M_{Λ}	Geometry	Operators	Carleson	open pbs	

IMAR Bucarest 2017 Atelier de travail : Espaces de fonctions et théorie des opérateurs

Quelques résultats récents autour des espaces de Müntz

with E. Fricain and with L. Gaillard

Pascal Lefèvre Université d'Artois, France

M_{Λ}	Geometry		Operators	Carleson	open pbs	
•0	0000	000000		000		
Müntz sp	aces					

 $0=\lambda_0<\lambda_1<\,\cdots$

M∧ ●○	Geometry	Operators	Carleson	open pbs O	
Müntz sp	aces				

 $0=\lambda_0<\lambda_1<\,\cdots$

M∧ ●○	Geometry	Operators	Carleson	open pbs O	
Müntz sp	aces				

 $0=\lambda_0<\lambda_1<\,\cdots$

$$M_{\Lambda} =: span \left\{ x^{\lambda_k}; k \in \mathbb{N} \right\}.$$

M _Λ ●○	Geometry 0000	<i>p</i> = 2 000000	Operators	Carleson	open pbs O	
Müntz sp	aces					

$$0=\lambda_0<\lambda_1<\cdots$$

$$M_{\Lambda}=:span\left\{x^{\lambda_{k}};k\in\mathbb{N}
ight\}.$$
 $M_{\Lambda}^{E}=:\overline{M_{\Lambda}}^{E}$ where $M_{\Lambda}\subset E$ and E is a Banach space.

M _Λ ●○	Geometry 0000	p = 2 000000	Operators	Carleson	open pbs O	
Müntz sp	aces					

$$0=\lambda_0<\lambda_1<\cdots$$

$$M_{\Lambda} =: span \left\{ x^{\lambda_k}; k \in \mathbb{N} \right\}. \qquad \qquad M_{\Lambda}^E =: \overline{M_{\Lambda}}^E \text{ where } M_{\Lambda} \subset E \text{ and } E \text{ is a Banach space.}$$
$$M_{\Lambda}^{\infty} =: \overline{M_{\Lambda}}^{C([0,1])}.$$

M _Λ ●○	Geometry 0000	Operators	Carleson	open pbs O	
Müntz sp	aces				

$$0=\lambda_0<\lambda_1<\cdots$$

and the spaces

$$\begin{split} M_{\Lambda} &=: span\left\{x^{\lambda_{k}}; k \in \mathbb{N}\right\}. \qquad \qquad M_{\Lambda}^{E} &=: \overline{M_{\Lambda}}^{E} \text{ where } M_{\Lambda} \subset E \text{ and } E \text{ is a Banach space.} \\ M_{\Lambda}^{\infty} &=: \overline{M_{\Lambda}}^{C([0,1])}. \qquad \qquad M_{\Lambda}^{p} &=: \overline{M_{\Lambda}}^{L^{p}([0,1])} \qquad (1 \leqslant p < \infty). \end{split}$$

M∧ ●○	Geometry	Operators	Carleson	open pbs O	
Müntz sp	aces				

$$0=\lambda_0<\lambda_1<\cdots$$

and the spaces

$$M_{\Lambda} =: span \left\{ x^{\lambda_{k}}; k \in \mathbb{N} \right\}.$$

$$M_{\Lambda}^{E} =: \overline{M_{\Lambda}}^{E} \text{ where } M_{\Lambda} \subset E \text{ and } E \text{ is a Banach space.}$$

$$M_{\Lambda}^{\infty} =: \overline{M_{\Lambda}}^{C([0,1])}.$$

$$M_{\Lambda}^{p} =: \overline{M_{\Lambda}}^{L^{p}([0,1])} \quad (1 \leq p < \infty).$$

$$M \text{ untz (1914). TFAE:}$$

$$M_{\Lambda} = vect \left\{ x^{\lambda}; \lambda \in \Lambda \right\} \text{ is dense in } C([0,1]) \quad (\text{resp. in } L^{p})$$

$$\sum_{k \geq 1} \frac{1}{\lambda_{k}} \text{ diverges.}$$

MΛ	Geometry		Operators	Carleson	open pbs	
00	0000	000000	0	000	0	0
Müntz sp	aces					

$$0=\lambda_0<\lambda_1<\cdots$$

and the spaces

$$M_{\Lambda} =: span \left\{ x^{\lambda_{k}}; k \in \mathbb{N} \right\}.$$

$$M_{\Lambda}^{E} =: \overline{M_{\Lambda}}^{E} \text{ where } M_{\Lambda} \subset E \text{ and } E \text{ is a Banach space.}$$

$$M_{\Lambda}^{\infty} =: \overline{M_{\Lambda}}^{C([0,1])}.$$

$$M_{\Lambda}^{p} =: \overline{M_{\Lambda}}^{L^{p}([0,1])} \quad (1 \leq p < \infty).$$

$$\underbrace{\text{Müntz (1914). TFAE:}}$$

$$M_{\Lambda} = vect \left\{ x^{\lambda}; \lambda \in \Lambda \right\} \text{ is dense in } C([0,1]) \quad (\text{resp. in } L^{p})$$

$$\sum_{k \geq 1} \frac{1}{\lambda_{k}} \text{ diverges.}$$

We would like to know "everything" on the Banach space $\overline{M_{\Lambda}}^E \subsetneq E$ when the series converges !

Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions

 MA
 Geometry
 p = 2
 Operators
 Carleson
 open pbs
 !

 0
 0000
 0
 000
 0
 00
 0
 0

Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions

Clarkson-Erdös, Schwartz (~ 1943)
Assume that
$$\sum_{k=1}^{\infty} \frac{1}{\lambda_k} < \infty$$
 and $\inf (\lambda_{k+1} - \lambda_k) > 0$
Then **TFAE**
• $f \in M_{\Lambda}^{\infty}$
• $f \in C([0, 1])$
and there exists a sequence $(a_k)_k \subset \mathbb{C}$ such that
 $f(x) = \sum_{k=0}^{\infty} a_k x^{\lambda_k}$ on $(0, 1)$,

 MA
 Geometry
 p = 2
 Operators
 Carleson
 open pbs
 !

 0
 0000
 0
 000
 0
 0
 0
 0
 0

Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions

Clarkson-Erdös, Schwartz (~ 1943)
Assume that
$$\sum_{k=1}^{\infty} \frac{1}{\lambda_k} < \infty$$
 and $\inf (\lambda_{k+1} - \lambda_k) > 0$
Then **TFAE**
• $f \in M_{\Lambda}^{\infty}$ (resp. $f \in M_{\Lambda}^{p}$)
• $f \in C([0, 1])$ (resp. $f \in L^{p}([0, 1])$)
and there exists a sequence $(a_k)_k \subset \mathbb{C}$ such that
 $f(x) = \sum_{k=0}^{\infty} a_k x^{\lambda_k}$ (a.e.) on $(0, 1)$,

 MA
 Geometry
 p = 2
 Operators
 Carleson
 open pbs
 !

