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1959: V. Klee, A generic C.S. is C 1 and strictly convex.
1977: P. Gruber, . . . and not C 2.
1979: R. Schneider, 1980,1988: T. Zamfirescu, 2012: K.
Adiprasito and T. Zamfirescu, 2015: Schneider 2015.
Study of directional curvature. (extrinsic property)
1982: T. Zamfirescu, A generic point is an endpoint.
1995: T. Zamfirescu, A generic point has a single farthest
point, to whom it is joined by exactly 3 segments.
1988,91: P. Gruber, A generic C.S. has no (simple) closed
geodesic.

Work in progress.
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1988: J. A. Wieaker, Most compacta are homeomorphic to
a cantor set.
1989: P. Gruber, generic dimension of compacta and
continua.
1997: A. V. Kuz’minykh, Most compacta are totally
anisometric : d(a, b) = d(a′, b′) > 0⇒ {a, b} = {a′, b′}
1989–2005: Results on the embedding: E.S. De Blasi, P.
Gruber, J. Myjak & R. Rudnick, J. A. Wieaker, T.
Zamfirescu, N.V. Zhivkov.

Work in progress.
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2012: K. Adiprazito and T. Zamfirecu, Most points are
endpoints.
2015: J.-I. Itoh, J. R. , C. Vîlcu, No conical points, but no
Gaussian curvature.
2016: J. R. , C. Vîlcu, No/infinitely many simple closed
geodesic, depending on the curvature bound and the
connected component of the space.

Work in progress.
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Baire Categories

Let X be a topological space.
R ⊂ X is rare or nowhere dense iff int (cl (R)) = ∅.
M ⊂ X is meager or of first category iff it is included in a
countable union of rare sets.
X is a Baire space iff any meager set have empty interior.
The Baire’s theorem states that any complete metric space
is a Baire space.

Convention
We say that

most x ∈ X are . . .
or that a generic x ∈ X is . . .

to express that the set of those x ∈ X which are not . . . form a
meager set in X .
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Length spaces I

Preliminary Remark
During this talk, a length space is supposed to be compact.
(unlike most authors)

Definition
Let γ : [a, b]→ X . The length of γ is

L(γ) = sup
(t0,...,tn)∈S

n

∑
i=1

d(γ(ti−1),γ(ti )),

where
S = {(t0, . . . , tn) ∈ Rn |n ∈N, a = t0 < t1 < . . . < tn = b}
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Length spaces II

Theorem
Let X be a compact metric space. Denote by Γ(x , y) the set of
curves from x to y . The following statements are equivalent:

existence of segments: ∀x , y ∈ X∃γ ∈ Γ(x , y) s.t.
d(x , y) = L(γ).
existence of midpoints: ∀x , y ∈ X∃z ∈ X s.t.

d(x , z) = d(z , y) =
1
2
d(x , y).

intrinsic metric: ∀x , y ∈ X , d(x , y) = infγ∈Γ(x ,y ) L(γ).

Definition
A compact metric space satisfying these properties is called a
(compact) length space.
The set of length spaces is denoted by L.
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Length spaces III
Examples

(Counter)example{
x ∈ R2

∣∣‖x‖ = 1
}
endowed with the metric

d0(x , y) = ‖x − y‖ is not a length space, but endowed with
d1(x , y) = arccos 〈x , y〉 is a length space.

Example

R2/Z2 endowed with
d ((x1, y1), (x2, y2)) =min (|x1 − x2| , 1− |x1 − x2|)

+min (|y1 − y2| , 1− |y1 − Y2|) .

Example

More generally, any reversible (compact) Finsler manifold, and
so any (compact) Riemannian manifold.
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Length space IV
Finite metric graphs

Start with a finite combinatorial
graph: (V ,E ), E ⊂ P2(V )×N

Assign lengths to edges: choose
λ : E →]0,+∞[

The set of points is
G = V∪]0, 1[×E

Define the length of a simple path:
`G (γ) = ∑∆∈E λ(δ)`]0,1[(γE ), where γE = γ ∩ E .
Define d(u, v) = infγ`(γ), where the infimum is taken
over all the simple paths γ from u to v .

Any finite metric graph is a length space,
We denote by G the set of finite metric graphs.
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Length space IV
Finite metric graphs

Start with a finite combinatorial
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Length space V
Geodesics in length spaces

Definition
A geodesic is a path which is locally a segment.

Finsler torus R2/Z2 endowed with
|| ||1.

A metric graph.

