Atelier de travail : Espaces de fonctions et théorie des opérateurs

Quelques résultats récents autour des espaces de Müntz

with E. Fricain and with L. Gaillard

Pascal Lefèvre

Université d'Artois, France

Müntz spaces

Let $\Lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ be an increasing sequence of positive numbers (have integers in mind)

$$
0=\lambda_{0}<\lambda_{1}<\cdots
$$

Müntz spaces

Let $\Lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ be an increasing sequence of positive numbers (have integers in mind)

$$
0=\lambda_{0}<\lambda_{1}<\cdots
$$

and the spaces

Müntz spaces

Let $\Lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ be an increasing sequence of positive numbers (have integers in mind)

$$
0=\lambda_{0}<\lambda_{1}<\cdots
$$

and the spaces

$$
M_{\Lambda}=: \operatorname{span}\left\{x^{\lambda_{k}} ; k \in \mathbb{N}\right\} .
$$

Müntz spaces

Let $\Lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ be an increasing sequence of positive numbers (have integers in mind)

$$
0=\lambda_{0}<\lambda_{1}<\cdots
$$

and the spaces

$$
M_{\Lambda}=: \operatorname{span}\left\{x^{\lambda_{k}} ; k \in \mathbb{N}\right\} . \quad M_{\Lambda}^{E}=: \bar{M}_{\Lambda}^{E} \text { where } M_{\Lambda} \subset E \text { and } E \text { is a Banach space. }
$$

Müntz spaces

Let $\Lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ be an increasing sequence of positive numbers (have integers in mind)

$$
0=\lambda_{0}<\lambda_{1}<\cdots
$$

and the spaces

$$
\begin{aligned}
& M_{\Lambda}=: \operatorname{span}\left\{x^{\lambda_{k}} ; k \in \mathbb{N}\right\} . \quad M_{\Lambda}^{E}=:{\overline{M_{\Lambda}}}^{E} \text { where } M_{\Lambda} \subset E \text { and } E \text { is a Banach space. } \\
& M_{\Lambda}^{\infty}=:{\overline{M_{\Lambda}}}^{C([0,1])} .
\end{aligned}
$$

Müntz spaces

Let $\Lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ be an increasing sequence of positive numbers (have integers in mind)

$$
0=\lambda_{0}<\lambda_{1}<\cdots
$$

and the spaces

$$
\begin{array}{ll}
M_{\Lambda}=: \operatorname{span}\left\{x^{\lambda_{k}} ; k \in \mathbb{N}\right\} . & M_{\Lambda}^{E}=:{\overline{M_{\Lambda}}}^{E} \text { where } M_{\Lambda} \subset E \text { and } E \text { is a Banach space. } \\
M_{\Lambda}^{\infty}=:{\overline{M_{\Lambda}}}^{C([0,1])} . & M_{\Lambda}^{p}=:{\overline{M_{\Lambda}}}^{L^{p}([0,1])} \quad(1 \leqslant p<\infty) .
\end{array}
$$

Müntz spaces

Let $\Lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ be an increasing sequence of positive numbers (have integers in mind)

$$
0=\lambda_{0}<\lambda_{1}<\cdots
$$

and the spaces

$$
\begin{array}{ll}
M_{\Lambda}=: \operatorname{span}\left\{x^{\lambda_{k}} ; k \in \mathbb{N}\right\} . & M_{\Lambda}^{E}=:{\overline{M_{\Lambda}}}^{E} \text { where } M_{\Lambda} \subset E \text { and } E \text { is a Banach space. } \\
M_{\Lambda}^{\infty}=:{\overline{M_{\Lambda}}}^{C([0,1])} . & M_{\Lambda}^{p}=:{\overline{M_{\Lambda}}}^{L^{p}([0,1])} \quad(1 \leqslant p<\infty) .
\end{array}
$$

Müntz (1914). TFAE:

(1) $M_{\Lambda}=\operatorname{vect}\left\{x^{\lambda} ; \lambda \in \Lambda\right\}$ is dense in $C([0,1]) \quad$ (resp. in L^{p})
(2) $\sum_{k \geqslant 1} \frac{1}{\lambda_{k}}$ diverges.

Müntz spaces

Let $\Lambda=\left(\lambda_{k}\right)_{k=0}^{\infty}$ be an increasing sequence of positive numbers (have integers in mind)

$$
0=\lambda_{0}<\lambda_{1}<\cdots
$$

and the spaces

$$
\begin{array}{ll}
M_{\Lambda}=: \operatorname{span}\left\{x^{\lambda_{k}} ; k \in \mathbb{N}\right\} . & M_{\Lambda}^{E}=:{\overline{M_{\Lambda}}}^{E} \text { where } M_{\Lambda} \subset E \text { and } E \text { is a Banach space. } \\
M_{\Lambda}^{\infty}=:{\overline{M_{\Lambda}}}^{C([0,1])} . & M_{\Lambda}^{p}=:{\overline{M_{\Lambda}}}^{L^{p}([0,1])} \quad(1 \leqslant p<\infty) .
\end{array}
$$

Müntz (1914). TFAE:

(1) $M_{\Lambda}=\operatorname{vect}\left\{x^{\lambda} ; \lambda \in \Lambda\right\}$ is dense in $C([0,1]) \quad$ (resp. in $\left.L^{p}\right)$
(2) $\sum_{k \geqslant 1} \frac{1}{\lambda_{k}}$ diverges.

We would like to know "everything" on the Banach space ${\overline{M_{\Lambda}}}^{E} \subsetneq E$ when the series converges !

Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions
Clarkson-Erdös, Schwartz (~1943)
Assume that $\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}<\infty \quad$ and $\inf \left(\lambda_{k+1}-\lambda_{k}\right)>0$
Then TFAE

Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions
Clarkson-Erdös, Schwartz (~1943)
Assume that $\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}<\infty \quad$ and $\inf \left(\lambda_{k+1}-\lambda_{k}\right)>0$
Then TFAE
(1) $f \in M_{\Lambda}^{\infty}$
(2) $f \in C([0,1])$
and there exists a sequence $\left(a_{k}\right)_{k} \subset \mathbb{C}$ such that

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{\lambda_{k}} \quad \text { on }(0,1),
$$

Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions
Clarkson-Erdös, Schwartz (~1943)
Assume that $\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}<\infty \quad$ and $\inf \left(\lambda_{k+1}-\lambda_{k}\right)>0$
Then TFAE
(1) $f \in M_{\Lambda}^{\infty} \quad$ (resp. $\left.f \in M_{\Lambda}^{p}\right)$
(2) $f \in C([0,1]) \quad\left(\right.$ resp. $\left.f \in L^{p}([0,1])\right)$ and there exists a sequence $\left(a_{k}\right)_{k} \subset \mathbb{C}$ such that

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{\lambda_{k}} \quad \text { (a.e.) on }(0,1)
$$

Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions
Clarkson-Erdös, Schwartz (~1943)
Assume that $\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}<\infty \quad$ and $\inf \left(\lambda_{k+1}-\lambda_{k}\right)>0$
Then TFAE
(1) $f \in M_{\Lambda}^{\infty} \quad$ (resp. $\left.f \in M_{\wedge}^{p}\right)$
(2) $f \in C([0,1]) \quad\left(\right.$ resp. $\left.f \in L^{p}([0,1])\right)$ and there exists a sequence $\left(a_{k}\right)_{k} \subset \mathbb{C}$ such that

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{\lambda_{k}} \quad \text { (a.e.) on }(0,1)
$$

Then any function M_{Λ}^{∞} (resp. in M_{Λ}^{p}) can be written as the restriction on $[0,1)$ of an analytic function over the unit disc \mathbb{D}, when $\wedge \subset \mathbb{N}$.

