Envelopes of α -sections

Costin Vîlcu

Simion Stoilow Institute of Mathematics of the Romanian Academy

September 2017

Costin Vîlcu (IMAR)

Envelopes of α -sections

This talk is based on a joint work with

Nicolas Chevallier and Augustin Fruchard

Laboratoire de Mathématiques, Informatique et Applications Faculté des Sciences et Techniques Université de Haute Alsace

- ∢ ∃ ▶

 Convex body K = a compact convex set with interior points in E = R² (or in R^d).

æ

イロト イヨト イヨト イヨト

- Convex body K = a compact convex set with interior points in E = R² (or in R^d).
- |K| = the area (*d*-volume) of *K*;

(B)

- Convex body K = a compact convex set with interior points in E = R² (or in R^d).
- |K| = the area (*d*-volume) of K;
- $\partial K =$ the boundary of K.

- ∢ ∃ ▶

- Convex body K = a compact convex set with interior points in E = R² (or in R^d).
- |K| = the area (*d*-volume) of K;
- $\partial K =$ the boundary of K.
- $\alpha \in]0,1[$ α -section of K = an oriented line $\Delta \subset E$ cutting K in two parts, K^- (to the right) of area $|K^-| = \alpha |K|$, and K^+ (to the left) of area $|K^+| = (1 - \alpha)|K|$; K^{\pm} = compact sets, so $K^+ \cap K^- = \Delta \cap K$.

- Convex body K = a compact convex set with interior points in E = R² (or in R^d).
- |K| = the area (*d*-volume) of K;
- $\partial K =$ the boundary of K.
- $\alpha \in]0,1[$ α -section of K = an oriented line $\Delta \subset E$ cutting K in two parts, K^- (to the right) of area $|K^-| = \alpha |K|$, and K^+ (to the left) of area $|K^+| = (1-\alpha)|K|$; $K^{\pm} = \text{compact sets, so } K^+ \cap K^- = \Delta \cap K.$
- K_{α} is the α -core of K = the intersection of all K^+ .

- Convex body K = a compact convex set with interior points in E = R² (or in R^d).
- |K| = the area (*d*-volume) of K;
- $\partial K =$ the boundary of K.
- $\alpha \in]0,1[$ α -section of K = an oriented line $\Delta \subset E$ cutting K in two parts, K^- (to the right) of area $|K^-| = \alpha |K|$, and K^+ (to the left) of area $|K^+| = (1 - \alpha)|K|$; K^{\pm} = compact sets, so $K^+ \cap K^- = \Delta \cap K$.
- K_{α} is the α -core of K = the intersection of all K^+ .
- m_{α} = the envelope of all α -sections of K.

A B F A B F

If K is a disk then $m_{\alpha} = \partial K_{\alpha}$ is a circle.

æ

イロト イヨト イヨト イヨト

If K is a disk then $m_{\alpha} = \partial K_{\alpha}$ is a circle.

If K is a polygon then m_{α} is made of arcs of hyperbolae, $\forall \alpha \in]0, 1[$.

3 1 4 3 1

Study secants between parallel supporting lines to K, whose distances to the corresponding lines make a ratio of $\alpha/(1-\alpha)$.

Study secants between parallel supporting lines to K, whose distances to the corresponding lines make a ratio of $\alpha/(1-\alpha)$.

Contributors:

- P.C. Hammer, 1951;
- V. Klee, 1953;
- T. Zamfirescu, 1967.

Contributors:

- S.E. Cappell, J.E. Goodman, J. Pach, R. Pollack, M. Sharir, R. Wenger, 1994;
- I. Bárány, A. Hubard, J. Jeronimo, 2008;
- J. Kincses, 2008:

Contributors:

- S.E. Cappell, J.E. Goodman, J. Pach, R. Pollack, M. Sharir, R. Wenger, 1994;
- I. Bárány, A. Hubard, J. Jeronimo, 2008;
- J. Kincses, 2008:

Theorem

For any well-separated family of k strictly convex bodies in \mathbb{R}^d , $k \leq d$, the space of all α -sections is diffeomorphic to \mathbb{S}^{d-k} .

