedded into $A^2_{\alpha}(\mathbb{D}^N)$.

- 4 ロ ト 4 個 ト 4 差 ト 4 差 ト - 差 - 夕 Q (C)

$$\mathcal{S}(\mathbb{D}^N) \hookrightarrow H^2(\mathbb{D}^N) \hookrightarrow \mathcal{S}^*(\mathbb{D}^N)$$

 $\mathcal{S}^*(\mathbb{D}^N)$ can be realized as the inductive limit of Bergman type spaces $\mathcal{A}^2_{\alpha}(\mathbb{D}^N)$ for $\alpha < 0$,

$$\mathcal{S}^*(\mathbb{D}^N) = \liminf_{\alpha < 0} A_{\alpha}^2(\mathbb{D}^N),$$

since for all $\alpha < 0$ the Dirichlet type space \mathcal{D}_{α} coincides with the Bergman space $A^2_{\alpha}(\mathbb{D}^N)$ as topological spaces of holomorphic functions, even though their norms are not identical, but still equivalent.

In conclusion,

$$\mathcal{S}(\mathbb{D}^N) \hookrightarrow H^2(\mathbb{D}^N) \hookrightarrow \mathcal{S}^*(\mathbb{D}^N)$$

is a rigging of the Hardy space $H^2(\mathbb{D}^N)$ obtained through a scale of Dirichlet type spaces and Bergman spaces

$$\cdots \hookrightarrow \mathcal{D}_n \hookrightarrow \cdots \mathcal{D}_1 \hookrightarrow H^2(\mathbb{D}^N) \hookrightarrow A^2_{-1} \hookrightarrow \cdots \hookrightarrow A^2_{-n} \hookrightarrow \cdots$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Triplets of Dirichlet Type Spaces: The General Case

Theorem

For any $\alpha, \beta \in \mathbb{R}^N$ we can define a triplet of closely embedded Hilbert spaces $(\mathcal{D}_{\beta}; \mathcal{D}_{\alpha}; \mathcal{D}_{2\alpha-\beta})$ with the following properties:

- (a) The closed embeddings j_{\pm} of \mathcal{D}_{β} in \mathcal{D}_{α} and, respectively, of \mathcal{D}_{α} in $\mathcal{D}_{2\alpha-\beta}$, have maximal domains $\mathcal{D}_{\alpha}\cap\mathcal{D}_{\beta}$ and, respectively, $\mathcal{D}_{\alpha}\cap\mathcal{D}_{2\alpha-\beta}$.
- (b) The adjoint j_+^* is defined by $j_+^*f = T_{\alpha-\beta}f$ for all $f \in \mathsf{Dom}(j_+^*) = \mathcal{D}_{\alpha} \cap \mathcal{D}_{2\alpha-\beta}$.

Triplets of Dirichlet Type Spaces: The General Case

Theorem (Continuation)

(c) The kernel operator $A=j_+j_+^*$, considered as a positive selfadjoint operator in \mathcal{D}_{α} , is defined by $Af=T_{\alpha-\beta}f$ for all $f\in \mathsf{Dom}(A)=\mathcal{D}_{\alpha}\cap\mathcal{D}_{2\alpha-\beta}\cap\mathcal{D}_{3\alpha-2\beta}$ and is an "integral operator with kernel K^{β} ", in the sense that, for all $f\in \mathsf{Dom}(A)$, we have

$$(Af)(z) = \langle f, K_z^{\beta} \rangle_{\alpha}, \quad z \in \mathbb{D}^N.$$
 (4.1)

When viewed as an operator from $\mathcal{D}_{2\alpha-\beta}$ in \mathcal{D}_{β} , A admits a unique extension to a unitary operator $\widetilde{A} \colon \mathcal{D}_{2\alpha-\beta} \to \mathcal{D}_{\beta}$.

Triplets of Dirichlet Type Spaces: The General Case

Theorem (Continuation)

- (d) The Hamiltonian operator $H=A^{-1}$ is a positive selfadjoint operator in \mathcal{D}_{α} defined by $Hf=T_{\beta-\alpha}f$ for all $f\in \mathsf{Dom}(H)=\mathcal{D}_{\alpha}\cap\mathcal{D}_{\beta}\cap\mathcal{D}_{2\beta-\alpha}$. When viewed as an operator from \mathcal{D}_{β} in $\mathcal{D}_{2\alpha-\beta}$, H admits a unique extension to a unitary operator $\widetilde{H}\colon \mathcal{D}_{\beta}\to\mathcal{D}_{2\alpha-\beta}$, and $\widetilde{H}=\widetilde{A}^{-1}$.
- (e) The canonical unitary identification of $\mathcal{D}_{2\alpha-\beta}$ with \mathcal{D}_{β}^* is the operator Θ defined by

$$(\Theta g)f = \langle T_{\alpha-\beta}f, g \rangle_{\beta}, \quad f \in \mathcal{D}_{2\alpha-\beta}, \ g \in \mathcal{D}_{\beta}.$$

