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IQHE and FQHE

The Integer Quantum Hall Effect can essentially be understood in
terms of single particle physics and the Pauli principle for the
electrons. In a magnetic field B there is a maximal number, B

2π , of
fermions per unit area that can be accommodated in a given Landau
level, corresponding to a filling factor 1.

In the Fractional Quantum Hall Effect, on the other hand, the
correlations induced by strong repulsive interactions are essential and
reduce the particle density in the ground state. The filling factor(s) in
the state(s) introduced by Laughlin is 1/3 (more generally 1/`).

This talk concerns estimates for the 1-partice density, and also some
higher marginals of the N -particle density, in correlated many-body
states in the lowest Landau level (LLL), related to the Laughlin state.
The results apply also to bosons, that may show features of the FQHE
under rapid rotation.

The upper bounds on the density are a manifestation of the
incompressibility of the quantum fluid.
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Landau levels

Magnetic Hamiltonian:

H = −1
2 (∇⊥ + iA(r))2

with A(r) = B
2 (−y, x). Choose units so that B = 2. (For rotating

systems B = 2Ω.)

Complex coordinates: z = x+ iy, z̄ = x− iy, ∂ = d
dz , ∂̄ = d

dz̄ .

We can write
H = a†a+ 1

2

with
a =

(
∂̄ + 1

2z
)
, a† =

(
−∂ + 1

2 z̄
)
, [a, a†] = 1.

The Spectrum of H is εn = 2(n+ 1
2), n = 0, 1, 2, . . . .
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H commutes with another set of creation and annihilation operators

b = (∂ + 1
2 z̄) and b† =

(
−∂̄ + 1

2z
)

and hence also with the angular momentum operator

L = b†b− a†a = z∂ − z̄∂̄.

The joint eigenfunctions of H and L have the form

ψn,l(z, z̄) = Pn,l(z, z̄)e
−|z|2/2

with associated Laguerre polynomials Pn,l(z, z̄).

The LLL, characterized by aψ = (∂̄ + 1
2z)ψ = 0, is generated by

ψ0,l(z, z̄) = (πl!)−1/2 zle−|z|
2/2.

Jakob Yngvason (Uni Vienna) Incompressibility Estimates 5 / 30



H commutes with another set of creation and annihilation operators

b = (∂ + 1
2 z̄) and b† =

(
−∂̄ + 1

2z
)

and hence also with the angular momentum operator

L = b†b− a†a = z∂ − z̄∂̄.

The joint eigenfunctions of H and L have the form

ψn,l(z, z̄) = Pn,l(z, z̄)e
−|z|2/2

with associated Laguerre polynomials Pn,l(z, z̄).

The LLL, characterized by aψ = (∂̄ + 1
2z)ψ = 0, is generated by

ψ0,l(z, z̄) = (πl!)−1/2 zle−|z|
2/2.

Jakob Yngvason (Uni Vienna) Incompressibility Estimates 5 / 30



H commutes with another set of creation and annihilation operators

b = (∂ + 1
2 z̄) and b† =

(
−∂̄ + 1

2z
)

and hence also with the angular momentum operator

L = b†b− a†a = z∂ − z̄∂̄.

The joint eigenfunctions of H and L have the form

ψn,l(z, z̄) = Pn,l(z, z̄)e
−|z|2/2

with associated Laguerre polynomials Pn,l(z, z̄).

The LLL, characterized by aψ = (∂̄ + 1
2z)ψ = 0, is generated by

ψ0,l(z, z̄) = (πl!)−1/2 zle−|z|
2/2.

Jakob Yngvason (Uni Vienna) Incompressibility Estimates 5 / 30



Maximum density droplet

The density |ψ0,l(z, z̄)|2 is concentrated around the maximum at radius

rl =
√
l.

Thus, if l� 1, then l is the number of orthonormal states whose wave
functions can be accommodated within a disc of area πr2

l = πl, so the
density of states per unit area in the LLL is π−1. The same holds for
the higher Landau levels.

The “Maximum density droplet” (MDD) in the LLL is the Slater
determinant

ΨMDD = (N !)−1/2ψ0,0 ∧ · · · ∧ ψ0,N−1

The 1-particle density
∑

l |ψ0,l|2 is essentially π−1 up to radius
√
N ,

i.e., the filling factor is 1.

