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Motivation

Airborne laser scanning provides a cloud of points
situated in the 3D-space (LiDAR data).

Such data sets contain a lot of information
useful in practical problems.

− Challenge: explore the opportunity of using tools from
Discrete Differential Geometry.

− Aim: perform numerical experiments based on true terrain
data.
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Geo-spatial data - format and representation

Point clouds (LiDAR data)
− rich in information (+)
− appropriate algorithms (+)
− lack of 2D correspondent (–)

Triangulated terrains (TIN)
− still carry a lot of information (+)
− 2D correspondent possible (+)
− high computational costs (–)

Regularly spaced grids
− easy to handle (+)
− standard patch-corridor model (+)
− lack of details (–)
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Digital models of the terrain

Three representations of the same study site (contour lines,
combined, TIN), as provided by GIS-software



Context Discrete curvatures: alternative definitions Comparative analyses Detecting structures in spatial-data

TIN representations and terrain variability

• Triangulated terrains in GIS [e.g. de Floriani et al., 1997]

Ridges or valleys are visible in a TIN model

• Recent developments: visibility, computing watersheds [de Berg et
al., 2011; de Berg and Tsirogiannis, 2011]

• Main research question: to what extent is it possible to extract
relevant information from geo-spatial data when triangle meshes are
used? Specifically: how can one measure the lack of flatness?

• Main hypothesis: discrete curvatures for triangle meshes could
provide relevant numerical descriptors (morphometric variables, e.g.
slope, curvatures) quantifying terrain features. Two tracks: (i)
comparisons for various methods; (ii) identification of specfic
structures.
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Morphometric variables − the discrete approach
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Notation: 1-ring Nv
v

vi−1

vi

vi+1

vi−2

vi+2

ni−1

ni

θi

αi

βi

ηi

1

Geometric elements around a vertex v:

• Edges / faces incident to v (or associated measures −
lengths, areas).

• Angles (θi )i between edges incident to v.

• Angles (ηi )i between normals of faces incident to v.

• Angles (αi )i , (βi )i between edges of the 1-ring that are not
incident to v.
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Method 1: Gauss-Bonnet scheme (1) GB1

• Gaussian curvature at v

Kv =
2π −

∑
vi∈Nv

θi
1
3A

, (1)

where 2π −
∑

vi∈Nv
θi is the angular defect at v, and A is the

total area of the triangles in the 1-ring neighborhood of v

• Mean curvature at v

Hv =
1
4

∑
vi∈Nv

‖−→vvi‖ηi
1
3A

(2)

(measures the variation of the normals along the edges
incident to v)
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Method 1: Gauss-Bonnet scheme (1) GB1

Used by [Dyn et al., 2001]; [Kim et al., 2002] for simplifying
triangle meshes

Helicopter model. (a) Original. (b), (c) Simplified versions. In (c) the discrete curvatures were used.

Source: [S.J. Kim, C.H. Kim, D. Levin, Computers & Graphics, 2002]
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Method 2: Gauss-Bonnet scheme (2) GB2

• Proposed by [Meyer et al., 2003]; considers for averaging
Amixed − area of a region determined by circumcenters
instead of barycenters (adapted for obtuse triangulations).

• Gaussian curvature at v

Kv =
2π −

∑
vi∈Nv

θi

Amixed
. (3)

Each triangle of Nv “contributes” to Amixed. If ∆vvi−1vi , is non-obtuse,

its contribution is 1
8
(‖−→vvi‖2cot(v̂vi−1vi ) + ‖ −→vvi−1‖2cot(v̂vivi−1)). If ∆is

obtuse: (i) at v: 1
2
A(∆), (ii) at a vertex different of v: 1

4
A(∆).

• The mean curvature Hv = 1
2‖Hv‖ is the norm of the mean

curvature operator

Hv =
1

2Amixed

∑
vi∈Nv

(cot(v̂vi−1vi ) + cot(v̂vi+1vi ))
−→
viv. (4)
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Method 3: approach based on Euler’s theorem ET

• Proposed by [Watanabe & Belyaev, 2001], based on integral
formulas derived from Euler’s theorem

H =
1

2π

∫ 2π

0
κν(ϕ)dϕ; K = 3H2 − 1

π

∫ 2π

0
κν(ϕ)2dϕ,

κν(ϕ) is the normal curvature of the normal section curve
corresponding to the angle ϕ.

