Exponential Decay of Eigenfunctions of Partial Differential Operators

Ira Herbst (joint work with Erik Skibsted)

Nenciu conference
July 1, 2014

I Introduction and review of some results for the Laplacian

- Laplacian - the one body problem
- Laplacian - the N-body problem

II Results for $Q(-i \nabla)$

- there is exponential decay
- there is no super-exponential decay
- the decay rate is "algebraically" determined
- example: polynomials in the Laplacian

III Proofs

- decay rate σ_{c} determined when $<\infty$
- decay rate $<\infty$

IV Improvement for the bi-Laplacian
\checkmark Direction dependence of decay

Introduction

In this talk I will consider the decay as $|x| \rightarrow \infty$ of solutions ψ to the eigenvalue problem

$$
(H-\lambda) \psi=0
$$

Here H is in a class of self-adjoint partial differential operators of the form

$$
H=Q(-i \nabla)+V(x)
$$

where Q is a real elliptic polynomial and V is bounded. But first a review of some results for the Laplacian.

Laplacian - the one body problem

Consider solutions ψ to

$$
(-\Delta+V(x)-\lambda) \psi=0, \psi \in L^{2}\left(\mathbb{R}^{d}\right)
$$

$V(x) \rightarrow 0$ as $|x| \rightarrow \infty, \lambda$ and V real. Well known results: define σ_{c}

$$
\sigma_{c}=\sup \left\{\sigma: e^{\sigma r} \psi \in L^{2}\left(\mathbb{R}^{d}\right)\right\}
$$

Theorem (O'Connor, Combes-Thomas, Bardos-Merigot, FH2HO)

i) If $\lambda<0$ and $V(x)=o(1)$ or $\lambda>0$ and $V(x)=o\left(|x|^{-1}\right)$, then $\sigma_{c}>0$.
ii) If $V(x)=O\left(|x|^{-1 / 2}\right)$ then either $\sigma_{c}<\infty$ or $\psi=0$.
iii) If $V(x)=o\left(|x|^{-1 / 2}\right)$ and $\sigma_{c} \in(0, \infty)$ then $\lambda<0$ and $\sigma_{c}=\sqrt{-\lambda}$.

OPEN PROBLEM: If V is bounded or even $V(x)=O\left(|x|^{-\delta}\right), \delta>0$, is it true that $\sigma_{c}<\infty$ unless $\psi=0$?

Laplacian - the N-body problem

Consider now the N -body problem, $H=-\Delta+V,(H-\lambda) \psi=0$ where for simplicity V is a sum of fast decaying 2-body potentials plus a fast decaying N -particle interaction.

Let

$$
\Sigma_{c}=\{\sqrt{\tau-\lambda}: \tau \in T(H), \tau \geq \lambda\}
$$

$T(H)$ is the set of thresholds of H, a bounded closed countable set independent of the N -particle interaction.

Theorem (Froese, H)

Suppose $H, \lambda, \psi(\neq 0)$ are as above. Then $\sigma_{c} \in \Sigma_{c}$.

The particular value of $\sigma_{c} \in \Sigma_{c}$ will depend on the N-particle interaction as well as λ.
The point of this slide is to emphasize that there are situations (unlike the one-body problem with the Laplacian) where there may be several possibilities for the decay rate for a given λ.

Results for $Q(-i \nabla)$

We consider $L^{2}\left(\mathbb{R}^{d}\right)$ solutions ψ to

$$
(Q(-i \nabla)+V(x)-\lambda) \psi=0
$$

with Q a real elliptic polynomial and $\lim _{|x| \rightarrow \infty} V(x)=0$. Consider the two conditions on a point $(\sigma, \xi, \omega) \in \mathbb{R}_{+} \times \mathbb{R}^{d} \times S^{d-1}$

$$
\begin{align*}
Q(\xi+i \sigma \omega) & =\lambda \tag{1}\\
P_{\perp}(\omega) \nabla_{\xi} Q(\xi+i \sigma \omega) & =0 \tag{2}
\end{align*}
$$

where $P_{\perp}(\omega)$ is the projection onto the subspace of \mathbb{R}^{d} perpendicular to ω.