Theorem of Clarkson-Erdös-Schwartz

The following theorem shows that we work with spaces of analytic functions
Clarkson-Erdös, Schwartz (~1943)
Assume that $\sum_{k=1}^{\infty} \frac{1}{\lambda_{k}}<\infty \quad$ and $\inf \left(\lambda_{k+1}-\lambda_{k}\right)>0$
Then TFAE
(1) $f \in M_{\Lambda}^{\infty} \quad$ (resp. $\left.f \in M_{\wedge}^{p}\right)$
(2) $f \in C([0,1]) \quad\left(\right.$ resp. $\left.f \in L^{p}([0,1])\right)$ and there exists a sequence $\left(a_{k}\right)_{k} \subset \mathbb{C}$ such that

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{\lambda_{k}} \quad \text { (a.e.) on }(0,1)
$$

Then any function M_{Λ}^{∞} (resp. in M_{Λ}^{p}) can be written as the restriction on $[0,1)$ of an analytic function over the unit disc \mathbb{D}, when $\wedge \subset \mathbb{N}$.

For $p=+\infty$, we have then some infinite dimensional (closed) subspaces of functions in $C([0,1])$, with continuous derivatives on $[0,1)$

Banach space structure

Understand the spaces $M_{\wedge}{ }^{E}$ means understand

Banach space structure

Understand the spaces $M_{\wedge}{ }^{E}$ means understand

- their "geometry" (as a Banach space)

Banach space structure

Understand the spaces $M_{\wedge}{ }^{E}$ means understand

- their "geometry" (as a Banach space)
(1) M_{Λ}^{p} has a basis ?

Banach space structure

Understand the spaces $M_{\wedge}{ }^{E}$ means understand

- their "geometry" (as a Banach space)
(1) M_{Λ}^{p} has a basis ?
(2) looks like a classical Banach space?

Banach space structure

Understand the spaces $M_{\Lambda}{ }^{E}$ means understand

- their "geometry" (as a Banach space)
(1) M_{Λ}^{p} has a basis ?
(2) looks like a classical Banach space ?
(3) More generally, understand the link between the nature of the Banach space M_{Λ}^{p} and the arithmetical nature of Λ.

Banach space structure

Understand the spaces $M_{\wedge}{ }^{E}$ means understand

- their "geometry" (as a Banach space)
(1) M_{Λ}^{p} has a basis ?
(2) looks like a classical Banach space ?
(3) More generally, understand the link between the nature of the Banach space M_{Λ}^{p} and the arithmetical nature of Λ.
- how their operators act. But,

Banach space structure

Understand the spaces $M_{\Lambda}{ }^{E}$ means understand

- their "geometry" (as a Banach space)
(1) M_{Λ}^{p} has a basis ?
(2) looks like a classical Banach space?
(3) More generally, understand the link between the nature of the Banach space M_{Λ}^{p} and the arithmetical nature of Λ.
- how their operators act. But, first produce some non trivial "interesting" operators (how?)

Banach space structure

Understand the spaces $M_{\wedge}{ }^{E}$ means understand

- their "geometry" (as a Banach space)
(1) M_{Λ}^{p} has a basis ?
(2) looks like a classical Banach space?
(3) More generally, understand the link between the nature of the Banach space M_{Λ}^{p} and the arithmetical nature of Λ.
- how their operators act. But, first produce some non trivial "interesting" operators (how?) even better: operators preserving $M_{\wedge} \ldots$

Müntz spaces are isomorphic to subspaces of c_{0} or ℓ^{p}

Müntz spaces are isomorphic to subspaces of c_{0} or ℓ^{p}

Wojtaszczyk, Werner ~' 00

Let X be a subspace of $C([0,1])$ such that every $f \in X$ continuously differentiable on $[0,1)$,
Then
X is almost isometric to a subspace of the space of convergent sequences c. i.e.
For every $\varepsilon>0$, there exists $J_{\varepsilon}: X \rightarrow c$ such that

$$
(1-\varepsilon)\|f\|_{\infty} \leqslant\left\|J_{\varepsilon} f\right\|_{\infty} \leqslant\|f\|_{\infty} \quad \forall f \in X
$$

Müntz spaces are isomorphic to subspaces of c_{0} or ℓ^{p}

Wojtaszczyk, Werner ~' 00

Let X be a subspace of $C([0,1])$ such that every $f \in X$ continuously differentiable on $[0,1)$,
Then
X is almost isometric to a subspace of the space of convergent sequences c. i.e.
For every $\varepsilon>0$, there exists $J_{\varepsilon}: X \rightarrow c$ such that

$$
(1-\varepsilon)\|f\|_{\infty} \leqslant\left\|J_{\varepsilon} f\right\|_{\infty} \leqslant\|f\|_{\infty} \quad \forall f \in X
$$

In particular: M_{Λ}^{∞} is isomorphic to a subspace of c_{0}.
in the same spirit, we have

Müntz spaces are isomorphic to subspaces of c_{0} or ℓ^{p}

Wojtaszczyk, Werner ~' 00

Let X be a subspace of $C([0,1])$ such that every $f \in X$ continuously differentiable on $[0,1)$,
Then
X is almost isometric to a subspace of the space of convergent sequences c. i.e.
For every $\varepsilon>0$, there exists $J_{\varepsilon}: X \rightarrow c$ such that

$$
(1-\varepsilon)\|f\|_{\infty} \leqslant\left\|J_{\varepsilon} f\right\|_{\infty} \leqslant\|f\|_{\infty} \quad \forall f \in X
$$

In particular: M_{Λ}^{∞} is isomorphic to a subspace of c_{0}.
in the same spirit, we have
M_{Λ}^{p} is isomorphic to a subspace of ℓ_{p}.

