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Background

The results presented here are joint work with Kenichi Ito, Kobe
University, Japan. The talk is based on the following preprint:

• K. Ito, A. Jensen, A complete classification of threshold
properties for one-dimensional Schrödinger operators,
arXiv:1312.1396

The techniques used come from a series of papers with Gheorghe
Nenciu on resolvent expansions.



Introduction Main results Examples of perturbations Strategy Asymptotic expansion of R0(κ) Expansion of M(κ) Inversion procedure Conclusion Technical details

Introduction

We consider sequences x : Z→ C and the operator on sequences

(H0x)[n] = −(x[n+ 1] + x[n− 1]− 2x[n]).

Restricted to H = `2(Z) it is a bounded selfadjoint operator with

σ(H0) = σac(H0) = [0, 4].

Its resolvent is denoted by R0(z) = (H0 − z)−1, z ∈ C \ [0, 4].
Let H = H0 + V , V a compact selfadjoint operator on H. Then
σess(H) = [0, 4].

Goal: Analyze the thresholds 0 and 4 of H in terms of
R(z) = (H − z)−1.
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Introduction

We only present results for the threshold 0. Results for 4 follow
directly due to the following well known observation.

Define (Jx)[n] = (−1)nx[n]. Then J is bounded selfadjoint and
unitary on H. Let VJ = JV J−1. We have

J(H0 + V )J−1 = −(H0 + VJ − 4)

and thus

JR(z)J−1 = J(H0 + V − z)−1J−1 = −(H0 + VJ − (z − 4))−1.
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Introduction

We introduce for s ∈ R

Ls = `1,s(Z) =
{
x : Z→ C; ‖x‖1,s =

∑
n∈Z

(1 + n2)s/2|x[n]| <∞
}
,

(Ls)∗ = `∞,−s(Z)

=
{
x : Z→ C; ‖x‖∞,−s = sup

n∈Z
(1 + n2)−s/2|x[n]| <∞

}
.

The superscript s is dropped when s = 1: L = L1, L∗ = (L1)∗.
We denote the set of all bounded operators from a general Banach
space K to another K′ by B(K,K′), and replace B by C when
considering those for the compact operators.

We define Bs = B(Ls, (Ls)∗).
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Introduction

Assumption

Let V ∈ B(H) be self-adjoint, and assume that there exist a real
number β ≥ 1, a Hilbert space K, an injective operator
v ∈ B(K,Lβ) ∩ C(K,L) and a self-adjoint unitary operator
U ∈ B(K) such that

V = vUv∗ ∈ B((Lβ)∗,Lβ) ∩ C(L∗,L).

This is a version of the classical factored perturbation technique,
used extensively by both Kato and Kuroda in the 60-ies and 70-ies.
Here we incorporate decay conditions into the assumptions.

This class includes sums of multiplicative perturbations and finite
rank perturbations. It is a much larger class than previously
considered in this context.
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Main results
Resolvent expansion

We state the main result on resolvent expansion in a simplified
form.

For z ∈ C \ [0,∞) we take the determination of the square root
with Im

√
z > 0.

Theorem

Suppose β ≥ 4 in the Assumption, and let N ∈ [−1, β − 5] be any
integer. Then, as z → 0 in C \ [0,∞), the resolvent R(z) has the
asymptotic expansion in the uniform topology of BN+4:

R(z) =

N∑
j=−2

zj/2Gj +O(z(N+1)/2), Gj ∈ Bj+3,

and the coefficients Gj can be computed explicitly.
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Main results
Resolvent expansion

The main new result here is the complete classification of all
possibilities for the coefficients.