 0
 0000
 0
 000
 0
 00
 0
 0

Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions

Clarkson-Erdös, Schwartz (~ 1943)
Assume that
$$\sum_{k=1}^{\infty} \frac{1}{\lambda_k} < \infty$$
 and $\inf (\lambda_{k+1} - \lambda_k) > 0$
Then **TFAE**
• $f \in M^{\infty}_{\Lambda}$ (resp. $f \in M^{p}_{\Lambda}$)
• $f \in C([0, 1])$ (resp. $f \in L^{p}([0, 1])$)
and there exists a sequence $(a_k)_k \subset \mathbb{C}$ such that
 $f(x) = \sum_{k=0}^{\infty} a_k x^{\lambda_k}$ (a.e.) on $(0, 1)$

Then any function M^{∞}_{Λ} (resp. in M^{p}_{Λ}) can be written as the restriction on [0,1) of an analytic function over the unit disc \mathbb{D} , when $\Lambda \subset \mathbb{N}$.

Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions

Clarkson-Erdös, Schwartz (~ 1943)
Assume that
$$\sum_{k=1}^{\infty} \frac{1}{\lambda_k} < \infty$$
 and $\inf (\lambda_{k+1} - \lambda_k) > 0$
Then **TFAE**
• $f \in M_{\Lambda}^{\infty}$ (resp. $f \in M_{\Lambda}^{p}$)
• $f \in C([0, 1])$ (resp. $f \in L^{p}([0, 1])$)
and there exists a sequence $(a_k)_k \subset \mathbb{C}$ such that
 $f(x) = \sum_{k=0}^{\infty} a_k x^{\lambda_k}$ (a.e.) on $(0, 1)$,

Then any function M^{∞}_{Λ} (resp. in M^{p}_{Λ}) can be written as the restriction on [0,1) of an analytic function over the unit disc \mathbb{D} , when $\Lambda \subset \mathbb{N}$.

For $p = +\infty$, we have then some infinite dimensional (closed) subspaces of functions in C([0,1]), with continuous derivatives on [0,1)

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Banach s	pace structur	e				

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Banach s	pace structur	e				

• their "geometry" (as a Banach space)

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Banach s	space structu	re				

```
Understand the spaces M_{\Lambda}{}^{E} means understand
```

- their "geometry" (as a Banach space)
 - M^p_{Λ} has a basis ?

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Banach s	pace structur	e				

- their "geometry" (as a Banach space)
 - $M^p_{\Lambda} has a basis ?$
 - Iooks like a classical Banach space ?

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Banach s	pace structur	e				

- their "geometry" (as a Banach space)
 - M^p_{Λ} has a basis ?
 - Iooks like a classical Banach space ?
 - (a) More generally, understand the link between the nature of the Banach space M^{P}_{Λ} and the arithmetical nature of Λ .

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Banach s	pace structur	e				

- their "geometry" (as a Banach space)
 - M^p_{Λ} has a basis ?
 - Iooks like a classical Banach space ?
 - (a) More generally, understand the link between the nature of the Banach space M^{P}_{Λ} and the arithmetical nature of Λ .
- how their operators act. But,

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Banach s	pace structur	e				

- their "geometry" (as a Banach space)
 - M^p_{Λ} has a basis ?
 - Iooks like a classical Banach space ?
 - (a) More generally, understand the link between the nature of the Banach space M^{P}_{Λ} and the arithmetical nature of Λ .
- how their operators act. But,

first produce some non trivial "interesting" operators (how?)

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Banach s	pace structur	e				

- their "geometry" (as a Banach space)
 - M^p_{Λ} has a basis ?
 - Iooks like a classical Banach space ?
 - (a) More generally, understand the link between the nature of the Banach space M^{P}_{Λ} and the arithmetical nature of Λ .
- how their operators act. But,

first produce some non trivial "interesting" operators (how?)

even better: operators preserving M_{Λ} ...

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Geometry	/					

Müntz spaces are isomorphic to subspaces of c_0 or ℓ^p

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Geometry	y					

Müntz spaces are isomorphic to subspaces of c_0 or ℓ^p

Wojtaszczyk, Werner \sim' 00

Let X be a subspace of C([0,1]) such that every $f \in X$ continuously differentiable on [0,1),

Then

X is almost isometric to a subspace of the space of convergent sequences c. i.e.

For every $\varepsilon > 0$, there exists $J_{\varepsilon} : X \to c$ such that

 $(1-\varepsilon)\|f\|_{\infty} \leqslant \|J_{\varepsilon}f\|_{\infty} \leqslant \|f\|_{\infty} \quad \forall f \in X$

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Geometry	y					

Müntz spaces are isomorphic to subspaces of c_0 or ℓ^p

Wojtaszczyk, Werner \sim' 00

Let X be a subspace of C([0,1]) such that every $f \in X$ continuously differentiable on [0,1),

Then

X is almost isometric to a subspace of the space of convergent sequences c. i.e.

For every $\varepsilon > 0$, there exists $J_{\varepsilon} : X \to c$ such that

$$(1-\varepsilon)\|f\|_{\infty} \leqslant \|J_{\varepsilon}f\|_{\infty} \leqslant \|f\|_{\infty} \quad \forall f \in X$$

In particular: M^{∞}_{Λ} is isomorphic to a subspace of c_0 .

in the same spirit, we have

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Geometry	y					

Müntz spaces are isomorphic to subspaces of c_0 or ℓ^p

Wojtaszczyk, Werner \sim' 00

Let X be a subspace of C([0,1]) such that every $f \in X$ continuously differentiable on [0,1),

Then

X is almost isometric to a subspace of the space of convergent sequences c. i.e.

For every $\varepsilon > 0$, there exists $J_{\varepsilon} : X \to c$ such that

$$(1-\varepsilon)\|f\|_{\infty} \leqslant \|J_{\varepsilon}f\|_{\infty} \leqslant \|f\|_{\infty} \quad \forall f \in X$$

In particular: M^{∞}_{Λ} is isomorphic to a subspace of c_0 .

in the same spirit, we have

 M^p_{Λ} is isomorphic to a subspace of ℓ_p .

