Exponential Decay of Eigenfunctions of Partial Differential Operators

Ira Herbst (joint work with Erik Skibsted)

Nenciu conference July 1, 2014

I Introduction and review of some results for the Laplacian

- Laplacian the one body problem
- Laplacian the N-body problem
- II Results for $Q(-i\nabla)$
 - there is exponential decay
 - there is no super-exponential decay
 - the decay rate is "algebraically" determined
 - example: polynomials in the Laplacian
- III Proofs
 - decay rate σ_c determined when $<\infty$
 - $\bullet \ \text{decay rate} < \infty$
- IV Improvement for the bi-Laplacian
- V Direction dependence of decay

Introduction

In this talk I will consider the decay as $|x| \to \infty$ of solutions ψ to the eigenvalue problem

$$(H - \lambda)\psi = 0.$$

Here H is in a class of self-adjoint partial differential operators of the form

$$H = Q(-i\nabla) + V(x)$$

where Q is a real elliptic polynomial and V is bounded. But first a review of some results for the Laplacian. Consider solutions ψ to

$$(-\Delta + V(x) - \lambda)\psi = 0, \psi \in L^2(\mathbb{R}^d),$$

 $V(x) \rightarrow 0$ as $|x| \rightarrow \infty, \lambda$ and V real. Well known results: define σ_c

$$\sigma_c = \sup\{\sigma : e^{\sigma r} \psi \in L^2(\mathbb{R}^d)\}$$

Theorem (O'Connor, Combes-Thomas, Bardos-Merigot, FH2HO)
i) If λ < 0 and V(x) = o(1) or λ > 0 and V(x) = o(|x|⁻¹), then σ_c > 0.
ii) If V(x) = O(|x|^{-1/2}) then either σ_c < ∞ or ψ = 0.
iii) If V(x) = o(|x|^{-1/2}) and σ_c ∈ (0,∞) then λ < 0 and σ_c = √-λ.
OPEN PROBLEM: If V is bounded or even V(x) = O(|x|^{-δ}), δ > 0, is

it true that $\sigma_c < \infty$ unless $\psi = 0$?

Laplacian - the N-body problem

Consider now the N-body problem, $H = -\Delta + V$, $(H - \lambda)\psi = 0$ where for simplicity V is a sum of fast decaying 2-body potentials plus a fast decaying N-particle interaction.

Let

$$\Sigma_c = \{\sqrt{\tau - \lambda} : \tau \in T(H), \tau \ge \lambda\}$$

T(H) is the set of thresholds of H, a bounded closed countable set independent of the N-particle interaction.

Theorem (Froese, H)

Suppose $H, \lambda, \psi (\neq 0)$ are as above. Then $\sigma_c \in \Sigma_c$.

The particular value of $\sigma_c \in \Sigma_c$ will depend on the N-particle interaction as well as λ .

The point of this slide is to emphasize that there are situations (unlike the one-body problem with the Laplacian) where there may be several possibilities for the decay rate for a given λ .

Results for $Q(-i\nabla)$

We consider $L^2(\mathbb{R}^d)$ solutions ψ to

$$(Q(-i\nabla)+V(x)-\lambda)\psi=0$$

with Q a real elliptic polynomial and $\lim_{|x|\to\infty} V(x) = 0$. Consider the two conditions on a point $(\sigma, \xi, \omega) \in \mathbb{R}_+ \times \mathbb{R}^d \times S^{d-1}$

$$Q(\xi + i\sigma\omega) = \lambda \tag{1}$$

$$P_{\perp}(\omega)\nabla_{\xi}Q(\xi+i\sigma\omega)=0$$
(2)

where $P_{\perp}(\omega)$ is the projection onto the subspace of \mathbb{R}^d perpendicular to ω .

Let

 $\Sigma_{c} = \{ \sigma > 0 : \exists (\xi, \omega) \in \mathbb{R}^{d} \times S^{d-1} \text{ so that } (1) \text{ and } (2) \text{ are satisfied} \}$

We will give conditions under which the decay rate σ_c is in Σ_c . Let $V = V_1 + V_2$, both real and bounded.

Theorem (There is exponential decay)

Under either of the following two conditions we can conclude that $\sigma_c > 0$:

1 $\lambda \notin RanQ$ and V(x) = o(1) at infinity

② $\lambda \in RanQ$ but λ is not a critical value of Q and in addition $\partial^{\alpha}V_1(x) = o(|x|^{-|\alpha|}) \forall \alpha, V_2(x) = o(|x|^{-1}).$ The next theorem eliminates the possibility of super-exponential decay (under strong conditions on the potential - too strong). Let q be the degree of the polynomial Q.