Jakob Yngvason (Uni Vienna) Incompressibility Estimates 6 / 30



Maximum density droplet

The density |ψ0,l(z, z̄)|2 is concentrated around the maximum at radius

rl =
√
l.

Thus, if l� 1, then l is the number of orthonormal states whose wave
functions can be accommodated within a disc of area πr2

l = πl, so the
density of states per unit area in the LLL is π−1. The same holds for
the higher Landau levels.

The “Maximum density droplet” (MDD) in the LLL is the Slater
determinant

ΨMDD = (N !)−1/2ψ0,0 ∧ · · · ∧ ψ0,N−1

The 1-particle density
∑

l |ψ0,l|2 is essentially π−1 up to radius
√
N ,

i.e., the filling factor is 1.

Jakob Yngvason (Uni Vienna) Incompressibility Estimates 6 / 30



The Laughlin wave function(s)

The wave function of the MDD is, apart from the gaussian factor, a
Vandermonde determinant and can be written as

ΨMDD = (N !)−1/2
∏
i<j

(zi − zj)e−
∑N

i=1 |zi|2/2.

The Laughlin wave function(s), on the other hand, have the form

Ψ
(`)
Laugh = CN,`

∏
i<j

(zi − zj)`e−
∑N

i=1 |zi|2/2

with ` odd ≥ 3 and CN,` a normalization constant. For Bosons ` is even
and ≥ 2.

In his 1983 paper Laughlin claims that the 1-particle density of Ψ
(`)
Laugh

within its support is close to (`π)−1.
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Methaphoric picture; plasma analogy

Methaphoric picture of the N -particle density (not due to Laughlin!):

The particles move in a correlated way, as tightly packed as the factors
(zi − zj)` allow, like huddling emperor penguins during an Antarctic
winter. Each “penguin” claims on the average an area of radius

√
`.
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Laughlin’s argument for the density (`π)−1 is more mathematical. It is
based on the “plasma analogy”:

The N -particle density |Ψ(`)
Laugh|

2 can be interpreted as the
Boltzmann-Gibbs factor at temperature T = N−1 of classical 2D
jellium, i.e., a 2D Coulomb gas in a uniform neutralizing background. A
mean field approximation leads to the claimed density.

Numerical calculations (O. Ciftja) show, however, that the density may
be considerably larger than (`π)−1 close to the edge. The result can
thus only hold in a suitable weak sense in the limit N →∞.
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A proof of Laughlin’s claim amounts to a study of the mean field limit of
the jellium model, including error estimates.
We denote (z1, . . . , zN ) by Z for short and consider the scaled N
particle probability density (normalized to 1)

µ(N)(Z) = NN
∣∣∣Ψ(`)

Laugh(
√
NZ)

∣∣∣2 .
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The density as a Boltzmann-Gibbs factor

We can write

µ(N)(Z) = Z−1
N exp

 N∑
j=1

−N |zj |2 + 2`
∑
i<j

log |zi − zj |



= Z−1
N exp

(
− 1

T
HN (Z)

)
,

with T = N−1 and

HN (Z) =
N∑
j=1

|zj |2 −
2`

N

∑
i<j

log |zi − zj |.
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Mean field limit

The Hamiltonian HN (Z) defines a classical 2D Coulomb gas in a
uniform background (‘plasma’).

The probability measure µ(N)(Z) minimizes the free energy functional

F(µ) =

∫
HN (Z)µ(Z) + T

∫
µ(Z) logµ(Z)

for this Hamiltonian at T = N−1.

The N →∞ limit is in this interpretation a mean field limit where at the
same time T → 0. It is thus not unreasonable to expect that for large
N , in a suitable sense

µ(N) ≈ ρ⊗N

with a one-particle density ρ minimizing a mean field free energy
functional.
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Mean field limit (cont.)