Geodesics may branch.
No injectivity radius.

Geodesics may stop.
Existence of endpoints.
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Definition
A geodesic is a path which is locally a segment.
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Length space VI
Angles in length spaces 1

One can define lower and upper
angles between segments.

](σ, ζ) = lim inf
s,t→0

θ(δ(s, t); s, t)

](σ, ζ) = lim sup
s,t→0

θ(δ(s, t); s, t)

When the two angles agree, we say that the segments
make a well-defined angle.
In Alexandrov spaces, all angle are well-defined.
In Riemannian manifold, this notion of angles is equivalent
to the usual one.
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Length space VII
Angles in length spaces 2

For instance, in (R2/Z2, ‖ ‖1), the angles
between σ : Y = 0 and ζ : Y = aX are
](σ, ζ) = 0,

](σ, ζ) = arccos
(
1− a

1+ a

)
.

In any length space, if σ1 and σ2 are
two parts of a same segment then
](σ1, σ1) = ](σ1, σ1) = 0,

](σ1, σ2) = ](σ1, σ2) = π.
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Space of length spaces I
The Gromov-Hausdorff metric

Notation. Let Z be a metric space.

K(Z ) denotes the set of nonempty compact subsets of Z
for A ∈ K(Z ) and ρ ∈ R+,

A+ ρ
def
= {y ∈ Z |∃x ∈ A s.t. d(x , y) ≤ ρ}

Definition
for A,B ∈ K(Z ), the Pompeiu-Hausdorff distance is:

dZ
PH(A,B) = inf {ε |A ⊂ B + ε,B ⊂ A+ ε}

for X ,Y compact metric spaces, the Gromov-Hausdorff
distance is: dGH(X ,Y ) = inf

Z ,f ,g
dZ
PH(f (X ), g(Y )),

where the infimum is taken over all metric spaces Z and all
isometric embeddings f : X → Z , g : Y → Z .
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Space of Length spaces II

Theorem
The set GH of all compact metric spaces, up to isometries,
endowed with dGH is a complete metric space.

Theorem
L is closed in GH and so, is a complete metric space.

Theorem
G is dense in L.

Theorem
The set of Riemannian surfaces is dense in L.
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Definition of f -tangency I

motivation
No differential structure
No angle

Definition
A comparison function is smooth increasing function
f :]0,∞[→]0,∞[ s.t. f (x) = o(x) when x goes to 0 .

Notation
The set of segments emanating from a point x will be denoted
by Σx .
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Definition of f -tangency II

Definition
Let f be a comparison function, σ,γ ∈ Σx

1 σ, γ are said to be weakly f -tangent if there exists a
sequence of positive numbers tn tending to 0 such that
σ (tn) γ (tn) < f (tn).

2 σ, γ are said to be f -tangent if there exists τ > 0 such
that for any t ∈ [0, τ] σ (t) γ (t) ≤ f (t).

3 σ, γ are said to be strongly f -tangent if there exists τ > 0
such that for any s, t ∈ [0, τ]
σ (t) γ (s) ≤ |s − t|+ f (min (s, t)).
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f -tangency and angles

Proposition

For any comparison function f ,

1 If σ,γ ∈ Σx are strongly f -tangent then ] (σ,γ) = 0.

2 If σ,γ ∈ Σx are weakly f -tangent then ] (σ,γ) = 0.

Theorem

Let f be a comparison function. For most X ∈ L, if σ, γ ∈ Σx

are f -tangent, then either σ ⊂ γ or γ ⊂ σ.

Corollary
In a generic length space geodesics do not bifurcate.
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A generic result about angles

Theorem
In a generic length space, at any point x , any two segments
σ,γ ∈ Σx satisfy ] (σ,γ) = 0 or ] (σ,γ) = π.

Problem

How common/rare are the pairs (σ,γ) ∈ Σ2
x such that

] (σ,γ) = 0 and ] (σ,γ) = π?
How common/rare are the pairs of segments with a
well-defined angle ?
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Definition of f -cusp

Definition
Let f be a comparison function.
If x ∈ X ∈ L is such that any two segments σ,γ emanating
from x are (resp. weakly, resp. strongly) tangent we call x a
(resp. weak, resp. strong) f -cusp.

Example

If X ∈ G , its (weak/strong) f -cusp are exactly its endpoints.
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Cusp properties

Proposition
1 A strong f -cusp is a f -cusp.
2 A f -cusp is a weak λf -cusp for any λ > 1.

Proposition
A weak f -cusp is interior to no segment.

