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Abstract

Introduction

1959: V. Klee, A generic C.S. is C! and strictly convex.
@ 1977: P. Gruber, ...and not C2.

@ 1979: R. Schneider, 1980,1988: T. Zamfirescu, 2012: K.
Adiprasito and T. Zamfirescu, 2015: Schneider 2015.
Study of directional curvature. (extrinsic property)

@ 1982: T. Zamfirescu, A generic point is an endpoint.
@ 1995: T. Zamfirescu, A generic point has a single farthest
point, to whom it is joined by exactly 3 segments.

@ 1988,91: P. Gruber, A generic C.S. has no (simple) closed
geodesic.
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Introduction

@ 1988: J. A. Wieaker, Most compacta are homeomorphic to
a cantor set.

@ 1989: P. Gruber, generic dimension of compacta and
continua.

e 1997: A. V. Kuz'minykh, Most compacta are totally
anisometric : d(a,b) =d(a',b') > 0= {a, b} ={a', b’}
@ 1989-2005: Results on the embedding: E.S. De Blasi, P.

Gruber, J. Myjak & R. Rudnick, J. A. Wieaker, T.
Zamfirescu, N.V. Zhivkov.
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e 2011: J. Rouyer.
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@ 2012: K. Adiprazito and T. Zamfirecu, Most points are
endpoints.

@ 2015: J.-l. Itoh, J. R., C. Vilcu, No conical points, but no
Gaussian curvature.

@ 2016: J. R., C. Vilcu, No/infinitely many simple closed
geodesic, depending on the curvature bound and the
connected component of the space.
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Meaning of
generic

Baire Categories

Let X be a topological space.
@ R C X is rare or nowhere dense iff int (cl (R)) = @.
@ M C X is meager or of first category iff it is included in a
countable union of rare sets.
e X is a Baire space iff any meager set have empty interior.
@ The Baire's theorem states that any complete metric space
is a Baire space.

Convention
We say that
@ most x € X are ...

@ or that a generic x € X is ...
to express that the set of those x € X which are not ... form a
meager set in X.
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detd] (R Preliminary Remark
y

During this talk, a length space is supposed to be compact.
(unlike most authors)

Definition
Let y : [a, b] — X. The length of 7y is

L(y)= sup id(v(tifl),v(tf)), /\>
(to,--,tn)ES i=1

where
S={(to,....ta) ER"IneN,a=tg < t1 <...< t, = b}
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Length spaces Il

Let X be a compact metric space. Denote by T'(x,y) the set of
curves from x to y. The following statements are equivalent:

e existence of segments: Vx,y € X3y € T'(x,y) s.t.
d(x,y) = L(7).
e existence of midpoints: Vx,y € Xdz € X s.t.

d(x,z) =d(z,y) = %d(x,y).

o intrinsic metric: Vx,y € X, d(x,y) = inf,cr(x ) L(7)-

Definition

A compact metric space satisfying these properties is called a
(compact) length space.

The set of length spaces is denoted by L.
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(Counter)example

Joél Rouyer {X E IR2 H|XH = 1} endOWed With the metl’iC
do(x,y) = |[x — y|| is not a length space, but endowed with
di(x,y) = arccos (x, y) is a length space.

Example
R2/Z2 endowed with

d ((x1,y1), (X2, y2)) = min (|x1 — x2|, 1 — |[x1 — x2|)
+min (|y1 —y2|, 1 = [y1 — Y2l).

Example

| \

More generally, any reversible (compact) Finsler manifold, and
so any (compact) Riemannian manifold.
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Finite metric graphs

Generic
Lengths

Spaces Start with a finite combinatorial
Joél Rouyer graph (Vv E), E C P2(V) X N
@ Assign lengths to edges: choose

A E —]0, +o0]
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Finite metric graphs

Generic
Lengths

Spaces @ Start with a finite combinatorial
Joél Rouyer graph (Vv E), E C P2(V) X N
@ Assign lengths to edges: choose

A E —]0, +o0]