The mean field free energy functional is defined as

EN [ρ] =

∫
R2

|z|2 ρ− `
∫ ∫

ρ(z) log |z − z′|ρ(z′) +N−1

∫
R2

ρ log ρ

It has a minimizer ρN among probability measures on R2 and this
minimizer should be a good approximation for the scaled 1-particle
probability density of the trial wave function, i.e.,

µ
(1)
N (z) =

∫
R2(N−1)

µ(N)(z, z2, . . . , zN )d2z2 . . . d
2zN .
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The Mean Field Limit Theorem

Such mean field limits have been studied, using compactness
arguments, by many people, including Kiessling, Spohn, Messer,
Caglioti, Lions, Marchioro, Pulvirenti,.... . In joint work of N. Rougerie,
S. Serfaty and JY quantitative estimates on the approximation of µ(1)

N

by ρN are proved:

Theorem (Comparison of true density and mean field density)
There exists a constant C > 0 such that for large enough N and any
U ∈ H1(R2) ∩W 2,∞(R2)∣∣∣∣∫

R2

(
µ

(1)
N − ρN

)
U

∣∣∣∣ ≤ C(logN/N)1/2‖∇U‖L1 + CN−1‖∇2U‖L∞.
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Ingredients of the Proof

The proof is based on upper and lower bounds for the free energy.
For the upper bound one uses ρN⊗N as a trial measure.

The lower bound uses:
2D versions of two classical electrostatic results: Onsager’s
lemma, (lower bd. on Coulomb interaction energy in terms of
1-particle operators) and an estimate of the change in
electrostatic energy when charges are smeared out.
The variational equation associated with the minimization of the
mean field free energy functional.
Positivity of relative entropies, more precisely the
Cszizàr-Kullback-Pinsker inequality

The estimate on the density follows essentially from the fact that the
positive Coulomb energy D(µ(1) − ρMF, µ(1) − ρMF) is squeezed
between the upper and lower bounds to the free energy.
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Cszizàr-Kullback-Pinsker inequality

The estimate on the density follows essentially from the fact that the
positive Coulomb energy D(µ(1) − ρMF, µ(1) − ρMF) is squeezed
between the upper and lower bounds to the free energy.

Jakob Yngvason (Uni Vienna) Incompressibility Estimates 15 / 30



Properties of the Mean Field Density

The picture of the 1-particle density arises from asymptotic formulas
for the mean-field density. The latter is for large N is well approximated
by a density ρ̂ that minimizes the mean field functional without the
entropy term.

The variational equation satisfied by this density is:

|z|2 − 2`ρ̂ ∗ log |z| − C ≥ 0

with “=” where ρ̂ > 0 and “>” where ρ = 0.

Applying the Laplacian gives

1− `π ρ̂(z) = 0

where ρ̂ > 0. Hence ρ̂ takes the constant value (`π)−1 on its support.
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General incompressibility estimates

Consider now general states of the form

Ψ(z1, . . . , zN ) = φ(z1, . . . , zN )
∏
i<j

(zi − zj)`e−
∑N

j=1 |zj |2/2

with ` even ≥ 2 for bosons, or ` odd ≥ 3 for fermions, and φ(z1, . . . , zN )
a symmetric holomorphic function.

These states constitute the kernel ker IN of

IN =
∑

i<jδ(zi − zj)

that is well defined (even a bounded operator) in the LLL. In fact,
”δ(zi − zj)” is equivalent to

(δijϕ)(zi, zj) =
1

2π
ϕ
(

1
2(zi + zj),

1
2(zi + zj)

)
.

For other repulsive potentials peaked at the origin, e.g. |zi − zj |−1, the
interaction is not zero, but suppressed by the (zi − zj)` factors.
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Define as before

µ(N)(Z) = NN |Ψ(
√
NZ)|2,

and the n-marginal

µ(n)(z1, . . . , zn) =

∫
CN−n

µ(N)(z1, . . . , zn; zn+1, . . . , zN )dzn+1 · · · dzN .

We would like to prove that in a suitable sense, for N →∞ but n� N ,

µ(n) ≈ (µ(1))⊗n

and that the density µ(1) satisfies the “incompressibility bound”

µ(1)(z) ≤ 1

`π
.
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Comparison with ‘bathtub energy’

An “incompressibility bound” leads to a lower bound to the potential
energy in an external potential,∫

V (z)µ(1)(z)dz,

in terms of the ‘bathtub energy’

Ebt(V ) = inf

{∫
V (z)ρ(z)dz : 0 ≤ ρ ≤ (`π)−1,

∫
ρ = 1

}
.

But:

The bound for µ(1) will certainly not hold point-wise for finite N .
A bound for arbitrary ‘correlation factors’ φ is out of reach at
present.
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It is, however, possible to derive such bounds for φ of the form

N∏
j=1

f1(zj)
∏

(i,j)∈{1,...,N}

f2(zi, zj) . . .
∏

(i1,...,in)∈{1,...,N}

fn(zi1 , . . . , zin).