• Approximate κν(ϕ) along the edges of the 1-ring by

κν,i '
2 < nv ,

−→
vvi>

‖ −→vvi ‖2
(5)

(nv weighted normal; weights are relative areas).
• Use approximation and put

Hv =
1

2π

n∑
i=1

κν,i
θ(i−1) mod n + θi

2
; Kv = 3H2

v −
1

π

n∑
i=1

κ2
ν,i

θ(i−1) mod n + θi

2
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Method 4: the tensor approach TA

• Proposed by [Taubin, 1995]

• Define the normal curvature κν,i along the edge
−→
vvi as in (5).

• Approximate the corrsponding tangent vector by normalizing
the projecton of

−→
vvi onto the plane orthogonal to

→
nv, that is

→
t i = (I3−

→
n v
→
n
t

v )(vi−v)

‖(I3−
→
n v
→
n
t

v )(vi−v)‖
.

• Define the matrix Mv as a weighted sum,

Mv =
∑dv

i=1 ρiκν,i
→
t i

→
t
t

i , where the weight ρi the relative area

of the faces that are adjacent to the edge
−→
vvi .

• By the construction of Mv, one of its eigenvalues is 0, with
associated eigenvector

→
nv. Let λ and µ be the other

eigenvalues of Mv. Put

Kv = (3λ− µ) · (3µ− λ); Hv =
1

2
[(3λ− µ) + (3µ− λ)] .
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Method 5: paraboloid fitting PF

Assume that v = 0 and nv = (0, 0, 1); take its 1-ring neighborhood
and find a paraboloid z = ax2 + bxy + cy2 that better fits this data
(using least squares fitting, e.g. [Hamann, 1993]); then compute
Kv ,Hv by using standard formulas for the smooth paraboloid

Kv = 4ac − b2; Hv = a + c . (6)

vi−1

vi

vi+1

v
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Method 6: Shape Operator SO

• Proposed by [Hildebrandt & Polthier, 2004]

• One defines the mean curvature for an edge e
He = 2‖e‖ cos ηe2 .

• The Shape Operator at the vertex v

S(v) =
1

2

∑
ei∈Nv

ωeiHei

→
tei
→
tei

t
,

where ωe = 〈nv,ne〉, and
→
te is the versor of the projection on

the “tangent” plane at v of the vector
→
e × →ne .

• The Gaussian curvature and the mean curvature, respectively,
are defined by

Kv = det(S(v)); Hv =
1

2
tr(S(v)). (7)
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Concept

• Comparisons between the methods: realized for surfaces such
as plane, sphere, cone, cylinder [Magid, Soldea, Rivlin, 2007].

• Aim: computation and comparisons for geo-spatial data,
obtained thrhough in situ measurements − true terrains, with
unknown geometry of the underlying surface.

• Two complementary approaches: refining and coarsening.
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Approach 1 - approximation accuracy
• Generate a discrete height function starting from the elevation digital

model of a site situated in a mountainous region (cca. 23 km2).

• Produce a smooth surface S by standard interpolation techniques.

• Select on S , through jittered sampling with decreasing cell size (i.e.,
increasing resolution), sets of random points (‘pseudo-LiDAR data sets’).
Four cell sizes were used throughout the experiments having a size equal
to a ratio of 1, 0.5, 0.25 and 0.125 to the original cell size. These values
correspond to real cell sizes of 18 m, 9 m, 4.5 m and 2.25 m, respectively.

• Generate a 2.5D triangular irregular network for each point set, obtained
for each of the four levels of resolution.

• Compare the discrete Gaussian curvature and discrete mean curvature
with the ‘true’ smooth ones. For each method, at each of the four levels
of resolution, two numerical quantities were computed: (i) the absolute
error (normalized L1-norm of the vector of differences between ‘discrete’
and ‘smooth’ curvatures); (ii) the correlation coefficients between the
discrete and the smooth curvatures.
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Results (1): Gaussian curvature

− In the computation of the absolute error and of the correlation
coefficient all points are taken into account
− Gauss-Bonnet scheme: best approximation
− Paraboloid fitting: bad behavior (occurrence of outliers)
− Hierarchy is similar for spline interpolation
− The results for SO-method are not included in the diagrams
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Results (1): Gaussian curvature - outliers removed