@ The set of points is
G = VU|0,1[xE




Length space IV

Finite metric graphs

Generic
Lse:ag::ss @ Start with a finite combinatorial
Jo&l Rouyer graph: (V,E), EC P2(V)xN
@ Assign lengths to edges: choose
A E —]0, +oo|
@ The set of points is
G = VU0, 1[xE
@ Define the length of a simple path:
l6(7) = Lace M) bo1((7E), where v = yNE.
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Finite metric graphs

Generic

Lse:ag::ss @ Start with a finite combinatorial
Joél Rouyer graph <V, E), E C Pz(v) X IN
@ Assign lengths to edges: choose

A E —]0, +oo|
@ The set of points is

G = VU0, 1[xE
@ Define the length of a simple path:

l6(7) = Lace M) bo1((7E), where v = yNE.
@ Define d(u, v) = inf,£(7), where the infimum is taken

over all the simple paths o from u to v.

Any finite metric graph is a length space,
We denote by G the set of finite metric graphs. J
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Geodesics in length spaces
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[T ] Finsler torus R2/Z?2 endowed with
I [z

o Geodesics may branch.

@ No injectivity radius.
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Geodesics in length spaces

Generic Deﬂnltlon
Lengths L. X .
Spaces A geodesic is a path which is locally a segment.
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[ie

RN ] Finsler torus R2/Z?2 endowed with J

A metric graph. J

o Geodesics may branch.
@ No injectivity radius.
@ Geodesics may stop.

@ Existence of endpoints.
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Angles in length spaces 1

Generic
Lengths
Spaces

One can define lower and upper
angles between segments.

Joél Rouyer

L(0,0) = IiSn;l_i>n0f0((5(s, t);s, t)

(s),

e Z(0,7) = limsup0(é(s, t); s, t)

1 q(ﬁ‘{ 5,t—0

@ When the two angles agree, we say that the segments
make a well-defined angle.

@ In Alexandrov spaces, all angle are well-defined.

@ In Riemannian manifold, this notion of angles is equivalent
to the usual one.
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Angles in length spaces 2
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For instance, in (R?/Z2, || ||;), the angles
between 0 : Y =0and {: Y = aX are
£(0.0) =0, '

. 1 _ d(s,t)
£L(0,0) :arccos<1+a) : =

In any length space, if o1 and 0% are

G, G, two parts of a same segment then
£(o1,01) = £(01,01) =0,

L(o1,00) = £(01,00) =m0
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The Gromov-Hausdorff metric

Generic . .
Lengthe Notation. Let Z be a metric space.

Spaces
° @ IC(Z) denotes the set of nonempty compact subsets of Z

o for Ac K(Z) and p € Ry,

A—I—pd:ef{yeZEIxeAs.t. d(x,y) <p}

Joél Rouyer

v

o for A, B € K(Z), the Pompeiu-Hausdorff distance is:

dj(A B) =inf{e|[ACB+eBCA+e}

e for X, Y compact metric spaces, the Gromov-Hausdorff
distance is: dgy(X,Y) = Z.f}f d5,(F(X),g(Y)),
fg

where the infimum is taken over all metric spaces Z and all
isometric embeddings f : X — Z, g: Y — Z.

v
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The set GH of all compact metric spaces, up to isometries,
endowed with dgy is a complete metric space.

L is closed in GH and so, is a complete metric space. \
G is dense in L. \
The set of Riemannian surfaces is dense in L. \
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Jogl Rouyer o No differential structure

@ No angle

Definition
A comparison function is smooth increasing function
f:]0, 00[—]0, o[ s.t. f(x) = o(x) when x goes to 0 .

Tangency

Notation

The set of segments emanating from a point x will be denoted
by %.
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Let f be a comparison function, o,y € Ly

Q 0, v are said to be weakly f-tangent if there exists a
sequence of positive numbers t,, tending to 0 such that
o (ta) v (tn) < f (tn).

@ 0, 7 are said to be f-tangent if there exists T > 0 such
that for any t € [0, T] o (t) 7y (t) < f (t).

© 0, 7 are said to be strongly f-tangent if there exists T > 0
such that for any s, t € [0, 7]
a(t)y(s) <|s—t|+f(min(s, t)).

Tangency




f-tangency and angles
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For any comparison function f,

@ Ifo,y € ¥, are strongly f-tangent then £ (¢, 7) = 0.
Q Ifo,y € £y are weakly f-tangent then £ (o, ) = 0.