Gurariy-Macaev's theorem

Gurariy-Macaev, '66
Let $p \geqslant 1$. TFAE

Gurariy-Macaev's theorem

Gurariy-Macaev, '66

Let $p \geqslant 1$. TFAE
(1) $\left(\left(p \lambda_{k}+1\right)^{1 / p} x^{\lambda_{k}}\right)_{k}$ is a Schauder basis of M_{Λ}^{p} (then equivalent to the canonical basis of ℓ^{P})

Gurariy-Macaev's theorem

Gurariy-Macaev, '66

Let $p \geqslant 1$. TFAE
(1) $\left(\left(p \lambda_{k}+1\right)^{1 / p_{X} \lambda_{k}}\right)_{k}$ is a Schauder basis of M_{Λ}^{p} (then equivalent to the canonical basis of ℓ^{P})
(2) $\left(\lambda_{k}\right)_{k}$ is lacunary (Hadamard): inf $\frac{\lambda_{n+1}}{\lambda_{n}}>1$.

Gurariy-Macaev's theorem

Gurariy-Macaev, '66

Let $p \geqslant 1$. TFAE
(1) $\left(\left(p \lambda_{k}+1\right)^{1 / p_{X} \lambda_{k}}\right)_{k}$ is a Schauder basis of M_{Λ}^{p} (then equivalent to the canonical basis of ℓ^{p})
(2) $\left(\lambda_{k}\right)_{k}$ is lacunary (Hadamard): inf $\frac{\lambda_{n+1}}{\lambda_{n}}>1$.
(3) $\left(x^{\lambda_{k}}\right)_{k}$ is a Schauder basis of M_{Λ}^{∞} (then equivalent to the summing basis of c)

Gurariy-Macaev's theorem

Gurariy-Macaev, '66

Let $p \geqslant 1$. TFAE
(1) $\left(\left(p \lambda_{k}+1\right)^{1 / p} x^{\lambda_{k}}\right)_{k}$ is a Schauder basis of M_{Λ}^{p} (then equivalent to the canonical basis of ℓ^{p})
(2) $\left(\lambda_{k}\right)_{k}$ is lacunary (Hadamard): inf $\frac{\lambda_{n+1}}{\lambda_{n}}>1$.
(3) $\left(x^{\lambda_{k}}\right)_{k}$ is a Schauder basis of M_{Λ}^{∞} (then equivalent to the summing basis of c)
i.e.

$$
\left\|\sum_{k} a_{k} \lambda_{k}^{1 / p} x^{\lambda_{k}}\right\|_{p} \approx\left(\sum_{k \geqslant 0}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

and

$$
\left\|\sum_{k} a_{k} x^{\lambda_{k}}\right\|_{\infty} \approx \sup _{N}\left|\sum_{k=0}^{N} a_{k}\right|
$$

Gurariy-Macaev's theorem revisited
With a different (still elementary) approach, we can recover the results of Gurariy-Macaev with a control of the constants, leading also to

Gurariy-Macaev's theorem revisited

With a different (still elementary) approach, we can recover the results of Gurariy-Macaev with a control of the constants, leading also to

Gaillard-L.('16-17)

Let $p \geqslant 1$. TFAE

(1) In M_{Λ}^{p}, the (normalized) basis $\left(\left(p \lambda_{k}+1\right)^{\frac{1}{p}} X^{\lambda_{k}}\right)_{k}$ is almost isometric to ℓ^{p} :

$$
\left(1-\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}} \leqslant\left\|\sum_{k \geqslant n} a_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} x^{\lambda_{k}}\right\|_{L^{p}} \leqslant\left(1+\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

$$
\text { where } \varepsilon_{n} \rightarrow 0
$$

Gurariy-Macaev's theorem revisited

With a different (still elementary) approach, we can recover the results of Gurariy-Macaev with a control of the constants, leading also to

Gaillard-L.('16-17)

Let $p \geqslant 1$. TFAE

(1) In M_{Λ}^{p}, the (normalized) basis $\left(\left(p \lambda_{k}+1\right)^{\frac{1}{p}} X^{\lambda_{k}}\right)_{k}$ is almost isometric to ℓ^{p} :

$$
\left(1-\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}} \leqslant\left\|\sum_{k \geqslant n} a_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} x^{\lambda_{k}}\right\|_{L^{p}} \leqslant\left(1+\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

where $\varepsilon_{n} \rightarrow 0$.
(2) $\left(\lambda_{k}\right)_{k}$ is super-lacunary: $\frac{\lambda_{n+1}}{\lambda_{n}} \longrightarrow+\infty$.

Gurariy-Macaev's theorem revisited

With a different (still elementary) approach, we can recover the results of Gurariy-Macaev with a control of the constants, leading also to

Gaillard-L.('16-17)

Let $p \geqslant 1$. TFAE

(1) In M_{Λ}^{p}, the (normalized) basis $\left(\left(p \lambda_{k}+1\right)^{\frac{1}{p}} X^{\lambda_{k}}\right)_{k}$ is almost isometric to ℓ^{p} :

$$
\left(1-\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}} \leqslant\left\|\sum_{k \geqslant n} a_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} x^{\lambda_{k}}\right\|_{L^{p}} \leqslant\left(1+\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}
$$

where $\varepsilon_{n} \rightarrow 0$.
(2) $\left(\lambda_{k}\right)_{k}$ is super-lacunary: $\frac{\lambda_{n+1}}{\lambda_{n}} \longrightarrow+\infty$.
(3) In M_{\wedge}^{∞}, we have

$$
\left(1-\varepsilon_{n}\right) \sup _{m \geqslant n}\left|\sum_{k=n}^{m} a_{k}\right| \leqslant\left\|\sum_{k \geqslant n} a_{k} x^{\lambda_{k}}\right\|_{\infty} \leqslant \sup _{m \geqslant n}\left|\sum_{k=n}^{m} a_{k}\right|
$$

Gurariy-Macaev's theorem revisited

With a different (still elementary) approach, we can recover the results of Gurariy-Macaev with a control of the constants, leading also to

Gaillard-L.('16-17)

Let $p \geqslant 1$. TFAE

(1) In M_{Λ}^{p}, the (normalized) basis $\left(\left(p \lambda_{k}+1\right)^{\frac{1}{p}} X^{\lambda_{k}}\right)_{k}$ is almost isometric to ℓ^{p} :

$$
\left(1-\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}} \leqslant\left\|\sum_{k \geqslant n} a_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} x^{\lambda_{k}}\right\|_{L^{p}} \leqslant\left(1+\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{p}\right)^{\frac{1}{p}}
$$ where $\varepsilon_{n} \rightarrow 0$.