M_{Λ}	Geometry		Operators	Carleson	open pbs	
	0000					
Gurari	y-Macaev's th	neorem				

Let $p \ge 1$. TFAE

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Gura	riy-Macaev's th	eorem				

Let $p \ge 1$. TFAE

• $((p\lambda_k + 1)^{1/p} x^{\lambda_k})_k$ is a Schauder basis of M^p_{Λ} (then equivalent to the canonical basis of ℓ^p)

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Gura	riy-Macaev's th	leorem				

Let $p \ge 1$. TFAE

- $((p\lambda_k + 1)^{1/p} x^{\lambda_k})_k$ is a Schauder basis of M^p_{Λ} (then equivalent to the canonical basis of ℓ^p)
- (a) $(\lambda_k)_k$ is lacunary (Hadamard) : inf $\frac{\lambda_{n+1}}{\lambda_n} > 1$.

M_{Λ}	Geometry		Operators	Carleson	open pbs			
00	0000	000000		000				
Gura	Gurariy-Macaev's theorem							

Let $p \ge 1$. TFAE

- $((p\lambda_k + 1)^{1/p} x^{\lambda_k})_k$ is a Schauder basis of M^p_{Λ} (then equivalent to the canonical basis of ℓ^p)
- (a) $(\lambda_k)_k$ is lacunary (Hadamard) : inf $\frac{\lambda_{n+1}}{\lambda_n} > 1$.

• $(x^{\lambda_k})_k$ is a Schauder basis of M^{∞}_{Λ} (then equivalent to the summing basis of c)

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Gurariy-Macaev's theorem						

Let $p \ge 1$. TFAE

- $((p\lambda_k + 1)^{1/p} x^{\lambda_k})_k$ is a Schauder basis of M^p_{Λ} (then equivalent to the canonical basis of ℓ^p)
- (a) $(\lambda_k)_k$ is lacunary (Hadamard) : inf $\frac{\lambda_{n+1}}{\lambda_n} > 1$.
- $(x^{\lambda_k})_k$ is a Schauder basis of M^{∞}_{Λ} (then equivalent to the summing basis of c)

i.e.

$$\left\|\sum_{k}a_{k}\lambda_{k}^{1/p}x^{\lambda_{k}}\right\|_{p}\approx\left(\sum_{k\geq0}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}$$

and

$$\left\|\sum_{k}a_{k}x^{\lambda_{k}}\right\|_{\infty}\approx\sup_{N}\Big|\sum_{k=0}^{N}a_{k}\Big|$$

M_{Λ}	Geometry		Operators	Carleson	open pbs				
	0000								
Gurariy-Macaev's theorem revisited									

With a different (still elementary) approach, we can recover the results of Gurariy-Macaev with a control of the constants, leading also to

Geometry Operators Carleson open pbs

Gurariy-Macaev's theorem revisited

With a different (still elementary) approach, we can recover the results of Gurariy-Macaev with a control of the constants, leading also to

Gaillard-L.('16-17)

Let $p \ge 1$. TFAE

• In M^p_{Λ} , the (normalized) basis $\left(\left(p\lambda_k+1\right)^{\frac{1}{p}}x^{\lambda_k}\right)_k$ is almost isometric to ℓ^p :

$$(1-arepsilon_n)\left(\sum_{k\geqslant n}|a_k|^p
ight)^{rac{1}{p}}\leqslant \Big\|\sum_{k\geqslant n}a_k(p\lambda_k+1)^{rac{1}{p}}x^{\lambda_k}\Big\|_{L^p}\leqslant \left(1+arepsilon_n
ight)\left(\sum_{k\geqslant n}|a_k|^p
ight)^{rac{1}{p}}$$

where $\varepsilon_n \to 0$.

With a different (still elementary) approach, we can recover the results of Gurariy-Macaev with a control of the constants, leading also to

Gaillard-L.('16-17)

Let $p \ge 1$. TFAE

• In M^p_{Λ} , the (normalized) basis $\left(\left(p\lambda_k+1\right)^{\frac{1}{p}}x^{\lambda_k}\right)_k$ is almost isometric to ℓ^p :

$$\left(1-\varepsilon_n\right)\left(\sum_{k\ge n}|a_k|^p\right)^{\frac{1}{p}}\leqslant \bigg\|\sum_{k\ge n}a_k(p\lambda_k+1)^{\frac{1}{p}}x^{\lambda_k}\bigg\|_{L^p}\leqslant \left(1+\varepsilon_n\right)\left(\sum_{k\ge n}|a_k|^p\right)^{\frac{1}{p}}$$

where $\varepsilon_n \rightarrow 0$.

$$(\lambda_k)_k \text{ is super-lacunary: } \frac{\lambda_{n+1}}{\lambda_n} \longrightarrow +\infty .$$

With a different (still elementary) approach, we can recover the results of Gurariy-Macaev with a control of the constants, leading also to

Gaillard-L.('16-17)

Let $p \ge 1$. TFAE

• In M^p_{Λ} , the (normalized) basis $\left(\left(p\lambda_k+1\right)^{\frac{1}{p}}x^{\lambda_k}\right)_k$ is almost isometric to ℓ^p :

$$(1-\varepsilon_n)\left(\sum_{k\geqslant n}|a_k|^p\right)^{rac{1}{p}}\leqslant \left\|\sum_{k\geqslant n}a_k(p\lambda_k+1)^{rac{1}{p}}x^{\lambda_k}\right\|_{L^p}\leqslant (1+\varepsilon_n)\left(\sum_{k\geqslant n}|a_k|^p
ight)^{rac{1}{p}}$$

where $\varepsilon_n \rightarrow 0$.

2
$$(\lambda_k)_k$$
 is super-lacunary: $\frac{\lambda_{n+1}}{\lambda_n} \longrightarrow +\infty$.

③ In M^{∞}_{Λ} , we have

$$(1-\varepsilon_n)\sup_{m\ge n}\Big|\sum_{k=n}^m a_k\Big|\leqslant \Big\|\sum_{k\ge n}a_kx^{\lambda_k}\Big\|_{\infty}\leqslant \sup_{m\ge n}\Big|\sum_{k=n}^m a_k\Big|$$

With a different (still elementary) approach, we can recover the results of Gurariy-Macaev with a control of the constants, leading also to

Gaillard-L.('16-17)

Let $p \ge 1$. TFAE

• In M^{p}_{Λ} , the (normalized) basis $\left(\left(p\lambda_{k}+1\right)^{\frac{1}{p}}x^{\lambda_{k}}\right)_{k}$ is almost isometric to ℓ^{p} :

$$\left(1-arepsilon_n
ight)\left(\sum_{k\geqslant n}|a_k|^p
ight)^{rac{1}{p}}\leqslant \left\|\sum_{k\geqslant n}a_k(p\lambda_k+1)^{rac{1}{p}}x^{\lambda_k}
ight\|_{L^p}\leqslant \left(1+arepsilon_n
ight)\left(\sum_{k\geqslant n}|a_k|^p
ight)^{rac{1}{p}}$$

where $\varepsilon_n \rightarrow 0$.