Definitions

æ

イロト イヨト イヨト イヨト

Definitions

• a *billiard table* = a planar strictly convex body K;

Image: Image:

ヨト イヨト

Definitions

- a *billiard table* = a planar strictly convex body K;
- the *billiard map T*;

ヨト イヨト

Definitions

- a *billiard table* = a planar strictly convex body K;
- the *billiard map T*;
- a caustic = a *T*-invariant curve.

Contributors:

- V. F. Lazutkin, 1973;
- J. Moser, 1973;
- E. Gutkin, A. Katok, 1995;
- S. Tabachnikov, 1995;
- D. Fuchs, S. Tabachnikov, 2007:

Definitions

- a *billiard table* = a planar strictly convex body K;
- the *billiard map T*;
- a caustic = a *T*-invariant curve.

Contributors:

- V. F. Lazutkin, 1973;
- J. Moser, 1973;
- E. Gutkin, A. Katok, 1995;
- S. Tabachnikov, 1995;
- D. Fuchs, S. Tabachnikov, 2007:

Theorem

If ℓ is the envelope of α -sections of a convex set bounded by a curve κ , for some α , then κ is a caustic for the outer billiard of table $L = \operatorname{conv} \ell$.

Costin Vîlcu (IMAR)

Related topic: floating bodies

Definitions

• the *floating body* of K is the set $K_{[\alpha]}$ bounded by m_{α} ;

ヨト イヨト

Related topic: floating bodies

Definitions

- the *floating body* of K is the set $K_{[\alpha]}$ bounded by m_{α} ;
- the convex floating body of $K = \text{our } \alpha \text{-core } K_{\alpha}$.

-∢ ∃ ▶

Related topic: floating bodies

Definitions

- the *floating body* of K is the set $K_{[\alpha]}$ bounded by m_{α} ;
- the convex floating body of $K = \text{our } \alpha \text{-core } K_{\alpha}$.

Contributors:

• C. Dupin, 1822;

- the *floating body* of K is the set $K_{[\alpha]}$ bounded by m_{α} ;
- the convex floating body of $K = \text{our } \alpha \text{-core } K_{\alpha}$.

Contributors:

- C. Dupin, 1822;
- C. Schütt, E. Werner, 1990, 1994; E. Werner, 2004: study estimates for vol_n(K) - vol_n(K_[α]), vol_n(K) - vol_n(K_α), in relation to the affine surface area and to polygonal approximations.

- the *floating body* of K is the set $K_{[\alpha]}$ bounded by m_{α} ;
- the convex floating body of $K = \text{our } \alpha \text{-core } K_{\alpha}$.

Contributors:

- C. Dupin, 1822;
- C. Schütt, E. Werner, 1990, 1994; E. Werner, 2004: study estimates for vol_n(K) - vol_n(K_[α]), vol_n(K) - vol_n(K_α), in relation to the affine surface area and to polygonal approximations.
- M. Meyer, S. Reisner, 1991;
- A. Stancu, 2006:

- the *floating body* of K is the set $K_{[\alpha]}$ bounded by m_{α} ;
- the convex floating body of $K = \text{our } \alpha \text{-core } K_{\alpha}$.

Contributors:

- C. Dupin, 1822;
- C. Schütt, E. Werner, 1990, 1994; E. Werner, 2004: study estimates for vol_n(K) - vol_n(K_[α]), vol_n(K) - vol_n(K_α), in relation to the affine surface area and to polygonal approximations.
- M. Meyer, S. Reisner, 1991;
- A. Stancu, 2006:

Theorem

 $K \subset \mathbb{R}^d$ with boundary of class $\mathcal{C}^{\geq 4}$; K_{δ} is homothetic to K, for some sufficiently small $\delta > 0$, if and only if K is an ellipsoid.

