
MΛ Geometry p = 2 Operators Carleson open pbs !

IMAR Bucarest 2017

Atelier de travail : Espaces de fonctions et théorie des opérateurs
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MΛ Geometry p = 2 Operators Carleson open pbs !

Müntz spaces

Let Λ = (λk)∞k=0 be an increasing sequence of positive numbers (have integers in mind)

0 = λ0 < λ1 < · · ·

and the spaces

MΛ =: span
{
xλk ; k ∈ N

}
. ME

Λ =: MΛ
E

where MΛ ⊂ E and E is a Banach space.

M∞Λ =: MΛ
C([0,1])

. Mp
Λ =: MΛ

Lp([0,1])
(1 ¬ p <∞).

Müntz (1914). TFAE:

1 MΛ = vect
{
xλ;λ ∈ Λ

}
is dense in C([0, 1]) (resp. in Lp)

2

∑
k­1

1
λk

diverges.

We would like to know “everything” on the Banach space MΛ
E ( E when the

series converges !
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Müntz spaces

Let Λ = (λk)∞k=0 be an increasing sequence of positive numbers (have integers in mind)

0 = λ0 < λ1 < · · ·

and the spaces

MΛ =: span
{
xλk ; k ∈ N

}
. ME

Λ =: MΛ
E

where MΛ ⊂ E and E is a Banach space.

M∞Λ =: MΛ
C([0,1])

. Mp
Λ =: MΛ

Lp([0,1])
(1 ¬ p <∞).
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Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions

Clarkson-Erdös, Schwartz (∼ 1943)

Assume that
∞∑
k=1

1
λk

<∞ and inf
(
λk+1 − λk

)
> 0

Then TFAE

1 f ∈ M∞Λ

2 f ∈ C([0, 1])
and there exists a sequence (ak)k ⊂ C such that

f (x) =

∞∑
k=0

akx
λk on (0, 1),

Then any function M∞Λ (resp. in Mp
Λ) can be written as the restriction on [0, 1) of an

analytic function over the unit disc D, when Λ ⊂ N.

For p = +∞, we have then some infinite dimensional (closed) subspaces of functions
in C([0, 1]), with continuous derivatives on [0, 1)
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Banach space structure

Understand the spaces MΛ
E means understand

their “geometry” (as a Banach space)

1 Mp
Λ has a basis ?

2 looks like a classical Banach space ?

3 More generally, understand the link between the nature of the Banach space
Mp

Λ and the arithmetical nature of Λ.

how their operators act. But,

first produce some non trivial “interesting” operators (how?)

even better: operators preserving MΛ . . .
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Geometry

Müntz spaces are isomorphic to subspaces of c0 or `p

Wojtaszczyk, Werner ∼′ 00

Let X be a subspace of C([0, 1]) such that every f ∈ X continuously
differentiable on [0, 1),
Then
X is almost isometric to a subspace of the space of convergent sequences c. i.e.

For every ε > 0, there exists Jε : X → c such that

(1− ε)‖f ‖∞ ¬ ‖Jεf ‖∞ ¬ ‖f ‖∞ ∀f ∈ X

In particular: M∞Λ is isomorphic to a subspace of c0.

in the same spirit, we have

Mp
Λ is isomorphic to a subspace of `p.
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Gurariy-Macaev’s theorem

Gurariy-Macaev, ’66

Let p ­ 1. TFAE

1
(

(pλk + 1)1/pxλk
)
k

is a Schauder basis of Mp
Λ (then equivalent to the

canonical basis of `p)

2 (λk)k is lacunary (Hadamard) : inf
λn+1

λn
> 1 .

3
(
xλk
)
k

is a Schauder basis of M∞Λ (then equivalent to the summing basis of c)

i.e. ∥∥∥∑
k

akλ
1/p
k xλk

∥∥∥
p
≈
(∑

k­0

∣∣ak∣∣p) 1
p

and

∥∥∥∑
k

akx
λk

∥∥∥
∞
≈ sup

N

∣∣ N∑
k=0

ak
∣∣
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Gurariy-Macaev’s theorem revisited

With a different (still elementary) approach, we can recover the results of
Gurariy-Macaev with a control of the constants, leading also to

Gaillard-L.(’16-17)

Let p ­ 1. TFAE

1 In Mp
Λ , the (normalized) basis

(
(pλk + 1)

1
p xλk

)
k

is almost isometric to `p:(
1− εn

)(∑
k­n

|ak |p
) 1

p
¬
∥∥∥∑

k­n

ak (pλk + 1)
1
p xλk

∥∥∥
Lp
¬
(

1 + εn
)(∑

k­n

|ak |p
) 1

p

where εn → 0.

2 (λk)k is super-lacunary:
λn+1

λn
−→ +∞ .