$$(\lambda_k)_k \text{ is super-lacunary: } \frac{\lambda_{n+1}}{\lambda_n} \longrightarrow +\infty \,.$$

③ In M^{∞}_{Λ} , we have

$$(1-\varepsilon_n)\sup_{m\ge n}\Big|\sum_{k=n}^m a_k\Big|\leqslant \Big\|\sum_{k\ge n}a_kx^{\lambda_k}\Big\|_{\infty}\leqslant \sup_{m\ge n}\Big|\sum_{k=n}^m a_k\Big|$$

In the case p = 2, it means that we have an *asymptotic orthonormal system*.
Μ _Λ 00	Geometry 0000	p = 2	Operators	Carleson 000	open pbs O			
A digression: the Hilbert space framework								
In this	<mark>s part</mark> , we allow	complex powers	s $\lambda \in \mathbb{C}_{-rac{1}{2}}$ i.e.	${\sf Re}(\lambda)>-rac{1}{2}$ so	o that $x^{\lambda} \in L^2$.			

$$\mathcal{D}: egin{array}{ccc} L^2ig([0,1],dsig) &\longrightarrow & \mathcal{H}^2ig(\mathbb{C}_0ig) \ & f &\longmapsto & \mathcal{D}(f)(z) = \int_0^1 f(s)s^{z-rac{1}{2}}\,ds \end{array}$$

defines an isometric isomorphism

(dictionary)

In this part, we allow complex powers $\lambda \in \mathbb{C}_{-\frac{1}{2}}$ *i.e.* $Re(\lambda) > -\frac{1}{2}$ so that $x^{\lambda} \in L^2$.

The map

$$\mathcal{D}: egin{array}{ccc} L^2ig([0,1],dsig) &\longrightarrow & \mathcal{H}^2ig(\mathbb{C}_0ig) \ f &\longmapsto & \mathcal{D}(f)(z) = \int_0^1 f(s)s^{z-rac{1}{2}}\,ds \end{array}$$

defines an isometric isomorphism

(dictionary)

For
$$\lambda \in \mathbb{C}_{-\frac{1}{2}}$$
 and $z \in \mathbb{C}_0$, we have $\mathcal{D}(x^{\lambda})(z) = \frac{1}{z + \lambda + \frac{1}{2}}$.

(reproducing kernel at $\overline{\lambda} + \frac{1}{2}$)

 $\begin{array}{c|c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$

The map

$$\mathcal{D}: egin{array}{ccc} \mathcal{L}^2ig([0,1],dsig) &\longrightarrow & \mathcal{H}^2ig(\mathbb{C}_0ig) \ & f &\longmapsto & \mathcal{D}(f)(z) = \int_0^1 f(s)s^{z-rac{1}{2}}\,ds \end{array}$$

defines an isometric isomorphism

(dictionary)

For
$$\lambda \in \mathbb{C}_{-rac{1}{2}}$$
 and $z \in \mathbb{C}_0$, we have $\mathcal{D}(x^{\lambda})(z) = rac{1}{z + \lambda + rac{1}{2}}$

(reproducing kernel at $\overline{\lambda} + \frac{1}{2}$)

For quite free, we get

Full Müntz theorem in L^2 (Szàsz 1916) Let $\Lambda = (\lambda_n)$ be a sequence of $\mathbb{C}_{-\frac{1}{2}}$. M_{Λ} is dense in $L^2([0,1], dx)$ if and only if $\sum \frac{\frac{1}{2} + Re(\lambda_n)}{|\lambda_n + \frac{1}{2}|^2 + 1} = +\infty$.

M_{Λ}	Geometry	p = 2	Operators	Carleson	open pbs	
00	0000	00000		000		
Diction	ary: proof					

First step Consider the following map (Mellin transform):

$$\mathcal{M}: \left| \begin{array}{ccc} L^2\big([0,1],\frac{ds}{s}\big) & \longrightarrow & \mathcal{H}^2\big(\mathbb{C}_0\big) \\ f & \longmapsto & \mathcal{M}(f)(z) = \int_0^1 f(s)s^{z-1}\,ds \end{array} \right|$$

is an isometric isomorphism.

Μ _Λ 00	Geometry	p = 2	Operators	Carleson	open pbs O	
Dictionar	ry: proof					

First step Consider the following map (Mellin transform):

$$\mathcal{M}: \left| \begin{array}{ccc} L^2\big([0,1],\frac{ds}{s}\big) & \longrightarrow & \mathcal{H}^2\big(\mathbb{C}_0\big) \\ f & \longmapsto & \mathcal{M}(f)(z) = \int_0^1 f(s)s^{z-1} \, ds \end{array} \right|$$

is an isometric isomorphism. This is just a reformulation of the Paley-Wiener theorem ${\tt !}$

Indeed:

First step Consider the following map (Mellin transform):

$$\mathcal{M}: \left| \begin{array}{ccc} L^{2}\big([0,1],\frac{ds}{s}\big) & \longrightarrow & \mathcal{H}^{2}\big(\mathbb{C}_{0}\big) \\ f & \longmapsto & \mathcal{M}(f)(z) = \int_{0}^{1} f(s)s^{z-1} \, ds \end{array} \right|$$

is an isometric isomorphism. This is just a reformulation of the Paley-Wiener theorem !

Indeed: let $g \in \mathcal{H}^2ig(\mathbb{C}_0ig)$, recall

$$\|g\|_{\mathcal{H}^{2}(\mathbb{C}_{0})}^{2} = \sup_{x>0} \frac{1}{2\pi} \int_{\mathbb{R}} |g(x+iy)|^{2} dy.$$

First step Consider the following map (Mellin transform):

$$\mathcal{M}: \left| \begin{array}{ccc} L^{2}\big([0,1],\frac{ds}{s}\big) & \longrightarrow & \mathcal{H}^{2}\big(\mathbb{C}_{0}\big) \\ f & \longmapsto & \mathcal{M}(f)(z) = \int_{0}^{1} f(s)s^{z-1} \, ds \end{array} \right|$$

is an isometric isomorphism. This is just a reformulation of the Paley-Wiener theorem !