This amounts to a complete classification of solutions to

(H0 + V )x = 0



Introduction Main results Examples of perturbations Strategy Asymptotic expansion of R0(κ) Expansion of M(κ) Inversion procedure Conclusion Technical details

Main results

We now classify the possibilities in the expansion, based on the
generalized zero eigenspace. Define

Ẽ = {Ψ ∈ (Lβ)∗; HΨ = 0}, d̃ = dim Ẽ ,

We can show that the eigenspace is finite-dimensional, and the
eigenfunctions have special asymptotics at infinity.
Define the sequences 1,σ ∈ (L0)∗ and n, |n| ∈ L∗ by

1[n] = 1, σ[n] =

{
±1 if ±n > 0,

0 if n = 0,
n[n] = n, |n|[n] = |n|,

respectively.
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Main results

Theorem

Suppose β ≥ 1 in the Assumption. Then,

Ẽ ⊂ Cn⊕ C|n| ⊕ C1⊕ Cσ ⊕ Lβ−2, d̃ <∞.

The classification of the singular part of the resolvent expansion
uses the following (canonical) subspaces.

E = Ẽ ∩
(
C1⊕ Cσ ⊕ Lβ−2

)
, d = dim E ;

E = Ẽ ∩ Lβ−2, d0 = dimE.

We have E ⊂ E ⊂ Ẽ and d0 ≤ d ≤ d̃ ≤ d0 + 4.
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Main results
Classification of threshold λ = 0

Definition

The threshold λ = 0 is said to be

1. a regular point, if E = E = {0};
2. an exceptional point of the first kind, if E ) E = {0};
3. an exceptional point of the second kind, if E = E ) {0};
4. an exceptional point of the third kind, if E ) E ) {0}.

Our major new result is the equivalence of this classification with a
classification based on the coefficients G−2 and G−1 in the
resolvent expansion.
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Main results

Theorem

Suppose β ≥ 4 in the Assumption. Then d̃ = d0 + 2, and there
exist bases Ψj ∈ E, j = 1, . . . , d0, and Ψj ∈ E/E,
j = d0 + 1, . . . , d, such that

G−2 = −
d0∑
j=1

〈Ψj , ·〉Ψj , G−1 ≡ i
d∑

j=d0+1

〈Ψj , ·〉Ψj mod 〈E, ·〉E,

where 〈E, ·〉E ⊂ B((Lβ−2)∗,Lβ−2) is the subspace spanned by the
operators of the form 〈Ψ, ·〉Ψ′ with Ψ,Ψ′ ∈ E. Furthermore, one
can choose Ψj ∈ E, j = 1, . . . , d, to be orthonormal, and hence
−G−2 is the orthogonal projection onto E.
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Main results

Different formulation of the previous classification results:

• Regular case: G−2 = 0, G−1 = 0.

• Exceptional point first kind: G−2 = 0, G−1 6= 0,
RankG−1 ≤ 2.

• Exceptional point second kind: G−2 6= 0. G−1 may be zero or
nonzero.

• Exceptional point third kind: G−2 6= 0, G−1 6= 0,
RankG−1 ≤ 2.
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Main results

Comments:

• The regular case is the generic case.

• An exceptional point of the first kind is also called the
threshold resonance case, and x ∈ E/E threshold resonance
functions. At most two linearly independent threshold
resonance functions exist.

• An exceptional point of the second kind corresponds to
existence of zero eigenfunctions. Any finite value of d0 may
occur.

• An exceptional point of the third kind is a combination of
those of the first and second kind.

• For V multiplicative, i.e. (V x)[n] = V [n]x[n] for some
decaying function V : Z→ C, only regular points and
exceptional points of the first kind occur. In this case
RankG−1 ≤ 1. In particular, zero eigenvalues do not occur.



Introduction Main results Examples of perturbations Strategy Asymptotic expansion of R0(κ) Expansion of M(κ) Inversion procedure Conclusion Technical details

Main results

Comments:

• The regular case is the generic case.

• An exceptional point of the first kind is also called the
threshold resonance case, and x ∈ E/E threshold resonance
functions. At most two linearly independent threshold
resonance functions exist.

• An exceptional point of the second kind corresponds to
existence of zero eigenfunctions. Any finite value of d0 may
occur.

