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About the proof of dimH EC ≥ d − 2

notations, definitions

I d is an integer ≥ 2 (often think d = 2!).

I B denotes the set of all convexe bodies of the Euclidean space
Ed+1, i. e. the compact convex subsets with non empty
interior.
It is endowed with the Pompeiu-Hausdorff metric dH.

I The boundary Σ = ∂C of C ∈ B is a convex surface, it is
endowed with its inner geodesic metric.

I EC or EΣ denotes the set of all endpoints of Σ, that is the
points which are not in the interior of some shorter path in Σ.
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I EΣ = ∅ if Σ is of class C2 (no endpoints in Σ).

I EΣ is always negligible : Hd(EΣ) = 0. Otsu and Shioya 1994.

I When a ∈ Σ is conical, that is when the tangent cone TaΣ
contains no line, then a ∈ EΣ.
The set of conical points of Σ is always countable.

I If Ed+1 = E ⊕ F with dimF = 2, r > 0 and
C = conv(SE ∪ rSF ), then SE ⊂ EΣ.
Here dimH EΣ = d − 2 and Hd−2(EΣ) > 0.

I a ∈ Σ is said regular when TaΣ is isometric to Ed .
The set RΣ of regular points is always strongly convex in Σ.
Petrunyn 1998 (Milka 1983 enough for us).
This is used to check that SE ⊂ EΣ in the above example.
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I We said that most, or typical, elements of a Baire space share
a property when the exceptional set is meager (i.e. included in
the union of countably many closed sets with empty interiors).

I dimH denotes the Hausdorff dimension and Hs the Hausdorff
measure in dimension s.

I For most C ∈ B, most elements of ∂C are endpoints.
Zamfirescu 82.

I Most C ∈ B satisfy dimH EC ≥ max(d − 2, d/3).
Riv 2015/2014.

I Remarks
• d − 2 = d/3⇔ d = 3 and d − 2 > d/3⇔ d ≥ 4.
• Proof of dimH EC ≥ d − 2 uses exple conv(SE ∪ rSF ).
• Proof of dimH EC ≥ d/3 uses classical conical points.
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Some questions

I Does it exist a convex body C ∈ B satisfying
dimH EC > max(d − 2, d/3)
When d = 2 can we have H2/3(EC ) > 0?

I Are there convex bodies C0,C ∈ B and a ∈ ∂C ∩ ∂C0 such
that C0 ⊂ C , a ∈ EC but a 6∈ EC0 . (yes known ?)

I Can we also ask C0 to be a Euclidean ball ?

I Can we also ask C0 to be flat at a (a ∈ U0(∂C0)), that is
containing for every R > 0 a neighborhood of a in a Euclidean
ball B of radius R?

I Can we also ask that d = 2 and C to be of revolution around
an axe containing a ? (no known ?)

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest



Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

Some questions

I Does it exist a convex body C ∈ B satisfying
dimH EC > max(d − 2, d/3)
When d = 2 can we have H2/3(EC ) > 0?

I Are there convex bodies C0,C ∈ B and a ∈ ∂C ∩ ∂C0 such
that C0 ⊂ C , a ∈ EC but a 6∈ EC0 . (yes known ?)

I Can we also ask C0 to be a Euclidean ball ?

I Can we also ask C0 to be flat at a (a ∈ U0(∂C0)), that is
containing for every R > 0 a neighborhood of a in a Euclidean
ball B of radius R?

I Can we also ask that d = 2 and C to be of revolution around
an axe containing a ? (no known ?)

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest



Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

Some questions

I Does it exist a convex body C ∈ B satisfying
dimH EC > max(d − 2, d/3)
When d = 2 can we have H2/3(EC ) > 0?

I Are there convex bodies C0,C ∈ B and a ∈ ∂C ∩ ∂C0 such
that C0 ⊂ C , a ∈ EC but a 6∈ EC0 . (yes known ?)

I Can we also ask C0 to be a Euclidean ball ?

I Can we also ask C0 to be flat at a (a ∈ U0(∂C0)), that is
containing for every R > 0 a neighborhood of a in a Euclidean
ball B of radius R?

I Can we also ask that d = 2 and C to be of revolution around
an axe containing a ? (no known ?)

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest



Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

Some questions

I Does it exist a convex body C ∈ B satisfying
dimH EC > max(d − 2, d/3)
When d = 2 can we have H2/3(EC ) > 0?

I Are there convex bodies C0,C ∈ B and a ∈ ∂C ∩ ∂C0 such
that C0 ⊂ C , a ∈ EC but a 6∈ EC0 . (yes known ?)

I Can we also ask C0 to be a Euclidean ball ?

I Can we also ask C0 to be flat at a (a ∈ U0(∂C0)), that is
containing for every R > 0 a neighborhood of a in a Euclidean
ball B of radius R?

I Can we also ask that d = 2 and C to be of revolution around
an axe containing a ? (no known ?)