(2) $\left(\lambda_{k}\right)_{k}$ is super-lacunary: $\frac{\lambda_{n+1}}{\lambda_{n}} \longrightarrow+\infty$.
(3) In M_{\wedge}^{∞}, we have

$$
\left(1-\varepsilon_{n}\right) \sup _{m \geqslant n}\left|\sum_{k=n}^{m} a_{k}\right| \leqslant\left\|\sum_{k \geqslant n} a_{k} x^{\lambda_{k}}\right\|_{\infty} \leqslant \sup _{m \geqslant n}\left|\sum_{k=n}^{m} a_{k}\right|
$$

In the case $p=2$, it means that we have an asymptotic orthonormal system.

A digression: the Hilbert space framework
In this part, we allow complex powers $\lambda \in \mathbb{C}_{-\frac{1}{2}}$ i.e. $\operatorname{Re}(\lambda)>-\frac{1}{2}$ so that $x^{\lambda} \in L^{2}$.

A digression: the Hilbert space framework
In this part, we allow complex powers $\lambda \in \mathbb{C}_{-\frac{1}{2}}$ i.e. $\operatorname{Re}(\lambda)>-\frac{1}{2}$ so that $x^{\lambda} \in L^{2}$.
The map

$$
\mathcal{D}: \left\lvert\, \begin{array}{ccc}
L^{2}([0,1], d s) & \longrightarrow & \mathcal{H}^{2}\left(\mathbb{C}_{0}\right) \\
f & \longmapsto & \mathcal{D}(f)(z)=\int_{0}^{1} f(s) s^{z-\frac{1}{2}} d s
\end{array}\right.
$$

defines an isometric isomorphism
(dictionary)

A digression: the Hilbert space framework

In this part, we allow complex powers $\lambda \in \mathbb{C}_{-\frac{1}{2}}$ i.e. $\operatorname{Re}(\lambda)>-\frac{1}{2}$ so that $x^{\lambda} \in L^{2}$.
The map

$$
\mathcal{D}: \left\lvert\, \begin{array}{ccc}
L^{2}([0,1], d s) & \longrightarrow & \mathcal{H}^{2}\left(\mathbb{C}_{0}\right) \\
f & \longmapsto & \mathcal{D}(f)(z)=\int_{0}^{1} f(s) s^{z-\frac{1}{2}} d s
\end{array}\right.
$$

defines an isometric isomorphism
(dictionary)
For $\lambda \in \mathbb{C}_{-\frac{1}{2}}$ and $z \in \mathbb{C}_{0}$, we have $\mathcal{D}\left(x^{\lambda}\right)(z)=\frac{1}{z+\lambda+\frac{1}{2}}$.
(reproducing kernel at $\bar{\lambda}+\frac{1}{2}$)

A digression: the Hilbert space framework

In this part, we allow complex powers $\lambda \in \mathbb{C}_{-\frac{1}{2}}$ i.e. $\operatorname{Re}(\lambda)>-\frac{1}{2}$ so that $x^{\lambda} \in L^{2}$.
The map

$$
\mathcal{D}: \left\lvert\, \begin{array}{ccc}
L^{2}([0,1], d s) & \longrightarrow & \mathcal{H}^{2}\left(\mathbb{C}_{0}\right) \\
f & \longmapsto & \mathcal{D}(f)(z)=\int_{0}^{1} f(s) s^{z-\frac{1}{2}} d s
\end{array}\right.
$$

defines an isometric isomorphism
For $\lambda \in \mathbb{C}_{-\frac{1}{2}}$ and $z \in \mathbb{C}_{0}$, we have $\mathcal{D}\left(x^{\lambda}\right)(z)=\frac{1}{z+\lambda+\frac{1}{2}}$.
(reproducing kernel at $\bar{\lambda}+\frac{1}{2}$)
For quite free, we get

Full Müntz theorem in L^{2} (Szàsz 1916)

Let $\Lambda=\left(\lambda_{n}\right)$ be a sequence of $\mathbb{C}_{-\frac{1}{2}}$.
M_{Λ} is dense in $L^{2}([0,1], d x)$ if and only if $\quad \sum \frac{\frac{1}{2}+\operatorname{Re}\left(\lambda_{n}\right)}{\left|\lambda_{n}+\frac{1}{2}\right|^{2}+1}=+\infty$.

Dictionary: proof

First step Consider the following map (Mellin transform):

$$
\mathcal{M}: \left\lvert\, \begin{array}{cl}
L^{2}\left([0,1], \frac{d s}{s}\right) & \longrightarrow \mathcal{H}^{2}\left(\mathbb{C}_{0}\right) \\
f & \longmapsto \mathcal{M}(f)(z)=\int_{0}^{1} f(s) s^{z-1} d s
\end{array}\right.
$$

is an isometric isomorphism.

Dictionary: proof
First step Consider the following map (Mellin transform):

is an isometric isomorphism. This is just a reformulation of the Paley-Wiener theorem!

Indeed:

First step Consider the following map (Mellin transform):

$$
\mathcal{M}: \left\lvert\, \begin{array}{cl}
L^{2}\left([0,1], \frac{d s}{s}\right) & \longrightarrow \mathcal{H}^{2}\left(\mathbb{C}_{0}\right) \\
f & \longmapsto \mathcal{M}(f)(z)=\int_{0}^{1} f(s) s^{z-1} d s
\end{array}\right.
$$

is an isometric isomorphism. This is just a reformulation of the Paley-Wiener theorem!

Indeed: let $g \in \mathcal{H}^{2}\left(\mathbb{C}_{0}\right)$, recall

$$
\|g\|_{\mathcal{H}^{2}\left(\mathbb{C}_{0}\right)}^{2}=\sup _{x>0} \frac{1}{2 \pi} \int_{\mathbb{R}}|g(x+i y)|^{2} d y .
$$

Dictionary: proof
First step Consider the following map (Mellin transform):

$$
\mathcal{M}: \left\lvert\, \begin{array}{cl}
L^{2}\left([0,1], \frac{d s}{s}\right) & \longrightarrow \mathcal{H}^{2}\left(\mathbb{C}_{0}\right) \\
f & \longmapsto \mathcal{M}(f)(z)=\int_{0}^{1} f(s) s^{z-1} d s
\end{array}\right.
$$

is an isometric isomorphism. This is just a reformulation of the Paley-Wiener theorem!

Indeed: let $g \in \mathcal{H}^{2}\left(\mathbb{C}_{0}\right)$, recall

$$
\|g\|_{\mathcal{H}^{2}\left(\mathbb{C}_{0}\right)}^{2}=\sup _{x>0} \frac{1}{2 \pi} \int_{\mathbb{R}}|g(x+i y)|^{2} d y .
$$

There exists a unique $F \in L^{2}\left(\mathbb{R}^{+}\right)$such that

$$
\forall z \in \mathbb{C}_{0}, \quad g(z)=\int_{\mathbb{R}^{+}} F(t) e^{-t z} d t \quad \text { and }\|F\|_{2}=\|g\|_{\mathcal{H}^{2}\left(\mathbb{C}_{0}\right)}
$$

First step Consider the following map (Mellin transform):

$\mathcal{M}: |$| $L^{2}\left([0,1], \frac{d s}{s}\right)$ | $\longrightarrow \mathcal{H}^{2}\left(\mathbb{C}_{0}\right)$ |
| :---: | :--- | :--- |
| f | $\longmapsto \mathcal{M}(f)(z)=\int_{0}^{1} f(s) s^{z-1} d s$ |

is an isometric isomorphism.This is just a reformulation of the Paley-Wiener theorem!