Indeed: let $g \in \mathcal{H}^2(\mathbb{C}_0)$, recall

$$\|g\|_{\mathcal{H}^{2}(\mathbb{C}_{0})}^{2} = \sup_{x>0} \frac{1}{2\pi} \int_{\mathbb{R}} |g(x+iy)|^{2} dy.$$

There exists a unique $F \in L^2(\mathbb{R}^+)$ such that

$$orall z\in\mathbb{C}_0\,,\qquad g(z)=\int_{\mathbb{R}^+}F(t)e^{-tz}\,dt\quad ext{and}\ \|F\|_2=\|g\|_{\mathcal{H}^2(\mathbb{C}_0)}\,.$$

First step Consider the following map (Mellin transform):

$$\mathcal{M}: \left| \begin{array}{ccc} L^{2}\big([0,1],\frac{ds}{s}\big) & \longrightarrow & \mathcal{H}^{2}\big(\mathbb{C}_{0}\big) \\ f & \longmapsto & \mathcal{M}(f)(z) = \int_{0}^{1} f(s)s^{z-1} \, ds \end{array} \right|$$

is an isometric isomorphism. This is just a reformulation of the Paley-Wiener theorem !

Indeed: let $g \in \mathcal{H}^2(\mathbb{C}_0)$, recall

$$\|g\|_{\mathcal{H}^{2}(\mathbb{C}_{0})}^{2} = \sup_{x>0} \frac{1}{2\pi} \int_{\mathbb{R}} |g(x+iy)|^{2} dy.$$

There exists a unique $F \in L^2(\mathbb{R}^+)$ such that

$$orall z\in\mathbb{C}_0\,,\qquad g(z)=\int_{\mathbb{R}^+}F(t)e^{-tz}\,dt\quad ext{and}\ \|F\|_2=\|g\|_{\mathcal{H}^2(\mathbb{C}_0)}\,.$$

It means that the function $f(s) = Fig(-\ln(s)ig)$ satisfies $g = \mathcal{M}(f)$ and

$$\int_0^1 |f(s)|^2 \frac{ds}{s} = \int_{\mathbb{R}^+} \left| F(t) \right|^2 dt = \|g\|_{\mathcal{H}^2(\mathbb{C}_0)}^2.$$

M_{Λ}	Geometry	p = 2	Operators	Carleson	open pbs	
00	0000	00000		000		
proof						

Second step

The following map

$$f \in L^2([0,1], ds) \longmapsto \sqrt{s} \cdot f \in L^2([0,1], rac{ds}{s})$$

is also an isometric isomorphism.

	Geometry	p = 2	Operators	Carleson	open pbs	
00	0000	000000		000		
proof						

Second step

The following map

$$f \in L^2ig([0,1],dsig) \longmapsto \sqrt{s} \cdot f \in L^2ig([0,1],rac{ds}{s}ig)$$

is also an isometric isomorphism.

Compose the previous maps : $\mathcal{D}(f) = \mathcal{M}(\sqrt{s}f)...$ That's all...

M_{Λ}	Geometry	p = 2	Operators	Carleson	open pbs	
		000000				
L^2 Mi	üntz spaces as	model space	S			

Let
$$\Lambda = (\lambda_n)$$
 be a sequence of $\mathbb{C}_{-\frac{1}{2}}$ with $\sum \frac{\frac{1}{2} + Re(\lambda_n)}{\left|\lambda_n + \frac{1}{2}\right|^2 + 1} < +\infty$.

Consider ${\it B}_{\Lambda}$ the Blaschke product whose zeros are the $\overline{\lambda_n}+1/2\cdot$ Then

M_{Λ}	Geometry	p = 2	Operators	Carleson	open pbs	
		000000				
L ² Mün	tz spaces as	model space	S			

Let
$$\Lambda = (\lambda_n)$$
 be a sequence of $\mathbb{C}_{-\frac{1}{2}}$ with $\sum \frac{\frac{1}{2} + Re(\lambda_n)}{|\lambda_n + \frac{1}{2}|^2 + 1} < +\infty$.

Consider B_{Λ} the Blaschke product whose zeros are the $\overline{\lambda_n} + 1/2 \cdot$ Then

 \mathcal{D} realizes an isometric isomorphism between M^2_{Λ} and the model space $\mathcal{K}_{B_{\Lambda}}$.

Let us recall that the Blaschke product (on the right half plane) with zeros z_k is

M _A 00	Geometry 0000	p = 2	Operators O	Carleson	open pbs O	
L ² Mü	ntz spaces as	model spaces	5			

Let
$$\Lambda = (\lambda_n)$$
 be a sequence of $\mathbb{C}_{-\frac{1}{2}}$ with $\sum \frac{\frac{1}{2} + Re(\lambda_n)}{\left|\lambda_n + \frac{1}{2}\right|^2 + 1} < +\infty$.

Consider ${\it B}_{\Lambda}$ the Blaschke product whose zeros are the $\overline{\lambda_n}+1/2\cdot$ Then

 \mathcal{D} realizes an isometric isomorphism between M_{Λ}^2 and the model space $K_{B_{\Lambda}}$.

Let us recall that the Blaschke product (on the right half plane) with zeros z_k is

$$\prod \theta_k \frac{z-z_k}{z+\overline{z_k}} \qquad \qquad \text{where } |\theta_k|=1$$
 with the Blaschke condition $\sum \frac{Re(z_k)}{1+|z_k|^2}<\infty$ and

M _A 00	Geometry 0000	p = 2	Operators O	Carleson	open pbs O	
L ² Mü	ntz spaces as	model spaces	5			

and

Let
$$\Lambda = (\lambda_n)$$
 be a sequence of $\mathbb{C}_{-\frac{1}{2}}$ with $\sum \frac{\frac{1}{2} + \operatorname{Re}(\lambda_n)}{\left|\lambda_n + \frac{1}{2}\right|^2 + 1} < +\infty.$

Consider B_{Λ} the Blaschke product whose zeros are the $\overline{\lambda_n} + 1/2$. Then

 \mathcal{D} realizes an isometric isomorphism between M_{Λ}^2 and the model space $K_{B_{\Lambda}}$.