We have done this explicitly for the special case

N∏
j=1

f1(zj)
∏

(i,j)∈{1,...,N}

f2(zi, zj),

but extensions to arbitrary fixed n (or n not growing too fast with N ) are
possible.

For such factors we prove that the potential energy is, indeed,
bounded below by the bathtub energy in the limit N →∞.
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The proof proceeds in two steps:
Comparison of the free energy with the energy defined by the
functional (MF energy functional without entropy term)

Ê [ρ] =

∫
R2

(
|z|2 − 2

N
log |g1(z)|

)
ρ(z)dz

+

∫
R4

ρ(z)
(
− ` log |z − z′| − log |g2(z, z′)|

)
ρ(z′)dzdz′

where g1(z) = f1(
√
Nz), g2(z, z′) = f2(

√
Nz,
√
Nz′).

Showing that the density of the minimizer of the MF functional
satisfies the incompressibility bound.
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Bound on the MF density

The variational equation for the modified MF functional is

|z|2 − 2

N
log |g1(z)| − 2

∫
log |g2(z, z′)|ρ(z′)dz′ − 2`ρ ∗ log |z| − C = 0

on the support of ρ, and applying 1
4∆ gives

1− (1/2N)∆ log |g1(z)| − 1
2

∫
∆z log |g2(z, z′|)ρ(z′)dz′ − `π ρ(z) = 0.

But ∆ log |g1(z)| ≥ 0 and ∆z log |g2(z, z′| ≥ 0, so

ρ(z) ≤ 1

`π
.
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Justification of the mean field approximation

The first step, however, i.e., the justification of the mean field
approximation, is less simple.

Note that − log |g2(z, z′)| can be much more intricate than − log |z − z′|
and is not of positive type in general so the previous arguments for the
mean field limit do not apply.

Instead we use a theorem of Diaconis and Freedman. This is a
quantitative version of the Hewitt-Savage theorem.

The latter says essentially that the n-th marginals of a symmetric
probability measure on a SN can, for N →∞, be approximated by a
convex combination of pure tensor products, ρ⊗n.
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The Diaconis-Freedman Theorem

Theorem (Diaconis-Freedman)

Let S be a measurable space and µ ∈ Ps(SN ) be a probability
measure on SN invariant under permutation of its arguments. There
exists a probability measure Pµ ∈ P(P(S)) such that, denoting

µ̃ =

∫
ρ∈P(S)

ρ⊗NdPµ(ρ),

we have ∥∥∥µ(n) − µ̃(n)
∥∥∥

TV
≤ n(n− 1)

N
.

In addition, the marginals of µ̃ are explicitly given by those of µ:

µ̃(n)(x1, . . . , xn) =
1

Nn

n∑
j=1

∑
1≤i1 6=... 6=ij≤N

µ(j)(xi1 , . . . , xij ) δxij+1
=...=xin .
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Incompressibility Bounds

With the aid of the DF theorem we prove:

Theorem (Weak incompressibility Bound)
Let Ψ be a wave function in the Laughlin phase with a correlation factor
of the type described and µ(1) its scaled 1-particle probability density.
Let V be a smooth potential with inf |x|≥R V (x)→∞ for R→∞. Then

lim inf
N→∞

∫
µ(1)(z)V (z)dz ≥ inf

{∫
V ρ : 0 ≤ ρ ≤ (`π)−1,

∫
ρ = 1

}
.

Moreover, for a radially monotone, or Mexican hat shaped potential this
bound is optimal (within the class of states considered) and saturated
by the Laughlin state, resp. by ‘quasi hole’ states.
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Incompressibility Bounds (cont.)

The weak incompressibility bound is a corollary of the following
quantitative estimate of the potential energy.

Theorem (Quantitative incompressibility estimate)

Let µ(1) be be as in the previous Theorem. Pick some test one-body
potential U such that U, ∆U ∈ L∞(R2). For any N large enough and ε
small enough there exists an absolutely continuous probability
measure ρ ∈ L1(R2) satisfying

ρ ≤ 1

π`
+ ε

sup |∆U |
4π`

such that ∫
R2

Uµ(1) ≥
∫
R2

Uρ− C(Nε)−1Err(f1, f2)

where Err(f1, f2) can be estimated in terms of the degrees of the
polynomials f1 and f2.
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Regularization

The explicit form of the marginals of the measure µ̃ is important for
deriving this estimate.