Indeed: let $g \in \mathcal{H}^{2}\left(\mathbb{C}_{0}\right)$, recall

$$
\|g\|_{\mathcal{H}^{2}\left(\mathbb{C}_{0}\right)}^{2}=\sup _{x>0} \frac{1}{2 \pi} \int_{\mathbb{R}}|g(x+i y)|^{2} d y .
$$

There exists a unique $F \in L^{2}\left(\mathbb{R}^{+}\right)$such that

$$
\forall z \in \mathbb{C}_{0}, \quad g(z)=\int_{\mathbb{R}^{+}} F(t) e^{-t z} d t \quad \text { and }\|F\|_{2}=\|g\|_{\mathcal{H}^{2}\left(\mathbb{C}_{0}\right)}
$$

It means that the function $f(s)=F(-\ln (s))$ satisfies $g=\mathcal{M}(f)$ and

$$
\int_{0}^{1}|f(s)|^{2} \frac{d s}{s}=\int_{\mathbb{R}^{+}}|F(t)|^{2} d t=\|g\|_{\mathcal{H}^{2}\left(\mathbb{C}_{0}\right)}^{2}
$$

Second step

The following map

$$
f \in L^{2}([0,1], d s) \longmapsto \sqrt{s} \cdot f \in L^{2}\left([0,1], \frac{d s}{s}\right)
$$

is also an isometric isomorphism.

Second step

The following map

$$
f \in L^{2}([0,1], d s) \longmapsto \sqrt{s} \cdot f \in L^{2}\left([0,1], \frac{d s}{s}\right)
$$

is also an isometric isomorphism.
Compose the previous maps : $\mathcal{D}(f)=\mathcal{M}(\sqrt{s} f) \ldots$ That's all...
L^{2} Müntz spaces as model spaces
(from joint work with E.Fricain)

$$
\text { Let } \Lambda=\left(\lambda_{n}\right) \text { be a sequence of } \mathbb{C}_{-\frac{1}{2}} \text { with } \sum \frac{\frac{1}{2}+\operatorname{Re}\left(\lambda_{n}\right)}{\left|\lambda_{n}+\frac{1}{2}\right|^{2}+1}<+\infty \text {. }
$$

Consider B_{\wedge} the Blaschke product whose zeros are the $\overline{\lambda_{n}}+1 / 2$. Then

L^{2} Müntz spaces as model spaces

(from joint work with E.Fricain)

$$
\text { Let } \Lambda=\left(\lambda_{n}\right) \text { be a sequence of } \mathbb{C}_{-\frac{1}{2}} \text { with } \sum \frac{\frac{1}{2}+\operatorname{Re}\left(\lambda_{n}\right)}{\left|\lambda_{n}+\frac{1}{2}\right|^{2}+1}<+\infty \text {. }
$$

Consider B_{\wedge} the Blaschke product whose zeros are the $\overline{\lambda_{n}}+1 / 2$. Then
\mathcal{D} realizes an isometric isomorphism between M_{Λ}^{2} and the model space $K_{B_{\Lambda}}$.
Let us recall that the Blaschke product (on the right half plane) with zeros z_{k} is

L^{2} Müntz spaces as model spaces

(from joint work with E.Fricain)

$$
\text { Let } \Lambda=\left(\lambda_{n}\right) \text { be a sequence of } \mathbb{C}_{-\frac{1}{2}} \text { with } \sum \frac{\frac{1}{2}+\operatorname{Re}\left(\lambda_{n}\right)}{\left|\lambda_{n}+\frac{1}{2}\right|^{2}+1}<+\infty
$$

Consider B_{Λ} the Blaschke product whose zeros are the $\overline{\lambda_{n}}+1 / 2$. Then
\mathcal{D} realizes an isometric isomorphism between M_{Λ}^{2} and the model space $K_{B_{\Lambda}}$.
Let us recall that the Blaschke product (on the right half plane) with zeros z_{k} is

$$
\prod \theta_{k} \frac{z-z_{k}}{z+\overline{z_{k}}} \quad \text { where }\left|\theta_{k}\right|=1
$$

with the Blaschke condition $\sum \frac{\operatorname{Re}\left(z_{k}\right)}{1+\left|z_{k}\right|^{2}}<\infty$ and

L^{2} Müntz spaces as model spaces

(from joint work with E.Fricain)

Let $\Lambda=\left(\lambda_{n}\right)$ be a sequence of $\mathbb{C}_{-\frac{1}{2}}$ with $\sum \frac{\frac{1}{2}+\operatorname{Re}\left(\lambda_{n}\right)}{\left|\lambda_{n}+\frac{1}{2}\right|^{2}+1}<+\infty$.
Consider B_{\wedge} the Blaschke product whose zeros are the $\overline{\lambda_{n}}+1 / 2$. Then
\mathcal{D} realizes an isometric isomorphism between M_{Λ}^{2} and the model space $K_{B_{\Lambda}}$.
Let us recall that the Blaschke product (on the right half plane) with zeros z_{k} is

$$
\prod \theta_{k} \frac{z-z_{k}}{z+\overline{z_{k}}} \quad \text { where }\left|\theta_{k}\right|=1
$$

with the Blaschke condition $\sum \frac{\operatorname{Re}\left(z_{k}\right)}{1+\left|z_{k}\right|^{2}}<\infty$ and

The model space associated to this inner function Θ is

$$
K_{\Theta}=\mathcal{H}^{2}\left(\mathbb{C}_{0}\right) \ominus \Theta \mathcal{H}^{2}\left(\mathbb{C}_{0}\right)=\left(\Theta \mathcal{H}^{2}\left(\mathbb{C}_{0}\right)\right)^{\perp}
$$

Using some known results from the (rich) model spaces theory, we recover or get "for free" (new) results on hilbertian Müntz spaces with complex powers: For instance...

L^{2} Müntz spaces as model spaces

Using some known results from the (rich) model spaces theory, we recover or get "for free" (new) results on hilbertian Müntz spaces with complex powers: For instance...