Let

$$
\Sigma_{c}=\left\{\sigma>0: \exists(\xi, \omega) \in \mathbb{R}^{d} \times S^{d-1} \text { so that (1) and (2) are satisfied }\right\}
$$

We will give conditions under which the decay rate σ_{c} is in Σ_{c}. Let $V=V_{1}+V_{2}$, both real and bounded.

Theorem (There is exponential decay)

Under either of the following two conditions we can conclude that $\sigma_{c}>0$:
(1) $\lambda \notin \operatorname{Ran} Q$ and $V(x)=o(1)$ at infinity
(2) $\lambda \in \operatorname{Ran} Q$ but λ is not a critical value of Q and in addition $\partial^{\alpha} V_{1}(x)=o\left(|x|^{-|\alpha|}\right) \forall \alpha, V_{2}(x)=o\left(|x|^{-1}\right)$.

The next theorem eliminates the possibility of super-exponential decay (under strong conditions on the potential - too strong).
Let q be the degree of the polynomial Q.

Theorem (There is no super-exponential decay)

Suppose $V_{2}(x)=O\left(|x|^{-(q / 2+\delta}\right), \partial^{\alpha} V_{1}(x)=O\left(|x|^{-(\delta+|\alpha|+q) / 2}\right)$, where $1 \leq|\alpha| \leq q$ and $\delta>0$. Then $\sigma_{c}<\infty$ or $\psi=0$.

Given the last two theorems we know conditions on the potential so that $\sigma_{c} \in(0, \infty)$. In this case we can determine the decay rate "algebraically".

Theorem (Decay rate determined)

Assume $\partial^{\alpha} V_{1}(x)=o\left(|x|^{-|\alpha|}\right) \forall \alpha, V_{2}(x)=o\left(|x|^{-1 / 2}\right)$. Suppose $\sigma_{c} \in$ $(0, \infty)$. Then $\sigma_{c} \in \Sigma_{c}$.

Example: $Q(\xi)=G\left(\xi^{2}\right)$

We take degree of $Q=q$. Then degree $G=q / 2$. We assume $\sigma \in$ $(0, \infty)$. With $z=(\xi+i \sigma \omega)^{2}$ the critical equations (1) and (2) which determine the possible decay rates σ reduce to

$$
\begin{aligned}
& G(z)=\lambda \\
& G^{\prime}(z) P_{\perp}(\omega) \xi=0
\end{aligned}
$$

Except for at most $(q-2) / 2$ exceptional λ 's (arising from non-simple roots of $G-\lambda$), these equations reduce to $G\left((|\xi|+i \sigma)^{2}\right)=\lambda$.

For an arbitrary real elliptic polynomial $Q(\xi)=G\left(\xi^{2}\right)$, every solution with positive σ of these equations occurs as a decay rate σ_{c} of an eigenfunction of $G(-\Delta)+V$ for a real V in $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$.

Proof: decay rate σ_{c} determined when $\sigma_{c} \in(0, \infty)$

We only give some of the main ingredients of the proofs.
Condition (1) above, $Q(\xi+i \sigma \omega)=\lambda$, involves an energy estimate for the state $e^{\sigma r} \psi$ which we do not discuss here.
To understand Condition (2), $P_{\perp}(\omega) \nabla_{\xi} Q(\xi+i \sigma \omega)=0$, we use commutator methods with a special conjugate operator dependent on a parameter σ constructed as follows. First decompose $Q(\xi+i \eta)$ into its real and imaginary parts:

$$
Q(\xi+i \eta)=X(\xi, \eta)+i Y(\xi, \eta)
$$

Let

$$
a(x, \xi)=r Y(\xi, \sigma \omega(x))
$$

Then the conjugate operator A is defined as the operator with Weyl symbol a:

