About endpoints of convex surfaces. The $13^{\text {th }}$ International Conference on Discrete Mathematics :
Discrete Geometrie and Convex Bodies.
Bucharest

> Alain Rivière ${ }^{1}$
> ${ }^{1}$ Université de Picardie Jules Verne
> Laboratoire Amiénois de Mathématique Fondamentale et Appliquée CNRS-UMR 7352

September, 2017.

## notations, definitions

- $d$ is an integer $\geq 2$ (often think $d=2$ !).


## notations, definitions

- $d$ is an integer $\geq 2$ (often think $d=2$ !).
- $\mathcal{B}$ denotes the set of all convexe bodies of the Euclidean space $\mathbb{E}^{d+1}$, i. e. the compact convex subsets with non empty interior.
It is endowed with the Pompeiu-Hausdorff metric $\mathrm{d}_{\mathrm{H}}$.


## notations, definitions

- $d$ is an integer $\geq 2$ (often think $d=2$ !).
- $\mathcal{B}$ denotes the set of all convexe bodies of the Euclidean space $\mathbb{E}^{d+1}$, i. e. the compact convex subsets with non empty interior.
It is endowed with the Pompeiu-Hausdorff metric $\mathrm{d}_{\mathrm{H}}$.
- The boundary $\Sigma=\partial C$ of $C \in \mathcal{B}$ is a convex surface, it is endowed with its inner geodesic metric.


## notations, definitions

- $d$ is an integer $\geq 2$ (often think $d=2$ !).
- $\mathcal{B}$ denotes the set of all convexe bodies of the Euclidean space $\mathbb{E}^{d+1}$, i. e. the compact convex subsets with non empty interior.
It is endowed with the Pompeiu-Hausdorff metric $\mathrm{d}_{\mathrm{H}}$.
- The boundary $\Sigma=\partial C$ of $C \in \mathcal{B}$ is a convex surface, it is endowed with its inner geodesic metric.
- $\mathcal{E}_{C}$ or $\mathcal{E}_{\Sigma}$ denotes the set of all endpoints of $\Sigma$, that is the points which are not in the interior of some shorter path in $\Sigma$.


## Some Examples

- $\mathcal{E}_{\Sigma}=\emptyset$ if $\Sigma$ is of class $C^{2}$ (no endpoints in $\Sigma$ ).


## Some Examples

- $\mathcal{E}_{\Sigma}=\emptyset$ if $\Sigma$ is of class $C^{2}$ (no endpoints in $\Sigma$ ).
- $\mathcal{E}_{\Sigma}$ is always negligible : $\mathcal{H}^{d}\left(\mathcal{E}_{\Sigma}\right)=0$. Otsu and Shioya 1994.


## Some Examples

- $\mathcal{E}_{\Sigma}=\emptyset$ if $\Sigma$ is of class $C^{2}$ (no endpoints in $\Sigma$ ).
- $\mathcal{E}_{\Sigma}$ is always negligible : $\mathcal{H}^{d}\left(\mathcal{E}_{\Sigma}\right)=0$. Otsu and Shioya 1994.
- When $a \in \Sigma$ is conical, that is when the tangent cone $\mathrm{T}_{\mathrm{a}} \Sigma$ contains no line, then $a \in \mathcal{E}_{\Sigma}$.
The set of conical points of $\Sigma$ is always countable.


## Some Examples

- $\mathcal{E}_{\Sigma}=\emptyset$ if $\Sigma$ is of class $C^{2}$ (no endpoints in $\Sigma$ ).
- $\mathcal{E}_{\Sigma}$ is always negligible: $\mathcal{H}^{d}\left(\mathcal{E}_{\Sigma}\right)=0$. Otsu and Shioya 1994 .
- When $a \in \Sigma$ is conical, that is when the tangent cone $\mathrm{T}_{\mathrm{a}} \Sigma$ contains no line, then $a \in \mathcal{E}_{\Sigma}$.
The set of conical points of $\Sigma$ is always countable.
- If $\mathbb{E}^{d+1}=E \oplus F$ with $\operatorname{dim} F=2, r>0$ and $C=\operatorname{conv}\left(S_{E} \cup r S_{F}\right)$, then $S_{E} \subset \mathcal{E}_{\Sigma}$.
Here $\operatorname{dim}_{H} \mathcal{E}_{\Sigma}=d-2$ and $\mathcal{H}^{d-2}\left(\mathcal{E}_{\Sigma}\right)>0$.