Theorem
Let f be a comparison function. In a generic length space,

1 there is no f -cusp,
2 a generic point x ∈ X is a weak f -cusps.
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Dimensions
The many names dimension

Names are: box dimension, box-counting ∼, capacity ∼, fractal
∼, Kolmogorov ∼, Minkowski ∼, Minkowski-Bouligand, . . .

Notation
N (X , ε) = min {card (F ) |F ⊂ X ∀x ∈ X d (x ,F ) ≤ ε}

M (X , ε) = max
{

card (F )

∣∣∣∣F ⊂ X and
∀x , y ∈ F x 6= y ⇒ xy ≥ ε

}
,

Theorem and definition
The upper and lower box dimension of a compact metric space
X are defined as

dimB (X ) = lim sup
ε→0

logN (X , ε)

− log ε
= lim sup

ε→0

logM (X , ε)

− log ε

dimB (X ) = lim inf
ε→0

logN (X , ε)

− log ε
= lim inf

ε→0

logM (X , ε)

− log ε
.

where
Note that this notion appears with many other names in the
literature.
It is well-known that the Hausdorff dimension is lower than or
equal to the lower box dimension, which, obviously, is lower
than or equal to the upper box dimension.
If we define

N (X , ε) ≤ M (X , ε) ≤ N (X , ε/3) ,
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Generic dimension

dimT ≤ dimH ≤ dimB ≤ dimB

Theorem
Let X be a generic length space.

dimB(X ) = 1 and dimB(X ) = ∞.
H1(X ) = ∞

Theorem
In a generic compact length space,
∀x ∈ X , ∀ρ > 0, dimB(Sx (ρ)) = 0.

Question
What can one say (generically) of
dimB Sx (ρ) ?

Notation
For x ∈ X ∈ L,
Sx (ρ) is the sphere
centred at x with
radius ρ, that is
{y ∈ X |d(x , y) = ρ}
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Farthest points

Notation

ρx = maxy∈Xd(x , y)

Fx = Sx (ρx )

Theorem
For a generic X ∈ L and a generic x ∈ X , card(Fx ) = 1.

Embedded
in Rn

Abstract

Convex
surfaces
T.Z. (1995)

Alex. Surfaces
J.R & C.V.

(2018?)

Continua

?

Length
spaces
J.R.(2019?)

Compacta
Kuz’minykh
(1997)

compact
metric spaces
J.R. (2011)
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Proof I
Preliminary

Theorem
On a compact manifold endowed with a generic Riemannian
structure, a generic point has a single farthest point.

J. Rouyer (2003).

Lemma
The function F is upper semi-continuous, that is

lim
x→x0

Fx ⊂ Fx0 .
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Proof II

Denote by δ(A) the diameter of A.

M def
= {X |{x ∈ X |#Fx > 1} non meager}
=
⋃
p

{X |int{x ∈ X |δ (Fx ) ≥ 1/p} 6= ∅}

=
⋃
p

⋃
q

{
X

∣∣∣∣∃y ∈ X B̄

(
y ,

1
q

)
⊂ {x ∈ X |δ (Fx ) ≥ 1/p}

}
def
=
⋃
p

⋃
q

Mpq.

Mpq has empty interior.
It remains to prove that it is closed.
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Proof III

Mpq =

{
X

∣∣∣∣∃y ∈ X B̄

(
y ,

1
q

)
⊂ {x ∈ X |δ (Fx ) ≥ 1/p}

}
Mpq 3 Xn ∈ Mpq →

GH
X ∈ L.

W.l.g., we can assume that Xn,X ⊂ Z and Xn →
PH

X .

Take yn ∈ Xn s.t. B̄
(
yn,

1
q

)
⊂ {x ∈ Xn|δ (Fx ) ≥ 1/p}

Take a converging sub-sequence; let y ∈ X be the limit.
We claim that B̄

(
y , 1

q

)
⊂ {x ∈ Xn|δ (Fx ) ≥ 1/p}, and

so, X ∈ Mpq.
z ∈ B̄

(
y , 1

q

)
← zn ∈ B̄

(
yn,

1
q

)
⊂
{
x ∈ Xn

∣∣∣δ(Fx ) ≥ 1
p

}
δ(Fzn ) ≥ 1

p .
By semi-continuity of F , δ(Fz ) ≥ 1

q

z ∈
{
x ∈ X

∣∣∣δ(Fx ) ≥ 1
p

}
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Thank you very much for your attention !
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