$$
A=O p^{w}(a)
$$

Note that if $Q(p)=p^{2}$, then $A=\sigma(x \cdot p+p \cdot x), p=-i \nabla$.
To get an idea where this comes from note that $Q(p+i \sigma \omega)=e^{\sigma r} Q(p) e^{-\sigma r}$ and

$$
i\left[Q(p), e^{\sigma r} A e^{\sigma r}\right]=e^{\sigma r}(i[\tilde{X}, A]+2 \operatorname{Re} \tilde{Y} A) e^{\sigma r}
$$

where $\tilde{X}=\operatorname{Re}\left(e^{\sigma r} Q(p) e^{-\sigma r}\right)$ and $\tilde{Y}=\operatorname{Im}\left(e^{\sigma r} Q(p) e^{-\sigma r}\right)$.
To leading order the symbol of the operator between exponentials to the right has symbol

$$
\begin{equation*}
r\{X, Y\}+2 r Y^{2}+\{X, r\} Y \tag{3}
\end{equation*}
$$

We can calculate the Poisson bracket $\{X, Y\}$ using the Cauchy - Riemann equations:

$$
\{X, Y\}=\left|P_{\perp}(\omega) \nabla_{\xi} Q(\xi+i \sigma \omega)\right|^{2}
$$

The last term in (3) can be bounded by the middle term and something of lower order.

Absence of super-exponential decay, $\sigma_{c}<\infty$

Two key points:
\diamond No pseudo-differential operators. Exact computations.
$\diamond r=|x| \rightarrow r=<x\rangle-\langle x\rangle^{1-\epsilon}+1$ (Rodnianski - Tao)
Let $a=p-i \sigma \omega, \omega=\nabla r$. The eigenvalue equation for $\psi_{\sigma}=e^{\sigma r} \psi$ is

$$
\left(Q\left(a^{*}\right)+V-\lambda\right) \psi_{\sigma}=0
$$

Thus

$$
\begin{aligned}
& <\psi_{\sigma},\left(\left[Q(a), Q\left(a^{*}\right)\right]+\left|Q(a)+V_{1}-\lambda\right|^{2}\right) \psi_{\sigma}>= \\
& -<\psi_{\sigma},\left(2 \operatorname{Re}\left[Q(a), V_{1}\right]+\left|V_{2}\right|^{2}\right) \psi_{\sigma}>
\end{aligned}
$$

Another key point: $P:=\left[a, a^{*}\right] \geq c \sigma r^{-(1+\epsilon)} \mid$

We extract positivity from $\left[Q(a), Q\left(a^{*}\right)\right]$. Write the commutator as a sum of Wick ordered operators. Let $J_{m}=\left(j_{1}, \ldots, j_{m}\right), K_{m}=\left(k_{1}, \ldots, k_{m}\right)$. Then

$$
\begin{aligned}
& {\left[Q(a), Q\left(a^{*}\right)\right]=F+E} \\
& F=\Sigma_{m=1}^{q} \Sigma_{J_{m}, K_{m}} \partial_{J_{m}} Q\left(a^{*}\right) P_{J_{m}, K_{m}} \partial_{K_{m}} Q(a) / m!
\end{aligned}
$$

Here $\partial_{J_{m}}=\partial_{j_{1}} \cdots \partial_{j_{m}}, \partial_{K_{m}}=\partial_{k_{1}} \cdots \partial_{k_{m}}, P_{J_{m}, K_{m}}=P_{j_{1}, k_{1}} \cdots P_{j_{m}, k_{m}}$ and E is negligible for large σ.
Note for example that the term with $m=q$ is bounded below by

$$
c \sigma^{q} r^{-q(1+\epsilon)}
$$

Improvement for the bi-Laplacian

Theorem (Improved super-exponential decay result)
Take $Q(-i \nabla)=(-\Delta)^{q / 2}, q=2,4$.
Suppose

$$
\begin{aligned}
V_{2}(x) & =O\left(|x|^{-q / 4-\delta}\right) \\
\partial^{\alpha} V_{1}(x) & =O\left(|x|^{-(\delta+q / 2+|\alpha|) / 2}\right) \text { for } 1 \leq|\alpha| \leq q / 2, \text { and } \delta>0 .
\end{aligned}
$$