## Some Examples

- $\mathcal{E}_{\Sigma}=\emptyset$ if $\Sigma$ is of class $C^{2}$ (no endpoints in $\Sigma$ ).
- $\mathcal{E}_{\Sigma}$ is always negligible : $\mathcal{H}^{d}\left(\mathcal{E}_{\Sigma}\right)=0$. Otsu and Shioya 1994.
- When $a \in \Sigma$ is conical, that is when the tangent cone $\mathrm{T}_{a} \Sigma$ contains no line, then $a \in \mathcal{E}_{\Sigma}$.
The set of conical points of $\Sigma$ is always countable.
- If $\mathbb{E}^{d+1}=E \oplus F$ with $\operatorname{dim} F=2, r>0$ and
$C=\operatorname{conv}\left(S_{E} \cup r S_{F}\right)$, then $S_{E} \subset \mathcal{E}_{\Sigma}$.
Here $\operatorname{dim}_{H} \mathcal{E}_{\Sigma}=d-2$ and $\mathcal{H}^{d-2}\left(\mathcal{E}_{\Sigma}\right)>0$.
- $a \in \Sigma$ is said regular when $\mathrm{T}_{a} \Sigma$ is isometric to $\mathbb{E}^{d}$.

The set $\mathcal{R}_{\Sigma}$ of regular points is always strongly convex in $\Sigma$.
Petrunyn 1998 (Milka 1983 enough for us).
This is used to check that $S_{E} \subset \mathcal{E}_{\Sigma}$ in the above example.

## Typical case

- We said that most, or typical, elements of a Baire space share a property when the exceptional set is meager (i.e. included in the union of countably many closed sets with empty interiors).


## Typical case

- We said that most, or typical, elements of a Baire space share a property when the exceptional set is meager (i.e. included in the union of countably many closed sets with empty interiors).
- $\operatorname{dim}_{H}$ denotes the Hausdorff dimension and $\mathcal{H}^{s}$ the Hausdorff measure in dimension $s$.


## Typical case

- We said that most, or typical, elements of a Baire space share a property when the exceptional set is meager (i.e. included in the union of countably many closed sets with empty interiors).
- $\operatorname{dim}_{H}$ denotes the Hausdorff dimension and $\mathcal{H}^{s}$ the Hausdorff measure in dimension $s$.
- For most $C \in \mathcal{B}$, most elements of $\partial C$ are endpoints. Zamfirescu 82.


## Typical case

- We said that most, or typical, elements of a Baire space share a property when the exceptional set is meager (i.e. included in the union of countably many closed sets with empty interiors).
- $\operatorname{dim}_{H}$ denotes the Hausdorff dimension and $\mathcal{H}^{s}$ the Hausdorff measure in dimension $s$.
- For most $C \in \mathcal{B}$, most elements of $\partial C$ are endpoints. Zamfirescu 82.
- Most $C \in \mathcal{B}$ satisfy $\operatorname{dim}_{H} \mathcal{E}_{C} \geq \max (d-2, d / 3)$. Riv 2015/2014.


## Typical case

- We said that most, or typical, elements of a Baire space share a property when the exceptional set is meager (i.e. included in the union of countably many closed sets with empty interiors).
- $\operatorname{dim}_{H}$ denotes the Hausdorff dimension and $\mathcal{H}^{s}$ the Hausdorff measure in dimension $s$.
- For most $C \in \mathcal{B}$, most elements of $\partial C$ are endpoints. Zamfirescu 82.
- Most $C \in \mathcal{B}$ satisfy $\operatorname{dim}_{H} \mathcal{E}_{C} \geq \max (d-2, d / 3)$. Riv 2015/2014.
- Remarks
- $d-2=d / 3 \Leftrightarrow d=3$ and $d-2>d / 3 \Leftrightarrow d \geq 4$.
- Proof of $\operatorname{dim}_{H} \mathcal{E}_{C} \geq d-2$ uses exple conv( $\left.S_{E} \cup r S F\right)$.
- Proof of $\operatorname{dim}_{H} \mathcal{E}_{C} \geq d / 3$ uses classical conical points.