3 In M∞Λ , we have

(
1− εn

)
sup
m­n

∣∣∣ m∑
k=n

ak

∣∣∣ ¬ ∥∥∥∑
k­n

akx
λk

∥∥∥
∞
¬ sup

m­n

∣∣∣ m∑
k=n

ak

∣∣∣
.
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A digression: the Hilbert space framework

In this part, we allow complex powers λ ∈ C− 1
2
i.e. Re(λ) > −1

2
so that xλ ∈ L2.

The map

D :

∣∣∣∣∣∣
L2
(

[0, 1], ds
)
−→ H2

(
C0

)
f 7−→ D(f )(z) =

∫ 1

0

f (s)sz−
1
2 ds

defines an isometric isomorphism (dictionary)

For λ ∈ C− 1
2

and z ∈ C0, we have D
(
xλ
)

(z) =
1

z + λ+ 1
2

·

(reproducing kernel at λ+ 1
2 )

For quite free, we get

Full Müntz theorem in L2 (Szàsz 1916)

Let Λ = (λn) be a sequence of C− 1
2
.

MΛ is dense in L2
(

[0, 1], dx
)

if and only if
∑ 1

2 + Re(λn)∣∣λn + 1
2

∣∣2 + 1
= +∞.
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Dictionary: proof

First step Consider the following map (Mellin transform):

M :

∣∣∣∣∣∣
L2
(

[0, 1], ds
s

)
−→ H2

(
C0

)
f 7−→ M(f )(z) =

∫ 1

0

f (s)sz−1 ds

is an isometric isomorphism.

This is just a reformulation of the Paley-Wiener
theorem !

Indeed: let g ∈ H2
(
C0

)
, recall

‖g‖2
H2(C0) = sup

x>0

1
2π

∫
R

∣∣g(x + iy)
∣∣2 dy .

There exists a unique F ∈ L2
(
R+
)

such that

∀z ∈ C0 , g(z) =

∫
R+

F (t)e−tz dt and ‖F‖2 = ‖g‖H2(C0) .

It means that the function f (s) = F
(
− ln(s)

)
satisfies g =M(f ) and∫ 1

0

|f (s)|2 ds

s
=

∫
R+

∣∣F (t)
∣∣2 dt = ‖g‖2

H2(C0).
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proof

Second step

The following map

f ∈ L2
(

[0, 1], ds
)
7−→
√
s · f ∈ L2

(
[0, 1],

ds

s

)
is also an isometric isomorphism.

Compose the previous maps : D(f ) =M(
√
sf ).... That’s all...
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L2 Müntz spaces as model spaces

(from joint work with E.Fricain)

Let Λ = (λn) be a sequence of C− 1
2

with
∑ 1

2 + Re(λn)∣∣λn + 1
2

∣∣2 + 1
< +∞.

Consider BΛ the Blaschke product whose zeros are the λn + 1/2·
Then

D realizes an isometric isomorphism between M2
Λ and the model space KBΛ .

Let us recall that the Blaschke product (on the right half plane) with zeros zk is∏
θk

z − zk
z + zk

where |θk | = 1

with the Blaschke condition
∑ Re(zk)

1 + |zk |2
<∞

and

The model space associated to this inner function Θ is

KΘ = H2(C0)	ΘH2(C0) =
(

ΘH2(C0)
)⊥
.
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L2 Müntz spaces as model spaces

Using some known results from the (rich) model spaces theory, we recover or
get “for free” (new) results on hilbertian Müntz spaces with complex powers:
For instance...

A result of Nikolski-Pavlov allows to extend Gurariy-Macaev when p = 2:

Let Λ = {λn} ⊂ C− 1
2

with
∑ 1

2 + Re(λn)∣∣λn + 1
2

∣∣2 + 1
< +∞. TFAE

1

{(
2Re(λn) + 1

) 1
2 xλn

}
is a Riesz basis of M2

Λ.

2 inf
n

∏
k 6=n

∣∣∣ λn − λk

λn + λk + 1

∣∣∣ > 0 (Carleson’s condition)

We also get the asymptotically orthonormal version...
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L2 Müntz spaces as model spaces

Using a result due to Volberg (’82) on model spaces:

Let Λ = {λn} ⊂ C− 1
2

with
∑ 1

2 + Re(λn)∣∣λn + 1
2

∣∣2 + 1
< +∞. TFAE

1 For every a = (ak) ∈ `2, we have(
1−εn

)(∑
k­n

|ak |2
) 1

2
¬
∥∥∥∑

k­n

ak
(

2Re(λk)+1
) 1

2 xλk

∥∥∥
L2
¬
(

1+εn
)(∑

k­n

|ak |2
) 1

2

where εn → 0. asymptotic orthonormality

2

∏
k 6=n

∣∣∣ λn − λk

λn + λk + 1

∣∣∣ −→ 1 when n→ +∞.

And there are many other ways to exploit the dictionary D... both ways...
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where εn → 0. asymptotic orthonormality

2

∏
k 6=n

∣∣∣ λn − λk

λn + λk + 1

∣∣∣ −→ 1 when n→ +∞.

And there are many other ways to exploit the dictionary D... both ways...
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MΛ Geometry p = 2 Operators Carleson open pbs !