• An exceptional point of the third kind is a combination of
those of the first and second kind.

• For V multiplicative, i.e. (V x)[n] = V [n]x[n] for some
decaying function V : Z→ C, only regular points and
exceptional points of the first kind occur. In this case
RankG−1 ≤ 1. In particular, zero eigenvalues do not occur.



Introduction Main results Examples of perturbations Strategy Asymptotic expansion of R0(κ) Expansion of M(κ) Inversion procedure Conclusion Technical details

Main results

Comments:

• The regular case is the generic case.

• An exceptional point of the first kind is also called the
threshold resonance case, and x ∈ E/E threshold resonance
functions. At most two linearly independent threshold
resonance functions exist.

• An exceptional point of the second kind corresponds to
existence of zero eigenfunctions. Any finite value of d0 may
occur.

• An exceptional point of the third kind is a combination of
those of the first and second kind.

• For V multiplicative, i.e. (V x)[n] = V [n]x[n] for some
decaying function V : Z→ C, only regular points and
exceptional points of the first kind occur. In this case
RankG−1 ≤ 1. In particular, zero eigenvalues do not occur.



Introduction Main results Examples of perturbations Strategy Asymptotic expansion of R0(κ) Expansion of M(κ) Inversion procedure Conclusion Technical details

Main results

Comments:

• The regular case is the generic case.

• An exceptional point of the first kind is also called the
threshold resonance case, and x ∈ E/E threshold resonance
functions. At most two linearly independent threshold
resonance functions exist.

• An exceptional point of the second kind corresponds to
existence of zero eigenfunctions. Any finite value of d0 may
occur.

• An exceptional point of the third kind is a combination of
those of the first and second kind.

• For V multiplicative, i.e. (V x)[n] = V [n]x[n] for some
decaying function V : Z→ C, only regular points and
exceptional points of the first kind occur. In this case
RankG−1 ≤ 1. In particular, zero eigenvalues do not occur.



Introduction Main results Examples of perturbations Strategy Asymptotic expansion of R0(κ) Expansion of M(κ) Inversion procedure Conclusion Technical details

Main results

Comments:

• The regular case is the generic case.

• An exceptional point of the first kind is also called the
threshold resonance case, and x ∈ E/E threshold resonance
functions. At most two linearly independent threshold
resonance functions exist.

• An exceptional point of the second kind corresponds to
existence of zero eigenfunctions. Any finite value of d0 may
occur.

• An exceptional point of the third kind is a combination of
those of the first and second kind.

• For V multiplicative, i.e. (V x)[n] = V [n]x[n] for some
decaying function V : Z→ C, only regular points and
exceptional points of the first kind occur. In this case
RankG−1 ≤ 1. In particular, zero eigenvalues do not occur.



Introduction Main results Examples of perturbations Strategy Asymptotic expansion of R0(κ) Expansion of M(κ) Inversion procedure Conclusion Technical details

Examples of perturbations

We now give some examples of perturbations. A general example:

Proposition

Let β ≥ 1 be any real number, and vj ∈ Lβ, j = 1, 2, . . . , be at
most a countable number of linearly independent vectors with∑

j

‖vj‖2Lβ <∞.

Then for any σj ∈ {±1} the operator series

V =
∑
j

σj〈vj , ·〉vj

converge in the uniform topology of B((Lβ)∗,Lβ) and satisfy the
Assumption with the same β.
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Examples of perturbations

For a multiplicative V , (V x)[n] = V [n]x[n], the condition is∑
n(1 + n2)β|V [n]| <∞. Note that in the discrete case these are

the only local perturbations, i.e. suppV x ⊆ suppx.

For multiplicative potentials examples of zero resonances can be
constructed using the von Neumann-Wigner technique (1929). We
are looking for a multiplicative potential V such that there is a
sequence x ∈ (L0)∗ satisfying

−(x[n+ 1] + x[n− 1]− 2x[n]) + V [n]x[n] = 0.