## Some questions

- Does it exist a convex body $C \in \mathcal{B}$ satisfying $\operatorname{dim}_{H} \mathcal{E}_{C}>\max (d-2, d / 3)$
When $d=2$ can we have $\mathcal{H}^{2 / 3}\left(\mathcal{E}_{C}\right)>0$ ?


## Some questions

- Does it exist a convex body $C \in \mathcal{B}$ satisfying $\operatorname{dim}_{H} \mathcal{E}_{C}>\max (d-2, d / 3)$ When $d=2$ can we have $\mathcal{H}^{2 / 3}\left(\mathcal{E}_{C}\right)>0$ ?
- Are there convex bodies $C_{0}, C \in \mathcal{B}$ and $a \in \partial C \cap \partial C_{0}$ such that $C_{0} \subset C, a \in \mathcal{E}_{C}$ but $a \notin \mathcal{E}_{C_{0}}$. (yes known ?)


## Some questions

- Does it exist a convex body $C \in \mathcal{B}$ satisfying $\operatorname{dim}_{H} \mathcal{E}_{C}>\max (d-2, d / 3)$ When $d=2$ can we have $\mathcal{H}^{2 / 3}\left(\mathcal{E}_{C}\right)>0$ ?
- Are there convex bodies $C_{0}, C \in \mathcal{B}$ and $a \in \partial C \cap \partial C_{0}$ such that $C_{0} \subset C, a \in \mathcal{E}_{C}$ but $a \notin \mathcal{E}_{C_{0}}$. (yes known ?)
- Can we also ask $C_{0}$ to be a Euclidean ball ?


## Some questions

- Does it exist a convex body $C \in \mathcal{B}$ satisfying $\operatorname{dim}_{H} \mathcal{E}_{C}>\max (d-2, d / 3)$ When $d=2$ can we have $\mathcal{H}^{2 / 3}\left(\mathcal{E}_{C}\right)>0$ ?
- Are there convex bodies $C_{0}, C \in \mathcal{B}$ and $a \in \partial C \cap \partial C_{0}$ such that $C_{0} \subset C, a \in \mathcal{E}_{C}$ but $a \notin \mathcal{E}_{C_{0}}$. (yes known ?)
- Can we also ask $C_{0}$ to be a Euclidean ball ?
- Can we also ask $C_{0}$ to be flat at $a\left(a \in U_{0}\left(\partial C_{0}\right)\right)$, that is containing for every $R>0$ a neighborhood of $a$ in a Euclidean ball $B$ of radius $R$ ?


## Some questions

- Does it exist a convex body $C \in \mathcal{B}$ satisfying $\operatorname{dim}_{H} \mathcal{E}_{C}>\max (d-2, d / 3)$
When $d=2$ can we have $\mathcal{H}^{2 / 3}\left(\mathcal{E}_{C}\right)>0$ ?
- Are there convex bodies $C_{0}, C \in \mathcal{B}$ and $a \in \partial C \cap \partial C_{0}$ such that $C_{0} \subset C, a \in \mathcal{E}_{C}$ but $a \notin \mathcal{E}_{C_{0}}$. (yes known ?)
- Can we also ask $C_{0}$ to be a Euclidean ball ?
- Can we also ask $C_{0}$ to be flat at $a\left(a \in U_{0}\left(\partial C_{0}\right)\right)$, that is containing for every $R>0$ a neighborhood of $a$ in a Euclidean ball $B$ of radius $R$ ?
- Can we also ask that $d=2$ and $C$ to be of revolution around an axe containing $a$ ?