Tangency

Let f be a comparison function. For most X € L, if o, v € ¥
are f-tangent, then either o C 7y or v C 0.

In a generic length space geodesics do not bifurcate. \
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Theorem

In a generic length space, at any point x, any two segments
0,y € X satisfy L (0,v) =0or £L(0,7) =m.

v

e How common/rare are the pairs (¢, ) € £2 such that
L(o,y)=0and £L(o,7) =m?

@ How common/rare are the pairs of segments with a
well-defined angle ?

Tangency
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Definition

Let f be a comparison function.
If x € X € L is such that any two segments 0,7y emanating
from x are (resp. weakly, resp. strongly) tangent we call x a
(resp. weak, resp. strong) f-cusp.

If X € G, its (weak/strong) f-cusp are exactly its endpoints. l
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Proposition
@ A strong f-cusp is a f-cusp.
@ A f-cusp is a weak Af-cusp for any A > 1.

Joél Rouyer

Proposition
A weak f-cusp is interior to no segment.

Let f be a comparison function. In a generic length space,

@ there is no f-cusp,
@ a generic point x € X is a weak f-cusps.




Dimensions

The many names dimension

s Names are: box dimension, box-counting ~, capacity ~, fractal
engths

Spaces ~, Kolmogorov ~, Minkowski ~, Minkowski-Bouligand, . ..
o N(X,e) =min{card (F) |[F C X Vx e X d(x,F) <e}

F C X and }

Vx,y€E Fx#y=xy>c¢ef’

Theorem and definition

Dimension The upper and lower box dimension of a compact metric space
X are defined as

Joél Rouyer

o M(X,¢e) = max{card(F)

dim® (X) = lim supOg—('e) = |imsup0g—('£)
e —loge e—0 —loge
dimg (X) = lim inng—('E) — lim inng—('s)_

e—0 —loge e—0 —loge
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Let X be a generic length space.
o dimg(X) = 1 and dim®(X) = .
e HY(X) =00

Dimension .
In a generic compact length space, Forxe X € L,
Vx € X,Vp > 0,dimg(S«(p)) = 0. S«(p) is the sphere

centred at x with
radius p, that is

{y e X|d(x,y) = p}

What can one say (generically) of
dim® S, (o) 7
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Px = maxyexd(x,y)
Fx = Sx(px)
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For a generic X € L and a generic x € X, card(Fy) = 1.

Farthest
points
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Ox = maxyexd(x, y)
Fx == SX(pX)
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For a generic X € L and a generic x € X, card(Fy) = 1.

=pleee] Convex Continua Compacta
in R" surfaces Kuz'minykh
Fall'thest TZ (1995) ? (1997)
points y o
Abstract Alex. Surfaces | Length compact
JR& CV. spaces metric spaces

(20187) | J.R.(20197)| JR.  (2011)

o -~ v
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On a compact manifold endowed with a generic Riemannian
structure, a generic point has a single farthest point.

J. Rouyer (2003).

Farthest

The function F is upper semi-continuous, that is

points

lim Fy C Fi.

X—rX0
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M {X |{x € X |#Fx > 1} non meager}

= |J{X |int{x € X |6 (Fx) > 1/p} # @}

:L]U{X'Hyex B <y’c1;> C{xeX|o(F) > 1/P}}
dZEfUUMPq'

Farthest
points

e M, has empty interior.

@ It remains to prove that it is closed.
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Lo Roner Mpg = {X ‘Ely €EXB <y, q) C{xeX|é(F) > l/p}}
° MpqaxneMpaneﬁ.
e W.l.g., we can assume that X,,, X C Z and X, ;I X.

e Take y, € X, s.t. B (y,,, %) C {x € Xy|6 (Fx) > 1/p}
@ Take a converging sub-sequence; let y € X be the limit.
e We claim that B (y, %) C {x € X,|6 (Fx) > 1/p}, and
T s0, X € Mpg.

z€B<y,%) %anB(yn,%) C {XEX,-,
5(Fz) > .

By semi-continuity of F, §(F;) >
ze {XEX‘&(FX) > %}

5(F) = 1}

1
q
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Thank you very much for your attention !
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