We find such V by first choosing x and then taking V accordingly
to

V [n] =
x[n+ 1] + x[n− 1]

x[n]
− 2.
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Examples of perturbations
Local perturbation with threshold resonance

Example 1.

x[n] =

{
2 if n = 0,

1 otherwise,
V [n] =


−1 if n = 0,

1 if n = ±1,

0 otherwise;

Example 2.

x[n] =


3 if n = 0,

2 if n = ±1,

1 otherwise,

V [n] =


−2/3 if n = 0,

0 if n = ±1,

1 if n = ±2,

0 otherwise.
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Examples of perturbations
Examples of threshold eigenvalues

Let us define the potential V by

V = −
N∑
j=1

〈vj , ·〉vj ; vj [n] =


√

2 if n = 3j,

−1/
√

2 if n = 3j ± 1,
0 otherwise.

Then the linearly independent sequences Ψj ∈ L, j = 1, . . . , N ,
given by

Ψj [n] =

{
1 if n = 3j,
0 otherwise

all satisfy HΨj = (H0 + V )Ψj = 0 and Ψj ∈ Lβ for all β > 0.
Thus we have examples of zero eigenvalues with d0 = N , for any
N ≥ 1.
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Examples of perturbations
An example of both a threshold eigenvalue and threshold resonances

We define the following sequences:

φj [n] =


−1, n = 4j,

1, n = 4j + 1,

0, otherwise,

j = 0, 1, 2,

uj [n] =

{
1 n ≤ 4j,

−1 n > 4j,
j = 0, 1, 2.

Then we define

V x = −
2∑
j=0

〈x, φj〉φj .

With these definitions we have

(H0 + V )uj = 0, j = 0, 1, 2.
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Examples of perturbations
An example of both a threshold eigenvalue and threshold resonances

If we define

w[n] =

{
1 n = 1, 2, 3, 4,

0 otherwise,

then we have u2 = 1
2u0 + 1

2u1 + w.
It is easy to see that this example can be modified to provide a
threshold eigenvalue of any finite multiplicity, besides the two
linearly independent resonance functions.
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Strategy
For z ∈ C \ [0,∞) we fix Im

√
z > 0 and then introduce

κ = −i
√
z; z = −κ2.

This is convenient, since we will be able to work with selfadjoint
operators. We write R(z) = R(κ) etc.

Central object of study is

M(κ) = U + v∗R0(κ)v.

It is a symmetrized version of 1 +R0(z)V .
Central idea is that the study of R(κ) is reduced to the study of
M(κ) via the relations:

R(κ) = R0(κ)−R0(κ)vM(κ)−1v∗R0(κ),

M(κ)−1 = U − Uv∗R(κ)vU.
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Strategy

From
M(κ) = U + v∗R0(κ)v.

and
R(κ) = R0(κ)−R0(κ)vM(κ)−1v∗R0(κ)

follows the strategy:

• Obtain an asymptotic expansion of R0(κ) around κ = 0

• Show that the asymptotic expansion of M(κ) leads to
invertibility and asymptotic expansion of M(κ)−1.

• Combine these result to obtain the expansion of R(κ).
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Asymptotic expansion of R0(κ)

The Fourier transform F : H → L2(T), T = R/2πZ, our
conventions are: For x ∈ H and f ∈ L2(T)

(Fx)(θ) =
1√
2π

∑
n∈Z

e−inθx[n], (F−1f)[n] =
1√
2π

∫
T
einθf(θ) dθ.

We have

F(H0x)(θ) = (2− 2 cos θ)(Fx)(θ) =
(

4 sin2 θ

2

)
(Fx)(θ),

Thus

F(R0(z)x)(θ) =
(Fx)(θ)

4 sin2(θ/2)− z
, z ∈ C \ [0, 4].
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Asymptotic expansion of R0(κ)

For z ∈ C \ [0, 4] sufficiently close to 0 change the variable from z
to φ through the correspondence

z = 4 sin2 φ

2
, Imφ > 0.