## About the proof of $\operatorname{dim}_{H} \mathcal{E}_{C} \geq d-2$

- For $C \in \mathcal{B}$ and $\varepsilon>0$, let $\mathcal{M}_{C, \varepsilon}$ be the set of all the points of $\partial C$ which are the middle of some shorter path of $\partial C$ with length $2 \varepsilon$, and $\mathcal{E}_{C, \varepsilon}=\partial C \backslash \mathcal{M}_{C, \varepsilon}$.
Then we have $\mathcal{E}_{C}=\bigcap_{\varepsilon>0} \mathcal{E}_{C, \varepsilon}$


## About the proof of $\operatorname{dim}_{H} \mathcal{E}_{C} \geq d-2$

- For $C \in \mathcal{B}$ and $\varepsilon>0$, let $\mathcal{M}_{C, \varepsilon}$ be the set of all the points of $\partial C$ which are the middle of some shorter path of $\partial C$ with length $2 \varepsilon$, and $\mathcal{E}_{C, \varepsilon}=\partial C \backslash \mathcal{M}_{C, \varepsilon}$.
Then we have $\mathcal{E}_{C}=\bigcap_{\varepsilon>0} \mathcal{E}_{C, \varepsilon}$
- We can restrict our study to $\mathcal{B}_{0}=\{C \in \mathcal{B} \mid 0 \in \operatorname{int} C\}$


## About the proof of $\operatorname{dim}_{H} \mathcal{E}_{C} \geq d-2$

- For $C \in \mathcal{B}$ and $\varepsilon>0$, let $\mathcal{M}_{C, \varepsilon}$ be the set of all the points of $\partial C$ which are the middle of some shorter path of $\partial C$ with length $2 \varepsilon$, and $\mathcal{E}_{C, \varepsilon}=\partial C \backslash \mathcal{M}_{C, \varepsilon}$.
Then we have $\mathcal{E}_{C}=\bigcap_{\varepsilon>0} \mathcal{E}_{C, \varepsilon}$
- We can restrict our study to $\mathcal{B}_{0}=\{C \in \mathcal{B} \mid 0 \in \operatorname{int} C\}$
- For $\|x\|=1$ we set $\left\{\Phi_{C}(x)\right\}=\mathbb{R}_{+} x \cap \partial C$.


## About the proof of $\operatorname{dim}_{H} \mathcal{E}_{C} \geq d-2$

- For $C \in \mathcal{B}$ and $\varepsilon>0$, let $\mathcal{M}_{C, \varepsilon}$ be the set of all the points of $\partial C$ which are the middle of some shorter path of $\partial C$ with length $2 \varepsilon$, and $\mathcal{E}_{C, \varepsilon}=\partial C \backslash \mathcal{M}_{C, \varepsilon}$.
Then we have $\mathcal{E}_{C}=\bigcap \mathcal{E}_{C, \varepsilon}$
- We can restrict our study to $\mathcal{B}_{0}=\{C \in \mathcal{B} \mid 0 \in \operatorname{int} C\}$
- For $\|x\|=1$ we set $\left\{\Phi_{C}(x)\right\}=\mathbb{R}_{+} x \cap \partial C$.
- We look for a compact set $K$ of the unit sphere, with $\operatorname{dim}_{H} K=d-2$, and such that the following $G_{\delta}$ is dense in $\mathcal{B}_{0}$ :

$$
G_{K}=\left\{C \in \mathcal{B}_{0} \mid \Phi_{C}(K) \subset \mathcal{E}_{C}\right\}=\bigcap_{\varepsilon>0} G_{K, \varepsilon}
$$

where $G_{K, \varepsilon}=\left\{C \in \mathcal{B}_{0} \mid \Phi_{C}(K) \subset \mathcal{E}_{C, \varepsilon}\right\}$.

## About the proof of $\operatorname{dim}_{H} \mathcal{E}_{C} \geq d-2$

- For $\mathbb{E}^{d+1}=E \oplus F$ like in the exemple, we can find $K \subset S_{E}$ with $\operatorname{dim}_{H} K=d-2$, and with $K$ strongly radially porous. This means that for each $\varepsilon>0$ and $n \geq 1, K$ has a finite covering by pairwise disjointed balls $B_{i}\left(c_{i}, r_{i}\right)$ and such that $K \cap B\left(a_{i}, r_{i}\right) \subset B\left(a_{i}, r_{i} / n\right)$


## About the proof of $\operatorname{dim}_{H} \mathcal{E}_{C} \geq d-2$

- For $\mathbb{E}^{d+1}=E \oplus F$ like in the exemple, we can find $K \subset S_{E}$ with $\operatorname{dim}_{H} K=d-2$, and with $K$ strongly radially porous. This means that for each $\varepsilon>0$ and $n \geq 1, K$ has a finite covering by pairwise disjointed balls $B_{i}\left(c_{i}, r_{i}\right)$ and such that $K \cap B\left(a_{i}, r_{i}\right) \subset B\left(a_{i}, r_{i} / n\right)$
- Using our exemple and the strong porosity, we can check the wanted density.
In this point, Riv2015 is rather clumsy !