Let us recall that the Blaschke product (on the right half plane) with zeros z_k is

$$\prod \theta_k \frac{z-z_k}{z+\overline{z_k}} \qquad \qquad \text{where } |\theta_k|=1$$
 with the Blaschke condition $\sum \frac{Re(z_k)}{1+|z_k|^2}<\infty$ and

The model space associated to this inner function Θ is

$$\mathcal{K}_{\Theta} = \mathcal{H}^2(\mathbb{C}_0) \ominus \Theta \mathcal{H}^2(\mathbb{C}_0) = \left(\Theta \mathcal{H}^2(\mathbb{C}_0)
ight)^{\perp}.$$

M _A 00	Geometry	p = 2 000000	Operators	Carleson	open pbs	
L^2 Mi	üntz spaces as	model space	S			

M_{Λ}	Geometry	p = 2	Operators	Carleson	open pbs	
		000000				
L ² Mi	intz spaces as	model space	S			

A result of Nikolski-Pavlov allows to extend Gurariy-Macaev when p = 2:

M_{Λ}	Geometry	p = 2	Operators	Carleson	open pbs	
		000000				
L ² Mi	intz spaces as	model space	S			

A result of Nikolski-Pavlov allows to extend Gurariy-Macaev when p = 2:

Let
$$\Lambda = \{\lambda_n\} \subset \mathbb{C}_{-\frac{1}{2}}$$
 with $\sum \frac{\frac{1}{2} + Re(\lambda_n)}{|\lambda_n + \frac{1}{2}|^2 + 1} < +\infty$. TFAE
1 $\left\{ \left(2Re(\lambda_n) + 1 \right)^{\frac{1}{2}} x^{\lambda_n} \right\}$ is a Riesz basis of M_{Λ}^2 .
2 $\inf_n \prod_{k \neq n} \left| \frac{\lambda_n - \lambda_k}{\lambda_n + \overline{\lambda_k} + 1} \right| > 0$ (Carleson's condition)

M_{Λ}	Geometry	p = 2	Operators	Carleson	open pbs	
00	0000	000000		000		
L ² Mi	üntz spaces as	model spaces	S			

A result of Nikolski-Pavlov allows to extend Gurariy-Macaev when p = 2:

Let
$$\Lambda = \{\lambda_n\} \subset \mathbb{C}_{-\frac{1}{2}}$$
 with $\sum \frac{\frac{1}{2} + Re(\lambda_n)}{|\lambda_n + \frac{1}{2}|^2 + 1} < +\infty$. TFAE
• $\left\{ \left(2Re(\lambda_n) + 1 \right)^{\frac{1}{2}} x^{\lambda_n} \right\}$ is a Riesz basis of M_{Λ}^2 .
• $\inf_n \prod_{k \neq n} \left| \frac{\lambda_n - \lambda_k}{\lambda_n + \overline{\lambda_k} + 1} \right| > 0$ (Carleson's condition)

We also get the asymptotically orthonormal version...

M_{Λ}	Geometry	p = 2	Operators	Carleson	open pbs	
00	0000	000000		000		
L ² Mi	intz spaces as	model space	s			

Using a result due to Volberg ('82) on model spaces:

Let
$$\Lambda = \{\lambda_n\} \subset \mathbb{C}_{-\frac{1}{2}}$$
 with $\sum \frac{\frac{1}{2} + Re(\lambda_n)}{\left|\lambda_n + \frac{1}{2}\right|^2 + 1} < +\infty$. TFAE

• For every $a = (a_k) \in \ell^2$, we have

$$\left(1-\varepsilon_n\right)\left(\sum_{k\geq n}|a_k|^2\right)^{\frac{1}{2}} \leqslant \left\|\sum_{k\geq n}a_k\left(2\operatorname{Re}(\lambda_k)+1\right)^{\frac{1}{2}}x^{\lambda_k}\right\|_{L^2} \leqslant \left(1+\varepsilon_n\right)\left(\sum_{k\geq n}|a_k|^2\right)^{\frac{1}{2}}$$

where $\varepsilon_n \rightarrow 0$.

asymptotic orthonormality

$$\bigcirc \prod_{k \neq n} \left| \frac{\lambda_n - \lambda_k}{\lambda_n + \overline{\lambda_k} + 1} \right| \longrightarrow 1 \quad \text{ when } n \to +\infty.$$

M_{Λ}	Geometry	p = 2	Operators	Carleson	open pbs	
00	0000	000000		000		
L ² Mi	intz spaces as	model space	s			

Using a result due to Volberg ('82) on model spaces:

Let
$$\Lambda = \{\lambda_n\} \subset \mathbb{C}_{-\frac{1}{2}}$$
 with $\sum \frac{\frac{1}{2} + Re(\lambda_n)}{\left|\lambda_n + \frac{1}{2}\right|^2 + 1} < +\infty$. TFAE
For every $a = (a_k) \in \ell^2$, we have

$$\left(1-\varepsilon_n\right)\left(\sum_{k\geq n}|a_k|^2\right)^{\frac{1}{2}} \leqslant \left\|\sum_{k\geq n}a_k\left(2\operatorname{Re}(\lambda_k)+1\right)^{\frac{1}{2}}x^{\lambda_k}\right\|_{L^2} \leqslant \left(1+\varepsilon_n\right)\left(\sum_{k\geq n}|a_k|^2\right)^{\frac{1}{2}}$$

where $\varepsilon_n \rightarrow 0$.

asymptotic orthonormality

$$\bigcirc \prod_{k \neq n} \left| \frac{\lambda_n - \lambda_k}{\lambda_n + \overline{\lambda_k} + 1} \right| \longrightarrow 1 \quad \text{when } n \to +\infty.$$

And there are many other ways to exploit the dictionary \mathcal{D}_{\cdots} both ways...

M_{Λ}	Geometry		Operators	Carleson	open pbs	
			•			
Specific of	operators on	$M_{\Lambda}{}^{p}$				

M_{Λ}	Geometry		Operators	Carleson	open pbs	
			•			
Specific of	operators on A	$M_{\Lambda}{}^{p}$				

We could focus for instance on two kinds of operators:

M_{Λ}	Geometry		Operators	Carleson	open pbs	
			•			
Specific of	operators on	$M_{\Lambda}{}^{p}$				

We could focus for instance on two kinds of operators:

Ideas:

• Carleson's embedding: $M^p_\Lambda \hookrightarrow L^p(\mu)$ for some positive measure μ on [0,1)

M_{Λ}	Geometry		Operators	Carleson	open pbs	
			•			
Specific of	operators on a	$M_{\Lambda}{}^{p}$				

We could focus for instance on two kinds of operators:

Ideas:

- Carleson's embedding: $M^p_{\Lambda} \hookrightarrow L^p(\mu)$ for some positive measure μ on [0,1)
- Hardy type operators: (Volterra and) Cesàro operator

$$f\in M_{\Lambda}\longmapsto \Gamma(f)(x)=rac{1}{x}\int_{0}^{x}f(t)\;dt\in M_{\Lambda}$$

M _A 00	Geometry 0000	Operators	Carleson ●○○	open pbs O	
Carleson'	s embedding				

$$i_p(\mu): \quad f \in M^p_\Lambda \longmapsto f \in L^p(\mu)$$

	Geometry		Operators	Carleson	open pbs	
00	0000	000000	0	000	0	0
Carleson's embedding						

$$i_{\rho}(\mu): \quad f \in M^{\rho}_{\Lambda} \longmapsto f \in L^{\rho}(\mu)$$

We focus on the case: Λ lacunary

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Carleson'	s embedding					

$$i_{\rho}(\mu): \quad f \in M^{\rho}_{\Lambda} \longmapsto f \in L^{\rho}(\mu)$$

We focus on the case: Λ lacunary

(p-1): Chalendar-Fricain-Timotin '11 ; p-2: Noor-Timotin '13)

MA	Geometry	p = 2	Operators	Carleson	open pbs	
Carleson'	s embedding					

$$i_{\rho}(\mu): \quad f \in M^{\rho}_{\Lambda} \longmapsto f \in L^{\rho}(\mu)$$

We focus on the case: Λ lacunary

(p = 1: Chalendar-Fricain-Timotin '11; p = 2: Noor-Timotin '13)

• If $\mu((1 - \delta, 1)) = O(\delta)$ (μ sublinear) then $i_p(\mu)$ is bounded.