Then R0(z) is given by convolution with the function

R0(z;n) =
ieiφ|n|

2 sinφ
.

This leads to the asymptotic expansion we need.
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Asymptotic expansion of R0(κ)

Proposition

Let N ≥ −1 be any integer. Then, as κ→ 0 with Reκ > 0, the
resolvent R0(κ) has the expansion in BN+2:

R0(κ) =

N∑
j=−1

κjG0
j +O(κN+1), G0

j ∈ Bj+1,

and the coefficients G0
j are given explicitly as convolution operators

with polynomials G0
j (n) of degree j + 1 in |n|. For instance,

G0
−1(n) =

1

2
, G0

0(n) = −1

2
|n|, G0

1(n) =
1

4
|n|2 − 1

16
,

G0
2(n) = − 1

12
|n|3 +

1

12
|n|, G0

3(n) =
1

48
|n|4 − 5

96
|n|2 +

3

256
.
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Expansion of M(κ)

Proposition

Suppose β ≥ 1 in the Assumption, and let N ∈ [−1, β − 2] be any
integer. Then, as κ→ 0 with Reκ > 0, the operator M(κ) has
the expansion in B(K):

M(κ) =

N∑
j=−1

κjMj +O(κN+1),

where the coefficients Mj ∈ B(K) are given by

M0 = U + v∗G0
0v, Mj = v∗G0

jv for j 6= 0.
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Inversion procedure

Framework

Let K be a Hilbert space and A(κ) a family of bounded operators
on K with κ ∈ D ⊂ C \ {0}. Suppose that

1. The set D ⊂ C \ {0} is invariant under the complex
conjugation and accumulates on 0 ∈ C.

2. For each κ ∈ D the operator A(κ) satisfies A(κ)∗ = A(κ) and
has a bounded inverse A(κ)−1 ∈ B(K).

3. As κ→ 0 in D, the operator A(κ) has an expansion in the
uniform topology of the operators at K:

A(κ) = A0 + κÃ1(κ); Ã1(κ) = O(1). (1)

4. The spectrum of A0 does not accumulate at 0 ∈ C as a set.
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Inversion procedure

If A0 is invertible in B(K), the Neumann series provides a formula
for the expansion of A(κ)−1:

A(κ)−1 =

∞∑
j=0

(−1)jκjA−10

[
Ã1(κ)A−10

]j
.

Assume A0 not invertible in B(K). By assumption the operator
A(κ)−1 is defined for κ ∈ D, however the expansion around κ = 0
may now contain powers of κ−1.
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Inversion procedure

Some terminology

The pseudoinverse a† of a complex number a ∈ C is

a† =

{
0 if a = 0

a−1 if a 6= 0

If K′ ⊂ K is a closed subspace, we identify B(K′) with its
embedding in B(K) in the standard way. For an operator
A ∈ B(K′) ⊂ B(K) we say that A is invertible in B(K′) if there
exists an operator A† ∈ B(K′) such that A†A = AA† = 1K′ , which
we identify with the orthogonal projection onto K′ ⊂ K. A† is the
pseudoinverse of the operator.
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Inversion procedure

Proposition

Let A(κ) be the family introduced above. Let Q be the orthogonal
projection onto KerA0, and define the operator a(κ) ∈ B(QK) by

a(κ) =
1

κ

{
1QK −Q(Q+A(κ))−1Q

}
=

∞∑
j=0

(−1)jκjQÃ1(κ)
[
(Q+A0)

−1Ã1(κ)
]j
Q.

Then a(κ) is bounded in B(QK) as κ→ 0 in D. Moreover, if for
each κ ∈ D sufficiently close to 0 the operator a(κ) is invertible in
B(QK), then

A(κ)−1 = (Q+A(κ))−1 +
1

κ
(Q+A(κ))−1a(κ)†(Q+A(κ))−1.
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Inversion procedure

We now apply this result to A(κ) = M(κ) assuming
KerM0 6= {0}. In this case we can assume a higher expansion
Ã1(κ) = A1 + κÃ2(κ), Ã2(κ) = O(κ). Then we get

a(κ) = a0 + κã1(κ); a0 = QM1Q, ã1(κ) = O(1).