A result of Nikolski-Pavlov allows to extend Gurariy-Macaev when $p=2$:
Let $\Lambda=\left\{\lambda_{n}\right\} \subset \mathbb{C}_{-\frac{1}{2}}$ with $\sum \frac{\frac{1}{2}+\operatorname{Re}\left(\lambda_{n}\right)}{\left|\lambda_{n}+\frac{1}{2}\right|^{2}+1}<+\infty$. TFAE
(1) $\left\{\left(2 \operatorname{Re}\left(\lambda_{n}\right)+1\right)^{\frac{1}{2}} x^{\lambda_{n}}\right\}$ is a Riesz basis of M_{Λ}^{2}.

L^{2} Müntz spaces as model spaces

Using some known results from the (rich) model spaces theory, we recover or get "for free" (new) results on hilbertian Müntz spaces with complex powers: For instance...

A result of Nikolski-Pavlov allows to extend Gurariy-Macaev when $p=2$:
Let $\Lambda=\left\{\lambda_{n}\right\} \subset \mathbb{C}_{-\frac{1}{2}}$ with $\sum \frac{\frac{1}{2}+\operatorname{Re}\left(\lambda_{n}\right)}{\left|\lambda_{n}+\frac{1}{2}\right|^{2}+1}<+\infty$. TFAE
(1) $\left\{\left(2 \operatorname{Re}\left(\lambda_{n}\right)+1\right)^{\frac{1}{2}} x^{\lambda_{n}}\right\}$ is a Riesz basis of M_{Λ}^{2}.
(2) $\inf _{n} \prod_{k \neq n}\left|\frac{\lambda_{n}-\lambda_{k}}{\lambda_{n}+\overline{\lambda_{k}}+1}\right|>0 \quad$ (Carleson's condition)

L^{2} Müntz spaces as model spaces

Using some known results from the (rich) model spaces theory, we recover or get "for free" (new) results on hilbertian Müntz spaces with complex powers: For instance...

A result of Nikolski-Pavlov allows to extend Gurariy-Macaev when $p=2$:
Let $\Lambda=\left\{\lambda_{n}\right\} \subset \mathbb{C}_{-\frac{1}{2}}$ with $\sum \frac{\frac{1}{2}+\operatorname{Re}\left(\lambda_{n}\right)}{\left|\lambda_{n}+\frac{1}{2}\right|^{2}+1}<+\infty$. TFAE
(1) $\left\{\left(2 \operatorname{Re}\left(\lambda_{n}\right)+1\right)^{\frac{1}{2}} x^{\lambda_{n}}\right\}$ is a Riesz basis of M_{Λ}^{2}.
(2) $\inf _{n} \prod_{k \neq n}\left|\frac{\lambda_{n}-\lambda_{k}}{\lambda_{n}+\overline{\lambda_{k}}+1}\right|>0 \quad$ (Carleson's condition)

We also get the asymptotically orthonormal version...
L^{2} Müntz spaces as model spaces

Using a result due to Volberg ('82) on model spaces:

Let $\Lambda=\left\{\lambda_{n}\right\} \subset \mathbb{C}_{-\frac{1}{2}}$ with $\sum \frac{\frac{1}{2}+\operatorname{Re}\left(\lambda_{n}\right)}{\left|\lambda_{n}+\frac{1}{2}\right|^{2}+1}<+\infty$. TFAE
(1) For every $a=\left(a_{k}\right) \in \ell^{2}$, we have
$\left(1-\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{2}\right)^{\frac{1}{2}} \leqslant\left\|\sum_{k \geqslant n} a_{k}\left(2 \operatorname{Re}\left(\lambda_{k}\right)+1\right)^{\frac{1}{2}} x^{\lambda_{k}}\right\|_{L^{2}} \leqslant\left(1+\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{2}\right)^{\frac{1}{2}}$
where $\varepsilon_{n} \rightarrow 0$.
asymptotic orthonormality
(2) $\prod_{k \neq n}\left|\frac{\lambda_{n}-\lambda_{k}}{\lambda_{n}+\overline{\lambda_{k}}+1}\right| \longrightarrow 1 \quad$ when $n \rightarrow+\infty$.

L^{2} Müntz spaces as model spaces

Using a result due to Volberg ('82) on model spaces:

Let $\Lambda=\left\{\lambda_{n}\right\} \subset \mathbb{C}_{-\frac{1}{2}}$ with $\sum \frac{\frac{1}{2}+\operatorname{Re}\left(\lambda_{n}\right)}{\left|\lambda_{n}+\frac{1}{2}\right|^{2}+1}<+\infty$. TFAE
(1) For every $a=\left(a_{k}\right) \in \ell^{2}$, we have

$$
\begin{array}{ll}
\left(1-\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{2}\right)^{\frac{1}{2}} \leqslant\left\|\sum_{k \geqslant n} a_{k}\left(2 \operatorname{Re}\left(\lambda_{k}\right)+1\right)^{\frac{1}{2}} x^{\lambda_{k}}\right\|_{L^{2}} \leqslant\left(1+\varepsilon_{n}\right)\left(\sum_{k \geqslant n}\left|a_{k}\right|^{2}\right)^{\frac{1}{2}} \\
\text { where } \varepsilon_{n} \rightarrow 0 . & \text { asymptotic orthonormality } \\
\text { (2 } \prod_{k \neq n}\left|\frac{\lambda_{n}-\lambda_{k}}{\lambda_{n}+\overline{\lambda_{k}}+1}\right| \longrightarrow 1 \quad \text { when } n \rightarrow+\infty . &
\end{array}
$$

And there are many other ways to exploit the dictionary $\mathcal{D} \ldots$ both ways...

Specific operators on $M_{\Lambda}{ }^{p}$

How to produce some "interesting" operators, maybe preserving M_{\wedge} ?

Specific operators on $M_{\Lambda}{ }^{p}$

How to produce some "interesting" operators, maybe preserving M_{\wedge} ?

We could focus for instance on two kinds of operators:

Specific operators on $M_{\Lambda}{ }^{p}$

How to produce some "interesting" operators, maybe preserving M_{\wedge} ?

We could focus for instance on two kinds of operators:

Ideas:

- Carleson's embedding: $M_{\Lambda}^{p} \hookrightarrow L^{p}(\mu)$ for some positive measure μ on $[0,1)$

Specific operators on $M_{\Lambda}{ }^{p}$

How to produce some "interesting" operators, maybe preserving M_{\wedge} ?