Costin Vîlcu (IMAR)

イロト イ団ト イヨト イヨト

Related topic: fair partitioning of convex bodies

Fair / balanced / equi- partions of convex bodies (measures) by use of

- k-fans;
- hyperplanes;
- orthogonal lines.

Related topic: fair partitioning of convex bodies

Fair / balanced / equi- partions of convex bodies (measures) by use of

- k-fans;
- hyperplanes;
- orthogonal lines.

Contributors:

- I. Bárány, J. Matousek, 2001;
- T. Sakai, 2002;
- S. Bereg, 2009;
- I. Bárány, P. Blagojević, A. Szúcs, 2010;
- P. V. M. Blagojević, G.M. Ziegler, 2014;
- R. N. Karasev, A. Hubard, B. Aronov, 2014;

Fair partitioning of convex bodies II

• A. Fruchard, A. Magazinov, 2016:

Image: Image:

3 K K 3 K

• A. Fruchard, A. Magazinov, 2016:

For a pizza (*K*, *L*), with $L \subset K \subset E$, use a succession of double operations:

- a cut by a *full* straight line, followed by
- a Euclidean move of one of the pieces.

The final partition is *fair* if each resulting slice has the same amount of K and the same amount of L.

• A. Fruchard, A. Magazinov, 2016:

For a pizza (*K*, *L*), with $L \subset K \subset E$, use a succession of double operations:

- a cut by a *full* straight line, followed by
- a Euclidean move of one of the pieces.

The final partition is *fair* if each resulting slice has the same amount of K and the same amount of L.

Theorem

Given an integer $n \ge 2$, there exists a fair partition of any pizza (K, L) into n parts if and only if n is even.

If $\alpha > 1/2$ then $K_{\alpha} = \emptyset$.

æ

イロト イヨト イヨト イヨト

If $\alpha > 1/2$ then $K_{\alpha} = \emptyset$.

Theorem

If K is symmetric then

- $m_{\alpha} = \partial K_{\alpha}$ for all $\alpha \in \left[0, \frac{1}{2}\right]$;
- m_{α} is of class C^1 for all $\alpha \in \left[0, \frac{1}{2}\right]$ if and only if K is strictly convex.

We cannot have $m_{\alpha} = \partial K_{\alpha}$ for all $\alpha \in \left]0, \frac{1}{2}\right[$, because m_{α} exists for all α , but $K_{\alpha} = \emptyset$ for α close enough to $\frac{1}{2}$.

We cannot have $m_{\alpha} = \partial K_{\alpha}$ for all $\alpha \in \left]0, \frac{1}{2}\right[$, because m_{α} exists for all α , but $K_{\alpha} = \emptyset$ for α close enough to $\frac{1}{2}$.

Theorem

If K is non-symmetric then there exists $\alpha_B \in \left[0, \frac{1}{2}\right]$ s.t.

• $m_{\alpha} = \partial K_{\alpha}$ for all $\alpha \in]0, \alpha_B]$

We cannot have $m_{\alpha} = \partial K_{\alpha}$ for all $\alpha \in \left]0, \frac{1}{2}\right[$, because m_{α} exists for all α , but $K_{\alpha} = \emptyset$ for α close enough to $\frac{1}{2}$.

Theorem

If K is non-symmetric then there exists $\alpha_B \in \left[0, \frac{1}{2}\right[s.t.$

 m_α = ∂K_α for all α ∈]0, α_B], and m_α is of class C¹ for all α ∈]0, α_B[iff ∂K doesn't contain two parallel segments.

We cannot have $m_{\alpha} = \partial K_{\alpha}$ for all $\alpha \in \left]0, \frac{1}{2}\right[$, because m_{α} exists for all α , but $K_{\alpha} = \emptyset$ for α close enough to $\frac{1}{2}$.

Theorem

If K is non-symmetric then there exists $\alpha_B \in \left[0, \frac{1}{2}\right]$ s.t.