If the leading operator a0 is invertible in B(QK), then substitution
of the Neumann series for a(κ)† into the above formula yields the
expansion of A(κ)−1.

Otherwise, if a0 is not invertible, by applying the Proposition to
a(κ) again we obtain the expansion of a(κ)†, and find that A(κ)−1

has at least a κ−2 singularity in its expansion. We can repeat this
argument. The iteration procedure stops when applied to M(κ)
after a few iterations, since the operator M(κ)−1 can have at
worst a κ−2 singularity due to the selfadjointness of H0.
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Inversion procedure
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Analysis of KerM0 and conclusion of the argument

The next step is to analyze the space KerM0 and the connection
between x ∈ KerM0 and solutions to HΨ = 0.

This analysis is long and somewhat complicated, so I will not
present it.

Putting all components together leads to the resolvent expansion,
with more precise conditions on β, and with explicit expressions for
the leading coefficients.
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Comments on the literature

There are some related results analyzing the resolvent of
H = H0 + V for V multiplicative, and obtaining the leading term
in the asymptotic expansion.

• D. E. Pelinovsky and A. Stefanov, J. Math. Phys. 49,
113501, 2008 (only regular case)

• Scipio Cuccagna, J. Math. Anal. Appl. 354 (2009) 594605.
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Coefficient G0
0

Coefficient G0
0 with kernel convolution by −1

2 |n| has
representations

(G0
0x)[n] = −n

2
〈1, x〉+

1

2
〈n, x〉 −

∑
k≥n

(k − n)x[k]

=
n

2
〈1, x〉 − 1

2
〈n, x〉 −

∑
k≤n

(n− k)x[k].
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Quasi-symmetric eigenspace

The following space is needed in detailed analysis

Ẽqs = Ẽ ∩
(
C|n| ⊕ Cσ ⊕ Lβ−2

)
, d̃qs = dim Ẽqs.

It follows directly from the definition that E ⊂ Ẽqs and

d0 ≤ d̃qs ≤ d0 + 2.



Introduction Main results Examples of perturbations Strategy Asymptotic expansion of R0(κ) Expansion of M(κ) Inversion procedure Conclusion Technical details

Example of cases: Bases of spaces

Ẽ/E E/E E Ẽqs/E type
Case i. {Ψ0

1,Ψ
0
2} {Ψ0

1} 0 < # <∞ ∅ exceptional III
Case ii. {Ψ5,Ψ

0
2} ∅ 0 < # <∞ {Ψ5} exceptional II

Case iii. {Ψ5,Ψ
0
2} ∅ 0 < # <∞ ∅ exceptional II

Case iv. {Ψ0
1,Ψ6} {Ψ0

1} 0 < # <∞ ∅ exceptional III
Case v. {Ψ5,Ψ6} ∅ 0 < # <∞ {Ψ5} exceptional II
Case vi. {Ψ5,Ψ6} ∅ 0 < # <∞ ∅ exceptional II
Case vii. {Ψ0

1,Ψ4} {Ψ0
1,Ψ4} 0 < # <∞ {Ψ4} exceptional III

Case viii. {Ψ3,Ψ
0
2} {Ψ3} 0 < # <∞ ∅ exceptional III

Case ix. {Ψ5,Ψ4} {Ψ4} 0 < # <∞ {Ψ5,Ψ4} exceptional III
Case x. {Ψ5,Ψ4} {Ψ4} 0 < # <∞ {Ψ4} exceptional III
Case xi. {Ψ3,Ψ6} {Ψ3} 0 < # <∞ ∅ exceptional III
Case xii. {Ψ3,Ψ4} {Ψ3,Ψ4} 0 < # <∞ {Ψ4} exceptional III
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