We could focus for instance on two kinds of operators:

Ideas:

- Carleson's embedding: $M_{\Lambda}^{p} \hookrightarrow L^{p}(\mu)$ for some positive measure μ on $[0,1)$
- Hardy type operators: (Volterra and) Cesàro operator

$$
f \in M_{\wedge} \longmapsto \Gamma(f)(x)=\frac{1}{x} \int_{0}^{x} f(t) d t \in M_{\wedge}
$$

Carleson's embedding

Given a positive (finite) measure μ on $[0,1$), we want to study the (formal) identity:

$$
i_{p}(\mu): \quad f \in M_{\wedge}^{p} \longmapsto f \in L^{p}(\mu)
$$

Carleson's embedding

Given a positive (finite) measure μ on $[0,1$), we want to study the (formal) identity:

$$
i_{p}(\mu): \quad f \in M_{\Lambda}^{p} \longmapsto f \in L^{p}(\mu)
$$

We focus on the case: \wedge lacunary

Carleson's embedding

Given a positive (finite) measure μ on $[0,1$), we want to study the (formal) identity:

$$
i_{p}(\mu): \quad f \in M_{\Lambda}^{p} \longmapsto f \in L^{p}(\mu)
$$

We focus on the case: \wedge lacunary
($p=1$: Chalendar-Fricain-Timotin '11 ; $p=2$: Noor-Timotin '13)

Carleson's embedding

Given a positive (finite) measure μ on $[0,1$), we want to study the (formal) identity:

$$
i_{p}(\mu): \quad f \in M_{\wedge}^{p} \longmapsto f \in L^{p}(\mu)
$$

We focus on the case: \wedge lacunary
\square
1: Chalendar-Fricain-Timotin '11 ; $p=2$: Noor-Timotin '13)

- If $\mu((1-\delta, 1))=O(\delta) \quad$ (μ sublinear) then $i_{p}(\mu)$ is bounded.

Carleson's embedding

Given a positive (finite) measure μ on $[0,1$), we want to study the (formal) identity:

$$
i_{p}(\mu): \quad f \in M_{\Lambda}^{p} \longmapsto f \in L^{p}(\mu)
$$

We focus on the case: \wedge lacunary
($p=1$: Chalendar-Fricain-Timotin '11 ; $p=2$: Noor-Timotin '13)

- If $\mu((1-\delta, 1))=O(\delta) \quad$ (μ sublinear) then $i_{p}(\mu)$ is bounded.
- If $\mu((1-\delta, 1))=o(\delta) \quad\left(\mu\right.$ vanishing sublinear) then $i_{p}(\mu)$ is compact.

Carleson's embedding

Given a positive (finite) measure μ on $[0,1$), we want to study the (formal) identity:

$$
i_{p}(\mu): \quad f \in M_{\Lambda}^{p} \longmapsto f \in L^{p}(\mu)
$$

We focus on the case: \wedge lacunary
($p=1$: Chalendar-Fricain-Timotin '11 ; $p=2$: Noor-Timotin '13)

- If $\mu((1-\delta, 1))=O(\delta) \quad$ (μ sublinear) then $i_{p}(\mu)$ is bounded.
- If $\mu((1-\delta, 1))=o(\delta) \quad$ (μ vanishing sublinear) then $i_{p}(\mu)$ is compact.
- When Λ is a quasi-geometric sequence, then the converse is true, but it is false for arbitrary Λ.

Carleson's embedding

(Gaillard-L.) $p \geqslant 1$

Consider the properties
(1) the following sequence is bounded

$$
D_{n}(p)=\int_{[0,1)}\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}\left(\sum_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} t^{\lambda_{k}}\right)^{p-1} d \mu
$$

Carleson's embedding

(Gaillard-L.) $p \geqslant 1$

Consider the properties
(1) the following sequence is bounded

$$
D_{n}(p)=\int_{[0,1)}\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}\left(\sum_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} t^{\lambda_{k}}\right)^{p-1} d \mu \lesssim \int_{[0,1)} \frac{\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}}{(1-t)^{\frac{1}{p^{\prime}}}} d \mu
$$

(2) $i_{p}(\mu)$ is bounded

Carleson's embedding

(Gaillard-L.) $p \geqslant 1$

Consider the properties
(1) the following sequence is bounded

$$
D_{n}(p)=\int_{[0,1)}\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}\left(\sum_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} t^{\lambda_{k}}\right)^{p-1} d \mu \lesssim \int_{[0,1)} \frac{\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}}{(1-t)^{\frac{1}{p^{\prime}}}} d \mu
$$

(2) $i_{p}(\mu)$ is bounded
(3) $\int_{[0,1)} t^{p \lambda_{n}} d \mu=O\left(1 / \lambda_{n}\right)$.

Carleson's embedding

(Gaillard-L.) $p \geqslant 1$

Consider the properties
(1) the following sequence is bounded

$$
D_{n}(p)=\int_{[0,1)}\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}\left(\sum_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} t^{\lambda_{k}}\right)^{p-1} d \mu \lesssim \int_{[0,1)} \frac{\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}}{(1-t)^{\frac{1}{p^{\prime}}}} d \mu
$$

(2) $i_{p}(\mu)$ is bounded
(3) $\int_{[0,1)} t^{p \lambda_{n}} d \mu=O\left(1 / \lambda_{n}\right)$.

We have

- μ is \quad sublinear $\Longrightarrow(1) \Longrightarrow(2) \Longrightarrow(3)$.

Carleson's embedding

(Gaillard-L.) $p \geqslant 1$

Consider the properties
(1) the following sequence is bounded

$$
D_{n}(p)=\int_{[0,1)}\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}\left(\sum_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} t^{\lambda_{k}}\right)^{p-1} d \mu \lesssim \int_{[0,1)} \frac{\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}}{(1-t)^{\frac{1}{p^{\prime}}}} d \mu
$$

(2) $i_{p}(\mu)$ is bounded
(3) $\int_{[0,1)} t^{p \lambda_{n}} d \mu=O\left(1 / \lambda_{n}\right)$.

We have

- μ is \quad sublinear $\Longrightarrow(1) \Longrightarrow(2) \Longrightarrow(3)$.
- (3) $\Longrightarrow \quad\left(D_{n}(q)\right)_{n}$ is bounded for every $q>p$.

Carleson's embedding

(Gaillard-L.) $p \geqslant 1$

Consider the properties
(1) the following sequence is bounded

$$
D_{n}(p)=\int_{[0,1)}\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}\left(\sum_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} t^{\lambda_{k}}\right)^{p-1} d \mu \lesssim \int_{[0,1)} \frac{\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}}{(1-t)^{\frac{1}{p^{\prime}}}} d \mu
$$

(2) $i_{p}(\mu)$ is bounded
(3) $\int_{[0,1)} t^{p \lambda_{n}} d \mu=O\left(1 / \lambda_{n}\right)$.

We have

- μ is \quad sublinear $\Longrightarrow(1) \Longrightarrow(2) \Longrightarrow(3)$.
- (3) $\Longrightarrow \quad\left(D_{n}(q)\right)_{n}$ is bounded for every $q>p$.
- (strict) monotony relatively to p.