- m_α = ∂K_α for all α ∈]0, α_B], and m_α is of class C¹ for all α ∈]0, α_B[iff ∂K doesn't contain two parallel segments.
- $m_{\alpha} \supseteq \partial K_{\alpha}$ for all $\alpha \in \left] \alpha_{B}, \frac{1}{2} \right[$

We cannot have $m_{\alpha} = \partial K_{\alpha}$ for all $\alpha \in \left]0, \frac{1}{2}\right[$, because m_{α} exists for all α , but $K_{\alpha} = \emptyset$ for α close enough to $\frac{1}{2}$.

Theorem

If K is non-symmetric then there exists $\alpha_B \in \left[0, \frac{1}{2}\right]$ s.t.

- m_α = ∂K_α for all α ∈]0, α_B], and m_α is of class C¹ for all α ∈]0, α_B[iff ∂K doesn't contain two parallel segments.
- $m_{\alpha} \supseteq \partial K_{\alpha}$ for all $\alpha \in \left] \alpha_{B}, \frac{1}{2} \right[$, and m_{α} is never C^{1} for $\alpha \in \left] \alpha_{B}, \frac{1}{2} \right[$.

We cannot have $m_{\alpha} = \partial K_{\alpha}$ for all $\alpha \in \left[0, \frac{1}{2}\right]$, because m_{α} exists for all α , but $K_{\alpha} = \emptyset$ for α close enough to $\frac{1}{2}$.

Theorem

If K is non-symmetric then there exists $\alpha_B \in \left[0, \frac{1}{2}\right]$ s.t.

- m_α = ∂K_α for all α ∈]0, α_B], and m_α is of class C¹ for all α ∈]0, α_B[iff ∂K doesn't contain two parallel segments.
- $m_{\alpha} \supseteq \partial K_{\alpha}$ for all $\alpha \in \left] \alpha_{B}, \frac{1}{2} \right[$, and m_{α} is never C^{1} for $\alpha \in \left] \alpha_{B}, \frac{1}{2} \right[$.

The case $\alpha_B = 0$ can occur, e.g., if there exists a triangle containing K with an edge contained in ∂K .

We cannot have $m_{\alpha} = \partial K_{\alpha}$ for all $\alpha \in \left[0, \frac{1}{2}\right]$, because m_{α} exists for all α , but $K_{\alpha} = \emptyset$ for α close enough to $\frac{1}{2}$.

Theorem

If K is non-symmetric then there exists $\alpha_B \in \left[0, \frac{1}{2}\right[s.t.$

- m_α = ∂K_α for all α ∈]0, α_B], and m_α is of class C¹ for all α ∈]0, α_B[iff ∂K doesn't contain two parallel segments.
- $m_{\alpha} \supseteq \partial K_{\alpha}$ for all $\alpha \in \left] \alpha_{B}, \frac{1}{2} \right[$, and m_{α} is never C^{1} for $\alpha \in \left] \alpha_{B}, \frac{1}{2} \right[$.

The case $\alpha_B = 0$ can occur, e.g., if there exists a triangle containing K with an edge contained in ∂K .

Corollary

K is non-symmetric iff there exists a triangle containing more than half of K (in area), with one side in K and the other two disjoint from int K.

イロト イ団ト イヨト イヨト

Costin Vîlcu (IMAR)

æ

イロト イ団ト イヨト イヨト

Theorem

There exists $\alpha_{K} \in \left[\frac{4}{9}, \frac{1}{2}\right]$ s.t.

• if $0 < \alpha < \alpha_K$ then K_{α} is strictly convex with nonempty interior,

3

Theorem

There exists $\alpha_{K} \in \left[\frac{4}{9}, \frac{1}{2}\right]$ s.t.