Theorem (There is no super-exponential decay)

Suppose $V_2(x) = O(|x|^{-(q/2+\delta)})$, $\partial^{\alpha} V_1(x) = O(|x|^{-(\delta+|\alpha|+q)/2})$, where $1 \le |\alpha| \le q$ and $\delta > 0$. Then $\sigma_c < \infty$ or $\psi = 0$.

Given the last two theorems we know conditions on the potential so that $\sigma_c \in (0, \infty)$. In this case we can determine the decay rate "algebraically".

Theorem (Decay rate determined)

Assume $\partial^{\alpha} V_1(x) = o(|x|^{-|\alpha|}) \forall \alpha, V_2(x) = o(|x|^{-1/2})$. Suppose $\sigma_c \in (0, \infty)$. Then $\sigma_c \in \Sigma_c$.

Example: $Q(\xi) = G(\xi^2)$

We take degree of Q = q. Then degree G = q/2. We assume $\sigma \in (0,\infty)$. With $z = (\xi + i\sigma\omega)^2$ the critical equations (1) and (2) which determine the possible decay rates σ reduce to

 $G(z) = \lambda$ $G'(z)P_{\perp}(\omega)\xi = 0$

Except for at most (q - 2)/2 exceptional λ 's (arising from non-simple roots of $G - \lambda$), these equations reduce to $G((|\xi| + i\sigma)^2) = \lambda$.

For an arbitrary real elliptic polynomial $Q(\xi) = G(\xi^2)$, every solution with positive σ of these equations occurs as a decay rate σ_c of an eigenfunction of $G(-\Delta) + V$ for a real V in $C_0^{\infty}(\mathbb{R}^d)$.

イロト イポト イヨト イヨト 二日

We only give some of the main ingredients of the proofs.

Condition (1) above, $Q(\xi + i\sigma\omega) = \lambda$, involves an energy estimate for the state $e^{\sigma r}\psi$ which we do not discuss here.

To understand Condition (2), $P_{\perp}(\omega)\nabla_{\xi}Q(\xi + i\sigma\omega) = 0$, we use commutator methods with a special *conjugate operator* dependent on a parameter σ constructed as follows. First decompose $Q(\xi + i\eta)$ into its real and imaginary parts:

$$Q(\xi + i\eta) = X(\xi, \eta) + iY(\xi, \eta)$$

Let

$$a(x,\xi)=rY(\xi,\sigma\omega(x))$$

Then the conjugate operator A is defined as the operator with Weyl symbol a:

$$A = Op^w(a)$$

Note that if $Q(p) = p^2$, then $A = \sigma(x \cdot p + p \cdot x)$, $p = -i\nabla$. To get an idea where this comes from note that $Q(p+i\sigma\omega) = e^{\sigma r}Q(p)e^{-\sigma r}$ and

$$i[Q(p), e^{\sigma r} A e^{\sigma r}] = e^{\sigma r} (i[\tilde{X}, A] + 2 \operatorname{Re} \tilde{Y} A) e^{\sigma r},$$

where $\tilde{X} = \text{Re}(e^{\sigma r}Q(p)e^{-\sigma r})$ and $\tilde{Y} = \text{Im}(e^{\sigma r}Q(p)e^{-\sigma r})$. To leading order the symbol of the operator between exponentials to the right has symbol

$$r\{X,Y\} + 2rY^2 + \{X,r\}Y.$$
 (3)

We can calculate the Poisson bracket $\{X, Y\}$ using the Cauchy - Riemann equations:

$$\{X,Y\} = |P_{\perp}(\omega) \nabla_{\xi} Q(\xi + i\sigma\omega)|^2$$

The last term in (3) can be bounded by the middle term and something of lower order.

Absence of super-exponential decay, $\sigma_c < \infty$

Two key points: \diamond No pseudo-differential operators. Exact computations. $\diamond r = |x| \rightarrow r = \langle x \rangle - \langle x \rangle^{1-\epsilon} + 1$ (Rodnianski - Tao) Let $\mathbf{a} = \mathbf{p} - i\sigma\omega, \omega = \nabla r$. The eigenvalue equation for $\psi_{\sigma} = e^{\sigma r}\psi$ is $(Q(a^*) + V - \lambda)\psi_{\sigma} = 0$

Thus

 $egin{aligned} &<\psi_{\sigma}, ([\mathcal{Q}(a),\mathcal{Q}(a^{*})]+|\mathcal{Q}(a)+V_{1}-\lambda|^{2})\psi_{\sigma}> = \ &-<\psi_{\sigma}, (2 ext{Re}[\mathcal{Q}(a),V_{1}]+|V_{2}|^{2})\psi_{\sigma}> \end{aligned}$