MA	Geometry	p = 2	Operators	Carleson	open pbs	
Carleson'	s embedding					

$$i_p(\mu): \quad f \in M^p_{\Lambda} \longmapsto f \in L^p(\mu)$$

We focus on the case: Λ lacunary

(p = 1: Chalendar-Fricain-Timotin '11 ; p = 2: Noor-Timotin '13)

• If $\mu((1-\delta,1)) = O(\delta)$ (μ sublinear) then $i_{\rho}(\mu)$ is bounded.

• If $\mu((1 - \delta, 1)) = o(\delta)$ (μ vanishing sublinear) then $i_p(\mu)$ is compact.

MA	Geometry	p = 2	Operators	Carleson	open pbs	
Carleson'	s embedding				-	

$$i_p(\mu): \quad f \in M^p_{\Lambda} \longmapsto f \in L^p(\mu)$$

We focus on the case: Λ lacunary

(p = 1: Chalendar-Fricain-Timotin '11 ; p = 2: Noor-Timotin '13)

• If $\mu((1 - \delta, 1)) = O(\delta)$ (μ sublinear) then $i_{\rho}(\mu)$ is bounded.

- If $\mu((1 \delta, 1)) = o(\delta)$ (μ vanishing sublinear) then $i_p(\mu)$ is compact.
- When Λ is a quasi-geometric sequence, then the converse is true, but it is false for arbitrary $\Lambda.$

M_{Λ}	Geometry	Operators	Carleson	open pbs	
			000		
Carleson	's embedding				

Consider the properties

1 the following sequence is bounded

$$D_{n}(p) = \int_{[0,1)} (p\lambda_{n}+1)^{\frac{1}{p}} t^{\lambda_{n}} \Big(\sum_{k} (p\lambda_{k}+1)^{\frac{1}{p}} t^{\lambda_{k}} \Big)^{p-1} d\mu$$

M_{Λ}	Geometry		Operators	Carleson	open pbs	
				000		
Carlesor	ı's embeddir	ıg				

Consider the properties

1 the following sequence is bounded

$$D_n(p) = \int_{[0,1)} (p\lambda_n + 1)^{rac{1}{p}} t^{\lambda_n} ig(\sum_k (p\lambda_k + 1)^{rac{1}{p}} t^{\lambda_k} ig)^{p-1} d\mu \lesssim \int_{[0,1)} rac{(p\lambda_n + 1)^{rac{1}{p}} t^{\lambda_n}}{(1-t)^{rac{1}{p'}}} d\mu$$

2 $i_p(\mu)$ is bounded

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Carleson'	s embedding					

Consider the properties

the following sequence is bounded

$$D_n(p) = \int_{[0,1)} (p\lambda_n+1)^{rac{1}{p}} t^{\lambda_n} ig(\sum_k (p\lambda_k+1)^{rac{1}{p}} t^{\lambda_k} ig)^{p-1} \ d\mu \lesssim \int_{[0,1)} rac{(p\lambda_n+1)^{rac{1}{p}} t^{\lambda_n}}{(1-t)^{rac{1}{p'}}} \ d\mu$$

- 2 $i_p(\mu)$ is bounded

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Carleson'	s embedding					

Consider the properties • the following sequence is bounded $D_n(p) = \int_{[0,1)} (p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n} \Big(\sum_k (p\lambda_k + 1)^{\frac{1}{p}} t^{\lambda_k} \Big)^{p-1} d\mu \lesssim \int_{[0,1)} \frac{(p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n}}{(1-t)^{\frac{1}{p'}}} d\mu$ • $i_p(\mu)$ is bounded • $\int_{[0,1]} t^{p\lambda_n} d\mu = O(1/\lambda_n).$

We have

• μ is sublinear \Longrightarrow (1) \Longrightarrow (2) \Longrightarrow (3).

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Carleson'	s embedding					

Consider the properties • the following sequence is bounded $D_n(p) = \int_{[0,1)} (p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n} \Big(\sum_k (p\lambda_k + 1)^{\frac{1}{p}} t^{\lambda_k} \Big)^{p-1} d\mu \lesssim \int_{[0,1)} \frac{(p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n}}{(1-t)^{\frac{1}{p'}}} d\mu$ • $i_p(\mu)$ is bounded • $\int_{[0,1]} t^{p\lambda_n} d\mu = O(1/\lambda_n).$ We have

• μ is sublinear \Longrightarrow (1) \Longrightarrow (2) \Longrightarrow (3).

• (3)
$$\implies (D_n(q))_n$$
 is bounded for every $q > p$.
M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Carleson'	s embedding					

Consider the properties • the following sequence is bounded $D_n(p) = \int_{[0,1)} (p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n} \Big(\sum_k (p\lambda_k + 1)^{\frac{1}{p}} t^{\lambda_k} \Big)^{p-1} d\mu \lesssim \int_{[0,1)} \frac{(p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n}}{(1-t)^{\frac{1}{p'}}} d\mu$ • $i_p(\mu)$ is bounded • $\int_{[0,1)} t^{p\lambda_n} d\mu = O(1/\lambda_n).$

We have

- μ is sublinear \Longrightarrow (1) \Longrightarrow (2) \Longrightarrow (3).
- (3) $\implies (D_n(q))_n$ is bounded for every q > p.
- (strict) monotony relatively to p.

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Carleson'	s embedding					

Consider the properties • the following sequence is bounded $D_n(p) = \int_{[0,1)} (p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n} \Big(\sum_k (p\lambda_k + 1)^{\frac{1}{p}} t^{\lambda_k} \Big)^{p-1} d\mu \lesssim \int_{[0,1)} \frac{(p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n}}{(1-t)^{\frac{1}{p'}}} d\mu$ • $i_p(\mu)$ is bounded • $\int_{[0,1)} t^{p\lambda_n} d\mu = O(1/\lambda_n).$

We have

- μ is sublinear \Longrightarrow (1) \Longrightarrow (2) \Longrightarrow (3).
- (3) $\implies (D_n(q))_n$ is bounded for every q > p.
- (strict) monotony relatively to p.