Carleson's embedding

(Gaillard-L.) $p \geqslant 1$

Consider the properties
(1) the following sequence is bounded

$$
D_{n}(p)=\int_{[0,1)}\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}\left(\sum_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} t^{\lambda_{k}}\right)^{p-1} d \mu \lesssim \int_{[0,1)} \frac{\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}}{(1-t)^{\frac{1}{p^{\prime}}}} d \mu
$$

(2) $i_{p}(\mu)$ is bounded
(3) $\int_{[0,1)} t^{p \lambda_{n}} d \mu=O\left(1 / \lambda_{n}\right)$.

We have

- μ is \quad sublinear $\Longrightarrow(1) \Longrightarrow(2) \Longrightarrow(3)$.
- (3) $\Longrightarrow \quad\left(D_{n}(q)\right)_{n}$ is bounded for every $q>p$.
- (strict) monotony relatively to p.

Carleson's embedding

(Gaillard-L.) $p \geqslant 1$

Consider the properties
(1) the following sequence converges to 0
$D_{n}(p)=\int_{[0,1)}\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}\left(\sum_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{\rho}} t^{\lambda_{k}}\right)^{p-1} d \mu \lesssim \int_{[0,1)} \frac{\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}}{(1-t)^{\frac{1}{p^{\prime}}}} d \mu$
(2) $i_{p}(\mu)$ is compact
(3) $\int_{[0,1)} t^{p \lambda_{n}} d \mu=o\left(1 / \lambda_{n}\right)$.

We have

- μ is vanishing sublinear $\Longrightarrow(1) \Longrightarrow(2) \Longrightarrow(3)$.
- (3) $\Longrightarrow \quad\left(D_{n}(q)\right)_{n}$ is vanishing for every $q>p$.
- (strict) monotony relatively to p.

Actually, the key point is that (whatever Λ) $i_{p}(\mu)$ is dominated by a diagonal operator:

$$
\left\|\sum_{l} a_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} t^{\lambda_{k}}\right\|_{L^{p}(\mu)} \leqslant\left\|\left(D_{k}^{\frac{1}{p}}(p) \cdot a_{k}\right)_{k \geqslant 0}\right\|_{\ell^{p}}
$$

Carleson's embedding

(Gaillard-L.) $p \geqslant 1$

Consider the properties
(1) the following sequence converges to 0

$$
D_{n}(p)=\int_{[0,1)}\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}\left(\sum_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{\rho}} t^{\lambda_{k}}\right)^{p-1} d \mu \lesssim \int_{[0,1)} \frac{\left(p \lambda_{n}+1\right)^{\frac{1}{\rho}} t^{\lambda_{n}}}{(1-t)^{\frac{1}{\rho^{\prime}}}} d \mu
$$

(2) $i_{p}(\mu)$ is compact
(3) $\int_{[0,1)} t^{p \lambda_{n}} d \mu=o\left(1 / \lambda_{n}\right)$.

We have

- μ is vanishing sublinear $\Longrightarrow(1) \Longrightarrow(2) \Longrightarrow(3)$.
- (3) $\Longrightarrow \quad\left(D_{n}(q)\right)_{n}$ is vanishing for every $q>p$.
- (strict) monotony relatively to p.

For $p=1$, everything is equivalent

Carleson's embedding

(Gaillard-L.) $p \geqslant 1$

Consider the properties
(1) the following sequence converges to 0

$$
D_{n}(p)=\int_{[0,1)}\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}\left(\sum_{k}\left(p \lambda_{k}+1\right)^{\frac{1}{p}} t^{\lambda_{k}}\right)^{p-1} d \mu \lesssim \int_{[0,1)} \frac{\left(p \lambda_{n}+1\right)^{\frac{1}{p}} t^{\lambda_{n}}}{(1-t)^{\frac{1}{p^{\prime}}}} d \mu
$$

(2) $i_{p}(\mu)$ is compact
(3) $\int_{[0,1)} t^{p \lambda_{n}} d \mu=o\left(1 / \lambda_{n}\right)$.

We have

- μ is vanishing sublinear $\Longrightarrow(1) \Longrightarrow(2) \Longrightarrow(3)$.
- (3) $\Longrightarrow \quad\left(D_{n}(q)\right)_{n}$ is vanishing for every $q>p$.
- (strict) monotony relatively to p.

For $p=1$, everything is equivalent
For $p>1$, everything becomes equivalent when Λ is quasi-geometric

Carleson's embedding $p=2$

Similar results for Schatten classes \mathcal{S}^{q} when $q \geqslant 2 \ldots$

In particular,

Carleson's embedding $p=2$

Similar results for Schatten classes \mathcal{S}^{q} when $q \geqslant 2 \ldots$

In particular,

When \wedge is quasi-geometric :

$$
i_{2}(\mu) \text { is a Hilbert Schmidt operator }
$$

if and only if

$$
\int_{[0,1)} \frac{1}{1-t} d \mu<\infty
$$

More generally

Carleson's embedding $p=2$

Similar results for Schatten classes \mathcal{S}^{q} when $q \geqslant 2 \ldots$

In particular,

When Λ is quasi-geometric :

$$
i_{2}(\mu) \text { is a Hilbert Schmidt operator }
$$

if and only if

$$
\int_{[0,1)} \frac{1}{1-t} d \mu<\infty
$$

More generally

$$
\left\|i_{\mu}^{2}\right\|_{\mathcal{S}^{a}} \approx\left(\int_{0}^{1}\left(\int_{[0,1)} \frac{d \mu(t)}{(1-s t)^{\frac{2}{q}+1}}\right)^{\frac{q}{2}} d s\right)^{\frac{1}{q}}
$$

(Some) open questions

© M_{\wedge}^{p} has a (Schauder) basis ?

(Some) open questions

© M_{\wedge}^{p} has a (Schauder) basis ? an unconditional basis ?

(Some) open questions

(1) M_{Λ}^{p} has a (Schauder) basis ? an unconditional basis ?
(3) What about particular cases of Λ ? (The squares for instance)
(1) M_{Λ}^{p} has a (Schauder) basis ? an unconditional basis ?
(2) What about particular cases of Λ ? (The squares for instance)
(0) Special Banach properties of M_{Λ}^{1} ? M_{Λ}^{∞} ?

(Some) open questions

(1) M_{\wedge}^{p} has a (Schauder) basis ? an unconditional basis ?
(2) What about particular cases of Λ ? (The squares for instance)
(3) Special Banach properties of M_{Λ}^{1} ? M_{Λ}^{∞} ?
(4) More generally, understand the link between the nature of the Banach space M_{Λ}^{p} and the arithmetical nature of Λ.

But Elizabeth has to take a flight...

But Elizabeth has to take a flight...

 and you all claim lunch...

But Elizabeth has to take a flight...

 and you all claim lunch...

Mulțumesc frumos !