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest



Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

Some questions

I Does it exist a convex body C ∈ B satisfying
dimH EC > max(d − 2, d/3)
When d = 2 can we have H2/3(EC ) > 0?

I Are there convex bodies C0,C ∈ B and a ∈ ∂C ∩ ∂C0 such
that C0 ⊂ C , a ∈ EC but a 6∈ EC0 . (yes known ?)

I Can we also ask C0 to be a Euclidean ball ?

I Can we also ask C0 to be flat at a (a ∈ U0(∂C0)), that is
containing for every R > 0 a neighborhood of a in a Euclidean
ball B of radius R?

I Can we also ask that d = 2 and C to be of revolution around
an axe containing a ? (no known ?)

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest



Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

About the proof of dimH EC ≥ d − 2

I For C ∈ B and ε > 0, let MC ,ε be the set of all the points of
∂C which are the middle of some shorter path of ∂C with
length 2ε, and EC ,ε = ∂C \MC ,ε.

Then we have EC =
⋂
ε>0

EC ,ε

I We can restrict our study to B0 = {C ∈ B | 0 ∈ intC}
I For ‖x‖ = 1 we set {ΦC (x)} = R+x ∩ ∂C .
I We look for a compact set K of the unit sphere, with

dimH K = d − 2, and such that the following Gδ is dense in
B0:

GK = {C ∈ B0 | ΦC (K ) ⊂ EC} =
⋂
ε>0

GK ,ε

where GK ,ε = {C ∈ B0 | ΦC (K ) ⊂ EC ,ε}.
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About the proof of dimH EC ≥ d − 2

I For Ed+1 = E ⊕ F like in the exemple, we can find K ⊂ SE
with dimH K = d − 2, and with K strongly radially porous.
This means that for each ε > 0 and n ≥ 1, K has a finite
covering by pairwise disjointed balls Bi (ci , ri ) and such that
K ∩ B(ai , ri ) ⊂ B(ai , ri/n)

I Using our exemple and the strong porosity, we can check the
wanted density.
In this point, Riv2015 is rather clumsy !

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest



Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

About the proof of dimH EC ≥ d − 2

I For Ed+1 = E ⊕ F like in the exemple, we can find K ⊂ SE
with dimH K = d − 2, and with K strongly radially porous.
This means that for each ε > 0 and n ≥ 1, K has a finite
covering by pairwise disjointed balls Bi (ci , ri ) and such that
K ∩ B(ai , ri ) ⊂ B(ai , ri/n)

I Using our exemple and the strong porosity, we can check the
wanted density.
In this point, Riv2015 is rather clumsy !

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest



Some notations
Some Examples

Typical case
Some questions

About the proof of dimH EC ≥ d − 2

About the proof of density of GK

I First we have a dense set of smooth C ∈ B0 such that for
some 0 < r < R and all a ∈ ∂C , there are closed balls
containing a in their boundary spheres, and such that
B(c, r) ⊂ C ⊂ B(c ′,R).

I Given such a C and ε > 0, we find a finite family of half
spaces Hi such that if C ′ = C ∩

⋂
Hi , then dH(C ,C ′) < ε and

C ′ ∩ ΦC (K ) = ∅, because of the strong porousity of K .

I Then we get C ′′ ∈ GK with dH(C ,C ′′) < ε by substituting to
each Hi some Ci congruent to our exemple associated with
Ed+1 = E ⊕ Fi .
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About the proof of dimH EC ≥ d − 2

Why d/3?

β

β/2

Γ ∩ Σ′

v
Σ−

α
α

I Our modified sphere is the boundary Σ′ of the largest convex
set among all those whose boundaries contain the truncated
sphere Σ− (of radius 1).

I For a small α, the smallest possible distance rα from the
vertex v to a shorter path γ, in Σ′ and between points of Σ−

satisfies rα ∼ π
4α

3 and εa = 4 tanα ∼ 4α
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About the proof of dimH EC ≥ d − 2

Why d/3?

β

β/2

Γ ∩ Σ′

v
Σ−

α
α

I Because of this we choose a function h > 0 with h(t) = o(t3)
(like t3/| ln t| near zero), and then K h-radially porous, that
is: for all x ∈ K , there is a sequence of balls such that for
each n we have BK (x , rn) ⊂ BK (x , h(rn)), and with the radius
sequence (rn) decreasing of null limit.

I We can also ask dimH K = d/3.
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I Because of this we choose a function h > 0 with h(t) = o(t3)
(like t3/| ln t| near zero), and then K h-radially porous, that
is: for all x ∈ K , there is a sequence of balls such that for
each n we have BK (x , rn) ⊂ BK (x , h(rn)), and with the radius
sequence (rn) decreasing of null limit.

I We can also ask dimH K = d/3.

About endpoints of convex surfaces. The 13th International Conference on Discrete Mathematics : Discrete Geometrie and Convex Bodies. Bucharest
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