<i>M</i> ∧ 00	Geometry 0000		Operators	Carleson ○●○	open pbs O	
Car	leson's embeddir	ıg				
	(Gaillard-L.) $p \ge 1$					
	Consider the prope the following	erties sequence conve	erges to 0			
	$D_n(p) = \int_{[0,1)} (p\lambda_n$	$(+1)^{\frac{1}{p}}t^{\lambda_n}\Big(\sum_k($	$(p\lambda_k+1)^{rac{1}{p}}t^{\lambda_k})^{l}$	$p^{-1} d\mu \lesssim \int_{[0,1)} rac{(\mu)}{2} d\mu$	$\frac{(p\lambda_n+1)^{\frac{1}{p}}t^{\lambda_n}}{(1-t)^{\frac{1}{p'}}}d\mu$	
	2 $i_p(\mu)$ is comp	act				
		$= o(1/\lambda_n).$				
	We have					
	• μ is vanishing	sublinear \Longrightarrow	$(1) \Longrightarrow (2) =$	⇒ (3).		

- (3) $\implies (D_n(q))_n$ is vanishing for every q > p.
- (strict) monotony relatively to p.

Actually, the key point is that (whatever Λ) $i_p(\mu)$ is dominated by a diagonal operator:

$$\left\|\sum_{k}a_{k}(p\lambda_{k}+1)^{\frac{1}{p}}t^{\lambda_{k}}\right\|_{L^{p}(\mu)} \leq \left\|\left(D_{k}^{\frac{1}{p}}(p).a_{k}\right)_{k\geq0}\right\|_{\ell^{p}}$$

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Carles	on's embeddi	ng				

Consider the properties

the following sequence converges to 0

$$D_n(p) = \int_{[0,1)} (p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n} \big(\sum_k (p\lambda_k + 1)^{\frac{1}{p}} t^{\lambda_k} \big)^{p-1} d\mu \lesssim \int_{[0,1)} \frac{(p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n}}{(1-t)^{\frac{1}{p'}}} d\mu$$

9
$$i_{\rho}(\mu)$$
 is compact
9 $\int_{[0,1)} t^{\rho\lambda_n} d\mu = o(1/\lambda_n).$

We have

- μ is vanishing sublinear \Longrightarrow (1) \Longrightarrow (2) \Longrightarrow (3).
- (3) $\implies (D_n(q))_n$ is vanishing for every q > p.
- (strict) monotony relatively to p.

For p = 1, everything is equivalent

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Carles	on's embeddi	ng				

Consider the properties

the following sequence converges to 0

$$D_n(p) = \int_{[0,1)} (p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n} \Big(\sum_k (p\lambda_k + 1)^{\frac{1}{p}} t^{\lambda_k} \Big)^{p-1} d\mu \lesssim \int_{[0,1)} \frac{(p\lambda_n + 1)^{\frac{1}{p}} t^{\lambda_n}}{(1-t)^{\frac{1}{p'}}} d\mu$$

$$\begin{array}{l} \bullet \quad i_{\rho}(\mu) \text{ is compact} \\ \bullet \quad \int_{[0,1)} t^{\rho\lambda_n} \, d\mu = o(1/\lambda_n) \end{array}$$

We have

- μ is vanishing sublinear \Longrightarrow (1) \Longrightarrow (2) \Longrightarrow (3).
- (3) $\implies (D_n(q))_n$ is vanishing for every q > p.
- (strict) monotony relatively to p.

For p = 1, everything is equivalent

For p > 1, everything becomes equivalent when Λ is quasi-geometric

IMAR Bucarest 2017

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Carleson's embedding $p = 2$						

Similar results for Schatten classes S^q when $q \ge 2...$

In particular,

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000		
Carleso	n's embeddi	ng $p=2$				

Similar results for Schatten classes S^q when $q \ge 2...$

In particular,

When Λ is quasi-geometric :

 $i_2(\mu)$ is a Hilbert Schmidt operator

if and only if

$$\int_{[0,1)} \frac{1}{1-t} \, d\mu < \infty$$

More generally

M_{Λ}	Geometry		Operators	Carleson	open pbs	
				000		
Carlesc	on's embeddi	ng $p=2$				

Similar results for Schatten classes S^q when $q \ge 2...$

In particular,

When Λ is quasi-geometric :

 $i_2(\mu)$ is a Hilbert Schmidt operator

if and only if

$$\int_{[0,1)} \frac{1}{1-t} \, d\mu < \infty$$

More generally

$$\|i_{\mu}^2\|_{\mathcal{S}^q}pprox \Big(\int_0^1 \Big(\int_{[0,1)} rac{d\mu(t)}{(1-st)^{rac{2}{q}+1}}\Big)^{rac{q}{2}} ds\Big)^{rac{1}{q}}$$

M_{Λ}	Geometry		Operators	Carleson	open pbs			
00	0000	000000		000	•			
(Some) o	(Some) open questions							

• M^p_{Λ} has a (Schauder) basis ?

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000	•	
(Some) o	pen question	S				

• M^p_{Λ} has a (Schauder) basis ? an unconditional basis ?

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000	•	
(Some) o	pen question	S				

- M^p_{Λ} has a (Schauder) basis ? an unconditional basis ?
- 2 What about particular cases of Λ ? (The squares for instance)

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000		000	•	
(Some) o	pen question	S				

- M^p_{Λ} has a (Schauder) basis ? an unconditional basis ?
- **2** What about particular cases of Λ ? (The squares for instance)
- **③** Special Banach properties of M^1_{Λ} ? M^{∞}_{Λ} ?

M_{Λ}	Geometry		Operators	Carleson	open pbs		
00	0000	000000		000	•		
(Some) open questions							

- M^p_{Λ} has a (Schauder) basis ? an unconditional basis ?
- **2** What about particular cases of Λ ? (The squares for instance)
- **③** Special Banach properties of M^1_{Λ} ? M^{∞}_{Λ} ?
- More generally, understand the link between the nature of the Banach space M^ρ_Λ and the arithmetical nature of Λ.

M_{Λ}	Geometry		Operators	Carleson	open pbs	
00	0000	000000	0	000	0	•

But Elizabeth has to take a flight...

M_{Λ}	Geometry	Operators	Carleson	open pbs	
					٠

But Elizabeth has to take a flight...

and you all claim lunch...

M_{Λ}	Geometry	Operators	Carleson	open pbs	
					٠

But Elizabeth has to take a flight...

and you all claim lunch...

Mulțumesc frumos !