## About the proof of density of $G_{K}$

- First we have a dense set of smooth $C \in \mathcal{B}_{0}$ such that for some $0<r<R$ and all $a \in \partial C$, there are closed balls containing $a$ in their boundary spheres, and such that $B(c, r) \subset C \subset B\left(c^{\prime}, R\right)$.


## About the proof of density of $G_{K}$

- First we have a dense set of smooth $C \in \mathcal{B}_{0}$ such that for some $0<r<R$ and all $a \in \partial C$, there are closed balls containing $a$ in their boundary spheres, and such that $B(c, r) \subset C \subset B\left(c^{\prime}, R\right)$.
- Given such a $C$ and $\varepsilon>0$, we find a finite family of half spaces $H_{i}$ such that if $C^{\prime}=C \cap \bigcap H_{i}$, then $d_{H}\left(C, C^{\prime}\right)<\varepsilon$ and $C^{\prime} \cap \Phi_{C}(K)=\emptyset$, because of the strong porousity of $K$.


## About the proof of density of $G_{K}$

- First we have a dense set of smooth $C \in \mathcal{B}_{0}$ such that for some $0<r<R$ and all $a \in \partial C$, there are closed balls containing $a$ in their boundary spheres, and such that $B(c, r) \subset C \subset B\left(c^{\prime}, R\right)$.
- Given such a $C$ and $\varepsilon>0$, we find a finite family of half spaces $H_{i}$ such that if $C^{\prime}=C \cap \bigcap H_{i}$, then $d_{H}\left(C, C^{\prime}\right)<\varepsilon$ and $C^{\prime} \cap \Phi_{C}(K)=\emptyset$, because of the strong porousity of $K$.
- Then we get $C^{\prime \prime} \in G_{K}$ with $d_{H}\left(C, C^{\prime \prime}\right)<\varepsilon$ by substituting to each $H_{i}$ some $C_{i}$ congruent to our exemple associated with $\mathbb{E}^{d+1}=E \oplus F_{i}$.


## Why d/3?



- Our modified sphere is the boundary $\Sigma^{\prime}$ of the largest convex set among all those whose boundaries contain the truncated sphere $\Sigma^{-}$(of radius 1 ).


## Why $d / 3$ ?



- Our modified sphere is the boundary $\Sigma^{\prime}$ of the largest convex set among all those whose boundaries contain the truncated sphere $\Sigma^{-}$(of radius 1 ).
- For a small $\alpha$, the smallest possible distance $r_{\alpha}$ from the vertex $v$ to a shorter path $\gamma$, in $\Sigma^{\prime}$ and between points of $\Sigma^{-}$ satisfies $r_{\alpha} \sim \frac{\pi}{4} \alpha^{3}$ and $\varepsilon_{a}=4 \tan \alpha \sim 4 \alpha$


## Why d/3?



- Because of this we choose a function $h>0$ with $h(t)=o\left(t^{3}\right)$ (like $t^{3} /|\ln t|$ near zero), and then $K h$-radially porous, that is: for all $x \in K$, there is a sequence of balls such that for each $n$ we have $\mathrm{B}_{K}\left(x, r_{n}\right) \subset \mathrm{B}_{K}\left(x, h\left(r_{n}\right)\right)$, and with the radius sequence $\left(r_{n}\right)$ decreasing of null limit.


## Why $d / 3$ ?



- Because of this we choose a function $h>0$ with $h(t)=o\left(t^{3}\right)$ (like $t^{3} /|\ln t|$ near zero), and then $K h$-radially porous, that is: for all $x \in K$, there is a sequence of balls such that for each $n$ we have $\mathrm{B}_{K}\left(x, r_{n}\right) \subset \mathrm{B}_{K}\left(x, h\left(r_{n}\right)\right)$, and with the radius sequence $\left(r_{n}\right)$ decreasing of null limit.
- We can also ask $\operatorname{dim}_{H} K=d / 3$.