In addition, $\sigma(A) \setminus \{0\} = \{(k+1)^{\alpha-\beta} \mid k \in \mathbb{Z}_+^N\}$ and $\sigma(H) \setminus \{0\} = \{(k+1)^{\beta-\alpha} \mid k \in \mathbb{Z}_+^N\}$. Moreover, the two embeddings j_\pm are simultaneously continuous and this happens if and only if $\alpha \leq \beta$.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Generation of Triplets of Hilbert Spaces: Factoring the Hamiltonian

Theorem

Let H be a positive selfadjoint operator in the Hilbert space \mathcal{H} , that admits a bounded inverse $A=H^{-1}$. Then there exists $T\in\mathcal{C}(\mathcal{H},\mathcal{G})$, with $\mathrm{Ran}(T)=\mathcal{G}$ and $H=T^*T$. In addition, $S=T^{-1}\in\mathcal{B}(\mathcal{G},\mathcal{H})$. Then:

- (i) The Hilbert space $\mathcal{H}_+ := \mathcal{D}(T) := \mathcal{R}(S)$ is embedded in \mathcal{H} with its embedding i_T having range dense in \mathcal{H} , and its kernel operator $A = i_T i_T^*$ coincides with H^{-1} .
- (ii) \mathcal{H} is embedded in the Hilbert space $\mathcal{H}_{-}=\mathcal{R}(T^*)$ with its embedding $j_{T^*}^{-1}$ having range dense in $\mathcal{R}(T^*)$. The kernel operator $B=j_{T^*}^{-1}j_{T^*}^{-1*}$ of this embedding is unitary equivalent with $A=H^{-1}$.

Generation of Triplets of Hilbert Spaces: Weak Solutions

Theorem (continued)

(iii) The operator $V = i_T^* | Ran(T^*)$, that is,

$$\langle i_T x, y \rangle_{\mathcal{H}} = (x, Vy)_T, \quad x \in \text{Dom}(T), \ y \in \text{Ran}(T^*),$$
 (5.1)

extends uniquely to a unitary operator V between the Hilbert spaces $\mathcal{R}(T^*)$ and $\mathcal{D}(T)$.

(iv) The operator H, when viewed as a linear operator with domain dense in $\mathcal{D}(T)$ and range in $\mathcal{R}(T^*)$, extends uniquely to a unitary operator $\widetilde{H} \colon \mathcal{D}(T) \to \mathcal{R}(T^*)$, and $\widetilde{H} = \widetilde{V}^{-1}$.

Generation of Triplets of Hilbert Spaces: Dual Space

Theorem (continued)

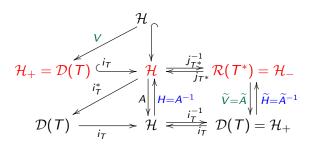
(v) The operator $\Theta \colon \mathcal{R}(T^*) \to \mathcal{D}(T)^*$ defined by

$$(\Theta\alpha)(x) := (\widetilde{V}\alpha, x)_{\mathcal{T}}, \quad \alpha \in \mathcal{R}(\mathcal{T}^*), \ x \in \mathcal{D}(\mathcal{T}), \tag{5.2}$$

provides a canonical and unitary identification of the Hilbert space $\mathcal{R}(T^*)$ with the conjugate space $\mathcal{D}(T)^*$, in particular, for all $y \in \mathsf{Dom}(T^*)$

$$||y||_{\mathcal{T}^*} = \sup \left\{ \frac{|\langle y, x \rangle_{\mathcal{H}}|}{|x|_{\mathcal{T}}} \mid x \in \mathsf{Dom}(\mathcal{T}) \setminus \{0\} \right\}. \tag{5.3}$$

Generation of Triplets of Hilbert Spaces: The General Picture



```
H Hamiltonian (unbounded)

A = H^{-1} Kernel Operator

H = T^*T Factor Operator (unbounded)

A = SS^* Factor Operator (bounded)
```

Further

Joint Work with Petru Cojuhari, Cracow, Poland

- Triplets of Closely Embedded Hilbert Spaces
- Dirichlet Type Spaces on the Polydisc with Indefinite Index
- Weak Solutions for "Elliptic Like" Boundary Value Problems
- Weyl Decompositions of Triplets of Hilbert Spaces
- Indefinite Variant: Triplets of Krein Spaces
- Triplets of Krein Spaces associated to Dirac Operators
- Triplets of Hilbert Spaces Associated to Noncommutative Radon-Nikodým Derivatives and Lebesgue Decompositions
- Triplets of Hilbert Spaces in Quantum Probability