Specific operators on MΛ
p

How to produce some “interesting” operators, maybe preserving MΛ ?

We could focus for instance on two kinds of operators:

Ideas:

Carleson’s embedding: Mp
Λ ↪→ Lp(µ) for some positive measure µ on [0, 1)

Hardy type operators: (Volterra and) Cesàro operator

f ∈ MΛ 7−→ Γ(f )(x) =
1
x

∫ x

0

f (t) dt ∈ MΛ
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MΛ Geometry p = 2 Operators Carleson open pbs !

Carleson’s embedding

Given a positive (finite) measure µ on [0, 1), we want to study the (formal)
identity:

ip(µ) : f ∈ Mp
Λ 7−→ f ∈ Lp(µ)

We focus on the case: Λ lacunary

(p = 1: Chalendar-Fricain-Timotin ’11 ; p = 2: Noor-Timotin ’13)

If µ((1− δ, 1)) = O(δ) (µ sublinear) then ip(µ) is bounded.

If µ((1− δ, 1)) = o(δ) (µ vanishing sublinear) then ip(µ) is compact.

When Λ is a quasi-geometric sequence, then the converse is true, but it is
false for arbitrary Λ.
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MΛ Geometry p = 2 Operators Carleson open pbs !

Carleson’s embedding

(Gaillard-L.) p ­ 1

Consider the properties
1 the following sequence is bounded

Dn(p) =

∫
[0,1)

(pλn + 1)
1
p tλn

(∑
k

(pλk + 1)
1
p tλk

)p−1
dµ

.

∫
[0,1)

(pλn + 1)
1
p tλn

(1− t)
1
p′

dµ

2 ip(µ) is

3

∫
[0,1)

tpλn dµ = (1/λn).

We have

µ is =⇒ (1) =⇒ (2) =⇒ (3).

(3) =⇒
(
Dn(q)

)
n

for every q > p.

(strict) monotony relatively to p.
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MΛ Geometry p = 2 Operators Carleson open pbs !

Carleson’s embedding

(Gaillard-L.) p ­ 1

Consider the properties
1 the following sequence converges to 0

Dn(p) =

∫
[0,1)

(pλn + 1)
1
p tλn

(∑
k

(pλk + 1)
1
p tλk

)p−1
dµ .

∫
[0,1)

(pλn + 1)
1
p tλn

(1− t)
1
p′

dµ

2 ip(µ) is compact

3

∫
[0,1)

tpλn dµ = o(1/λn).

We have

µ is vanishing sublinear =⇒ (1) =⇒ (2) =⇒ (3).

(3) =⇒
(
Dn(q)

)
n

is vanishing for every q > p.

(strict) monotony relatively to p.

Actually, the key point is that (whatever Λ) ip(µ) is dominated by a diagonal operator:∥∥∑
k

ak (pλk + 1)
1
p tλk

∥∥
Lp(µ)

¬
∥∥(D

1
p

k (p).ak )k­0

∥∥
`p

IMAR Bucarest 2017



MΛ Geometry p = 2 Operators Carleson open pbs !

Carleson’s embedding

(Gaillard-L.) p ­ 1

Consider the properties
1 the following sequence converges to 0

Dn(p) =

∫
[0,1)

(pλn + 1)
1
p tλn

(∑
k

(pλk + 1)
1
p tλk

)p−1
dµ .

∫
[0,1)

(pλn + 1)
1
p tλn

(1− t)
1
p′

dµ

2 ip(µ) is compact

3

∫
[0,1)

tpλn dµ = o(1/λn).

We have

µ is vanishing sublinear =⇒ (1) =⇒ (2) =⇒ (3).

(3) =⇒
(
Dn(q)

)
n

is vanishing for every q > p.

(strict) monotony relatively to p.

For p = 1, everything is equivalent
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For p = 1, everything is equivalent

For p > 1, everything becomes equivalent when Λ is quasi-geometric
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MΛ Geometry p = 2 Operators Carleson open pbs !

Carleson’s embedding p = 2

Similar results for Schatten classes Sq when q ­ 2...

In particular,

When Λ is quasi-geometric :

i2(µ) is a Hilbert Schmidt operator

if and only if ∫
[0,1)

1
1− t

dµ <∞

More generally

‖i2
µ‖Sq ≈

(∫ 1

0

(∫
[0,1)

dµ(t)

(1− st)
2
q

+1

) q
2
ds
) 1

q
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MΛ Geometry p = 2 Operators Carleson open pbs !

(Some) open questions

1 Mp
Λ has a (Schauder) basis ?

an unconditional basis ?

2 What about particular cases of Λ ? (The squares for instance)

3 Special Banach properties of M1
Λ ? M∞Λ ?

4 More generally, understand the link between the nature of the Banach
space Mp

Λ and the arithmetical nature of Λ.
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But Elizabeth has to take a flight...

and you all claim lunch...

Mulţumesc frumos !
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