− In the computation of the absolute error and of the correlation
coefficient the ‘outliers’ were removed
− Gauss-Bonnet scheme: best approximation
− Paraboloid fitting: sensitive to occurrence of outliers
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Results (1): mean curvature

− In the computation of the absolute error and of the correlation
coefficient all points are taken into account
− Method using Euler’s theorem and the tensor approach:
best approximation
− Paraboloid fitting: bad behavior
− Hierarchy is similar for spline interpolation
− The results for SO-method are not included in the diagrams
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Results (1): mean curvature - outliers removed

− In the computation of the absolute error and of the correlation
coefficient ‘outliers’ are removed
− Method using Euler’s theorem: good approximation / not
sensitive to outliers
− Paraboloid fitting: best approximation / sensitive to
occurrence of outliers
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Approach 2 - smoothening

• Numerical experiments based on true terrain data: high resolution point
cloud of size 427K; surface of cca. 2.5 ha.

• Preprocess data: crop and a rectangle having sizes 128 m and 160 m.

• For cell sizes equal to 0.5 m, 1 m, 2 m, 4 m, 8 m, 16 m, regularly spaced
grids were generated. For each cell C, a single point was obtained, by
averaging the coordinates of the points of the original cloud situated in C.

• For each point set, obtained for each of the six levels of resolution, a
2.5D Delaunay triangulation was generated.

• The values of the discrete Gaussian and mean curvatures for the vertices
of each set and for the corresponding regularly spaced grids were
computed. For each method, the discrete Gaussian curvature and discrete
mean curvature were compared with the ones computed for the
corresponding regular grids. The comparison was achieved by computing
two numerical quantities: (i) the absolute error (normalized L1-norm of
the difference vectors), (ii) the correlation coefficients. For a better
relevance, border vertices or vertices for which some of the methods could
not provide any value were removed from the statistics.
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Results (2): Gaussian curvature

− Absolute error and correlation coefficients: GB1, GB2, ET, TA
comparable results (smoothening effect).
− The results for SO-method are not included in the diagrams
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Results (2): mean curvature

− Method using Euler’s theorem and the tensor approach:
best approximation
− Weak correlations for GB1, GB2 (only positive values).
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Conclusions

For the Gaussian curvature, the best approximation was given by
the Gauss-Bonnet schemes, while in the case of the mean
curvature, the tensor approach and the method based on Euler’s
theorem provided an accurate estimate. These findings are
consistent for both approaches and they are consistent with
previous studies conducted for smooth surfaces with known
underlying geometry.
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Problem statement

Vegetation structures (e.g. trees) are visible in a high density point
cloud and in the associated triangulation.
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Methodology
• The high resolution LiDAR point cloud was used; a 2.5

Delaunay triangulation was generated direclty from the
original point cloud ((x , y)-duplicates, due to vegetation, were
eliminated).

• Compute the values of discrete curvatures for the triangle
mesh associated to the original point cloud. For each discrete
curvature get a grid of averaged curvatures (cell size 1m).

• Construct regular grids (cell size 1m) of curvatures.
Construirea unor “grile regulate de curburi”, având celula cu
dimensiunea de 1m. For each method and cell one considered
the vertices lying in that cell and then one computed the
average value of the curvatures corresponding to these
vertices.

• Use pattern recognition techniques (the Hough transform,
implemented in Matlab, sensitivity factor 0.85) for detecting
circles: horizontal projections of tree crowns usually yield
circular shapes.
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Tree detection − results

LiDAR point cloud (colours represent height above ground, in particular trees are coloured in red).

Grid generated by using the mean curvature, as provided by the shape operator method. The red circles represent

trees detected by using Matlab’s circle detection function.
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Tree detection − results

The point cloud (3D representation).

Grid of mean curvatures for SO (3D representation).
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Comparisons − mean curvature grids

Point cloud. ET

GB1 GB2

SO TA
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Comments and conclusions

• Mean curvature - makes it possible to detect trees and the
size of their crowns.

• Good results for SO; similar results for GB1, GB2.

• Advantages:

• The method presented is independent on any a priori
knowledge, while state of the art techniques require a
preliminary field survey, enabling an appropriate calibration and
developing suitable regression models, (e.g. [Popescu, 2003]).

• Independence on tree species, while other approaches are
species sensitive: [Falkowski et al., 2006] an aaproach on the
Mexican Hat wavelet appropriate for coniferous trees.
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Thank you!
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