Another key point: $P := [a, a^*] \ge c\sigma r^{-(1+\epsilon)}$

We extract positivity from $[Q(a), Q(a^*)]$. Write the commutator as a sum of Wick ordered operators. Let $J_m = (j_1, ..., j_m), K_m = (k_1, ..., k_m)$. Then

$$[Q(a), Q(a^*)] = F + E$$

$$F = \sum_{m=1}^{q} \sum_{J_m, K_m} \partial_{J_m} Q(a^*) P_{J_m, K_m} \partial_{K_m} Q(a) / m!$$

Here $\partial_{J_m} = \partial_{j_1} \cdots \partial_{j_m}$, $\partial_{K_m} = \partial_{k_1} \cdots \partial_{k_m}$, $P_{J_m,K_m} = P_{j_1,k_1} \cdots P_{j_m,k_m}$ and *E* is negligible for large σ .

Note for example that the term with m = q is bounded below by

 $c\sigma^q r^{-q(1+\epsilon)}$.

Theorem (Improved super-exponential decay result)

Take $Q(-i\nabla) = (-\Delta)^{q/2}, q = 2, 4.$

Suppose

$$V_2(x) = O(|x|^{-q/4-\delta})$$
 $\partial^lpha V_1(x) = O(|x|^{-(\delta+q/2+|lpha|)/2})$ for $1 \le |lpha| \le q/2$, and $\delta > 0$.

Then $\sigma_c < \infty$.

This theorem replaces q by q/2 in the assumptions on the potential for $Q(-i\nabla) = (-\Delta)^{q/2}, q = 2, 4.$

Directional decay rates

First consider an **arbitrary** L^2 function ϕ with $\sigma_c \in (0, \infty)$. We introduce three exponential decay rates depending on a direction $\omega \in S^{d-1}$.

$$\sigma_{c}(\omega) = \sup\{\sigma | e^{\sigma \omega \cdot x} \phi \in L^{2}\}$$

$$\sigma_{k}(\omega) = \sup\{\eta \cdot \omega | \eta = \sigma_{c}(\nu)\nu \text{ for some } \nu \in S^{d-1}\}$$

$$\sigma_{loc}(\omega) = \sup\{\sigma | e^{\sigma |x|} \phi \in L^{2}(C) \text{ for some open cone C containing } \omega\}$$

We introduce the set

$$\mathcal{E} = \{\eta \in \mathbb{R}^d | e^{\eta \cdot x} \phi \in L^2\}$$

Note that $\sigma_k(\omega) = \sup\{\eta \cdot \omega | \eta \in \mathcal{E}\}.$

Theorem

• \mathcal{E} is convex.

- **3** $1/\sigma_c(\omega)$ is Lipschitz. In fact $|1/\sigma_c(\omega_1)-1/\sigma_c(\omega_2)| \le |\omega_1-\omega_2|/\sigma_c$.
- For $\omega \in S^{d-1}$ define $\sigma_k(r\omega) = r\sigma_k(\omega)$ for $r \ge 0$. Then $\sigma_k(x)$ is the largest convex homogeneous function $\lambda(x)$ of degree one which satisfies

$$e^{t\lambda(x)}\phi\in L^2$$
 for all $t\in [0,1)$.

If ρ is a continuous map of ℝ^d → [0,∞) which is homogeneous of degree one satisfying ρ(ω) ≤ σ_{loc}(ω) then

 $e^{t
ho(x)}\phi\in L^2$ for all $t\in[0,1)$.

Theorem

Suppose ϕ is an eigenfunction of $Q(-i\nabla) + V(x)$ with eigenvalue λ and with $\sigma_c \in (0, \infty)$. Suppose $\partial^{\alpha} V_1(x) = o(|x|^{-\alpha}), V_2(x) = o(|x|^{-1/2})$. Consider ω such that $\sigma_c(\omega) < \infty$. Then for some $(\xi, \theta, \beta) \in \mathbb{R}^d \times S^{d-1} \times \mathbb{C}, \sigma_c(\omega) = \sigma$ satisfies

 $Q(\xi + i\sigma\omega) = \lambda$ $\nabla Q(\xi + i\sigma\omega) = \beta\theta$

Theorem

Suppose $\overline{\mathcal{E}}$ is strictly convex with a C^1 boundary. Then $\sigma_{loc}(\omega) = \sigma_k(\omega)$, all $\omega \in S^{d-1}$.