Then $\sigma_{c}<\infty$.
This theorem replaces q by $q / 2$ in the assumptions on the potential for $Q(-i \nabla)=(-\Delta)^{q / 2}, q=2,4$.

Directional decay rates

First consider an arbitrary L^{2} function ϕ with $\sigma_{c} \in(0, \infty)$. We introduce three exponential decay rates depending on a direction $\omega \in S^{d-1}$.

$$
\begin{aligned}
\sigma_{c}(\omega) & =\sup \left\{\sigma \mid e^{\sigma \omega \cdot x} \phi \in L^{2}\right\} \\
\sigma_{k}(\omega) & =\sup \left\{\eta \cdot \omega \mid \eta=\sigma_{c}(\nu) \nu \text { for some } \nu \in S^{d-1}\right\} \\
\sigma_{l o c}(\omega) & =\sup \left\{\sigma \mid e^{\sigma|x|} \phi \in L^{2}(C) \text { for some open cone } C \text { containing } \omega\right\}
\end{aligned}
$$

We introduce the set

$$
\mathcal{E}=\left\{\eta \in \mathbb{R}^{d} \mid e^{\eta \cdot x} \phi \in L^{2}\right\}
$$

Note that $\sigma_{k}(\omega)=\sup \{\eta \cdot \omega \mid \eta \in \mathcal{E}\}$.

Theorem

(1) \mathcal{E} is convex.
(2) $1 / \sigma_{c}(\omega)$ is Lipschitz. In fact $\left|1 / \sigma_{c}\left(\omega_{1}\right)-1 / \sigma_{c}\left(\omega_{2}\right)\right| \leq\left|\omega_{1}-\omega_{2}\right| / \sigma_{c}$.
(3) For $\omega \in S^{d-1}$ define $\sigma_{k}(r \omega)=r \sigma_{k}(\omega)$ for $r \geq 0$. Then $\sigma_{k}(x)$ is the largest convex homogeneous function $\lambda(x)$ of degree one which satisfies

$$
e^{t \lambda(x)} \phi \in L^{2} \quad \text { for all } t \in[0,1)
$$

(1) If ρ is a continuous map of $\mathbb{R}^{d} \rightarrow[0, \infty)$ which is homogeneous of degree one satisfying $\rho(\omega) \leq \sigma_{\text {loc }}(\omega)$ then

$$
e^{t \rho(x)} \phi \in L^{2} \quad \text { for all } t \in[0,1)
$$

Theorem

Suppose ϕ is an eigenfunction of $Q(-i \nabla)+V(x)$ with eigenvalue λ and with $\sigma_{c} \in(0, \infty)$. Suppose $\partial^{\alpha} V_{1}(x)=o\left(|x|^{-\alpha}\right), V_{2}(x)=o\left(|x|^{-1 / 2}\right)$. Consider ω such that $\sigma_{c}(\omega)<\infty$. Then for some $(\xi, \theta, \beta) \in \mathbb{R}^{d} \times$ $S^{d-1} \times \mathbb{C}, \sigma_{c}(\omega)=\sigma$ satisfies

$$
\begin{aligned}
Q(\xi+i \sigma \omega) & =\lambda \\
\nabla Q(\xi+i \sigma \omega) & =\beta \theta
\end{aligned}
$$

Theorem

Suppose $\overline{\mathcal{E}}$ is strictly convex with a C^{1} boundary. Then $\sigma_{\text {loc }}(\omega)=\sigma_{k}(\omega)$, all $\omega \in S^{d-1}$.