- if $0 < \alpha < \alpha_K$ then K_{α} is strictly convex with nonempty interior,
- if $\alpha = \alpha_K$ then K_{α} is reduced to one point, and

Theorem

There exists $\alpha_{K} \in \begin{bmatrix} \frac{4}{9}, \frac{1}{2} \end{bmatrix}$ s.t.

- if 0 < α < $\alpha_{\rm K}$ then K_{\alpha} is strictly convex with nonempty interior,
- if $\alpha = \alpha_K$ then K_{α} is reduced to one point, and
- if $\alpha_{\mathcal{K}} < \alpha < 1$ then \mathcal{K}_{α} is empty.

There exists $\alpha_{K} \in \left[\frac{4}{9}, \frac{1}{2}\right]$ s.t.

- if 0 < α < $\alpha_{\rm K}$ then K_{\alpha} is strictly convex with nonempty interior,
- if $\alpha = \alpha_K$ then K_{α} is reduced to one point, and
- if $\alpha_{\mathcal{K}} < \alpha < 1$ then \mathcal{K}_{α} is empty.

Moreover, $\alpha_{K} = \frac{1}{2}$ iff K is symmetric

There exists $\alpha_{K} \in \left[\frac{4}{9}, \frac{1}{2}\right]$ s.t.

- if 0 < α < $\alpha_{\rm K}$ then K_{\alpha} is strictly convex with nonempty interior,
- if $\alpha = \alpha_K$ then K_α is reduced to one point, and
- if $\alpha_{\mathcal{K}} < \alpha < 1$ then \mathcal{K}_{α} is empty.

Moreover, $\alpha_K = \frac{1}{2}$ iff K is symmetric and $\alpha_K = \frac{4}{9}$ iff K is a triangle.

There exists $\alpha_{K} \in \left[\frac{4}{9}, \frac{1}{2}\right]$ s.t.

- if 0 < α < $\alpha_{\rm K}$ then K_{\alpha} is strictly convex with nonempty interior,
- if $\alpha = \alpha_K$ then K_α is reduced to one point, and
- if $\alpha_{\mathcal{K}} < \alpha < 1$ then \mathcal{K}_{α} is empty.

Moreover, $\alpha_K = \frac{1}{2}$ iff K is symmetric and $\alpha_K = \frac{4}{9}$ iff K is a triangle.

If K_{α} is a point, it is not necessarily the mass center of K.

There exists $\alpha_{K} \in \left[\frac{4}{9}, \frac{1}{2}\right]$ s.t.

- if 0 < α < $\alpha_{\rm K}$ then K_{\alpha} is strictly convex with nonempty interior,
- if $\alpha = \alpha_K$ then K_α is reduced to one point, and
- if $\alpha_{\mathcal{K}} < \alpha < 1$ then \mathcal{K}_{α} is empty.

Moreover, $\alpha_K = \frac{1}{2}$ iff K is symmetric and $\alpha_K = \frac{4}{9}$ iff K is a triangle.

If K_{α} is a point, it is not necessarily the mass center of K. Hint: G is the mid-point of at least three secants of K.

There exists $\alpha_{K} \in \left[\frac{4}{9}, \frac{1}{2}\right]$ s.t.

• if 0 < α < $\alpha_{\rm K}$ then K_{\alpha} is strictly convex with nonempty interior,

- if $\alpha = \alpha_K$ then K_{α} is reduced to one point, and
- if $\alpha_{\mathcal{K}} < \alpha < 1$ then \mathcal{K}_{α} is empty.

Moreover, $\alpha_K = \frac{1}{2}$ iff K is symmetric and $\alpha_K = \frac{4}{9}$ iff K is a triangle.

If K_{α} is a point, it is not necessarily the mass center of K. Hint: G is the mid-point of at least three secants of K.

K non-symmetric $\Rightarrow \alpha_B < \alpha_K$,

K symmetric $\Rightarrow \alpha_B = \alpha_K = \frac{1}{2}$.

- A I I I A I I I I

Thank you for your attention!

æ

イロト イヨト イヨト イヨト