However, the presence of the δ functions in the formula for µ̃ requires a
regularization of log |z − z′| around z = z′ and likewise of log |g2(z, z′)|
around the points where g2(z, z′) = 0.

This is done by replacing the log with a regularized

logα |z| =
∫

log |z − w| δα(w)dw

where δα the density of a unit charge smeared uniformly over a disc of
radius α > 0.

Newton’s theorem guarantees that log = logα outside of the disc and
one has

∆ logα |z| = 2πδα(z).

Moreover, ∆ log |f(z)| ≥ 0 and ∆ logα |f(z)| ≥ 0 for all analytic
functions f .

Jakob Yngvason (Uni Vienna) Incompressibility Estimates 27 / 30



Regularization

The explicit form of the marginals of the measure µ̃ is important for
deriving this estimate.

However, the presence of the δ functions in the formula for µ̃ requires a
regularization of log |z − z′| around z = z′ and likewise of log |g2(z, z′)|
around the points where g2(z, z′) = 0.

This is done by replacing the log with a regularized

logα |z| =
∫

log |z − w| δα(w)dw

where δα the density of a unit charge smeared uniformly over a disc of
radius α > 0.

Newton’s theorem guarantees that log = logα outside of the disc and
one has

∆ logα |z| = 2πδα(z).

Moreover, ∆ log |f(z)| ≥ 0 and ∆ logα |f(z)| ≥ 0 for all analytic
functions f .

Jakob Yngvason (Uni Vienna) Incompressibility Estimates 27 / 30



Regularization

The explicit form of the marginals of the measure µ̃ is important for
deriving this estimate.

However, the presence of the δ functions in the formula for µ̃ requires a
regularization of log |z − z′| around z = z′ and likewise of log |g2(z, z′)|
around the points where g2(z, z′) = 0.

This is done by replacing the log with a regularized

logα |z| =
∫

log |z − w| δα(w)dw

where δα the density of a unit charge smeared uniformly over a disc of
radius α > 0.

Newton’s theorem guarantees that log = logα outside of the disc and
one has

∆ logα |z| = 2πδα(z).

Moreover, ∆ log |f(z)| ≥ 0 and ∆ logα |f(z)| ≥ 0 for all analytic
functions f .

Jakob Yngvason (Uni Vienna) Incompressibility Estimates 27 / 30



Bound on the modified MF density

The variational equation for the modified MF functional is

|z|2 − 2 log |g1(z)| − 2

∫
logα |g2(z, z′)|ρ(z′)dz′ − 2`ρ ∗ logα |z| − C = 0

on the support of ρ, and applying 1
4∆ gives

1− 1
2∆ log |g1(z)| − 1

2

∫
∆z logα |g2(z, z′|)ρ(z′)dz′ − `π δα ∗ ρ(z) = 0.
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Bound on the MF density (cont.); higher correlation
factors

Since ∆ log |g1(z)| ≥ 0 and ∆z logα |g2(z, z′)| ≥ 0, the MF minimizer
satisfies

δα ∗ ρ(z) ≤ (`π)−1.

The comparison of the MF density with µ(1) is achieved by comparing
the free energies for the functionals where εU has been added as an
external potential and taking ε→ 0, α→ 0 dependent on N →∞.

The inclusion of higher correlation factors, gn(zi1 , . . . , zin), n ≥ 3, leads
to an n particle interaction potential log |gn(zi1 , . . . , zin)| that can, in
principle, be treated in an analogous way. Diaconis-Friedmann is,
however, only applicable for n�

√
N . Moreover, the number of terms

increases like
(
N
n

)
which leads to some complications for the

comparison of the mean field density with the true density.
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Conclusions

Using a notion of incompressibility based on a lower bound to the
potential energy in terms of a ‘bath tub’ energy, we have shown that
this property holds for a large class of states derived from the Laughlin
state(s).

Open problem:

Show that for general external potentials V the variational problem of
minimizing the energy within the constrained class of functions
Ker(IN ) is, in the limit N →∞, solved by wave functions of the form

N∏
j=1

f1(zj)Ψ
(`)
Laugh(z1, . . . , zN ).

with ` = 2 for bosons and ` = 1 for fermions. For sufficiently strong
Coulomb repulsion ` = 3 should be favored for fermions.
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