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1. INTRODUCTION AND PROBLEM FORMULATION

In this paper we study the existence of stabilizing solutions of two pairs of
coupled matrix Riccati differential equations associated with linear-quadratic
games of the form

ẋ = A(t)x(t) + B1(t)u1(t) + B2(t)u2(t); x(0) = x0,

where x ∈ Rn, ui ∈ Rri , i = 1, 2, and the cost functionals associated with the
two players are

J1 =
1
2
xT

f X1fxf +
1
2

∫ tf

t0

(xTQ1(t)x + uT
1 R11(t)u1 + uT

2 R12(t)u2)dt

and

J2 =
1
2
xT

f X2fxf +
1
2

∫ tf

t0

(xTQ2(t)x + uT
1 R21(t)u1 + uT

2 R22(t)u2)dt,

with xf = x(tf ). All weighting matrices are assumed to be real and symmetric
with Qi non-negative definite and Rii, i = 1, 2, positive definite.

The Riccati equations examined in this paper are associated with two
types of strategies of the two players: the feedback Nash strategies and the
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open-loop Nash strategies. It is known (see [1, 3, 5] for precise definitions and
further details on this topic) that the optimal feedback and open-loop Nash
strategies have the form

u1(t) = −R−1
11 (t)BT

1 (t)X1(t) x(t), u2(t) = −R−1
22 (t)BT

2 (t)X2(t) x(t),

where x(t) can be determined from the initial value problem

ẋ = [A(t) − S1(t)X1(t) − S2(t)X2(t)]x(t), x(0) = x0,

provided it is possible to determine for all t ∈ [t0, tf ] the solutions (X1(t),X2(t))
of the coupled matrix Riccati differential equations (1) and (2), respectively,
with terminal values Xi(tf ) = Xif , i = 1, 2 . Using the notation

Si(t) = Bi(t)R−1
ii (t)BT

i (t), 1 ≤ i ≤ 2,

and
Sij(t) = Bj(t)R−1

jj (t)Rij(t)R−1
jj (t)BT

j (t), 1 ≤ i, j ≤ 2,
in the case of feedback Nash strategies we have to determine the solution
(X1,X2) of the system

d
dt

X1 + AT(t)X1 + X1A(t) − X1S1(t)X1 − X1S2(t)X2−(1)

− X2S2(t)X1 + X2S12(t)X2 + Q1(t) = 0,
d
dt

X2 + AT(t)X2 + X2A(t) − X2S2(t)X2 − X2S1(t)X1−
− X1S1(t)X2 + X1S21(t)X1 + Q2(t) = 0,

and in the case of open-loop Nash strategies the solution (X1,X2) of the system

d
dt

X1 + AT(t)X1 + X1A
T(t) − X1S1(t)X1 − X1S2(t)X2 + Q1(t) = 0,(2)

d
dt

X2 + AT(t)X2 + X2A(t) − X2S1(t)X1 − X2S2(t)X2 + Q2(t) = 0,

where we assume for convenience that A : R → Rn×n; Qi, Si : R → Sn,
i = 1, 2; Sij : R → Sn, (ij) ∈ {(1, 2), (2, 1)} are bounded and continuous
matrix valued functions; here, as usual, Sn ⊂ Rn×n is the linear subspace of
all symmetric n × n matrices.

If the differential game is considered on an infinite time horizon (i.e., tf =
+∞), then the optimal strategy is constructed using a special global solution
of equations (1) and (2), respectively. Such solutions have to achieve the
exponentially stable behavior of the trajectories of the closed-loop system. In
this paper we are interested in deriving procedures for numerical computation
of such global solutions of (1) and (2), respectively.

Systems (1) and (2) were investigated either as mathematical objects
with interest in themselves in [1], Chapter 6, or in connection with several
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aspects of two-player Nash differential games (see [2, 3, 5, 10, 11, 12] and
references therein).

We mention that system (2) can be rewritten as a non-symmetric (rec-

tangular) matrix Riccati differential equation for the block matrix
(

X1

X2

)
.

Therefore we can use for its solution all results and methods known for this
type of equations (see [1], Chapter 6, [7] and [9]) – it is known that the global
existence of the solutions of such differential equations is only guaranteed
under rather restrictive conditions.

Existence results for the nonlinear system (1) are also rare; although the
solutions Xj , 1 ≤ j ≤ 2, of (1) are symmetric if the terminal (or initial) values
Xjf , 1 ≤ j ≤ 2, are symmetric, the existence of the corresponding solutions
can frequently only be guaranteed locally (see [8]).

The situation is better if one confines to differential systems (1) or (2)
under assumptions leading to positive systems; in particular, (1) and (2) were
studied under these restrictions in [2], [4] and in [10], respectively.

In the present paper we assume that (1), (2) are also in the case of
positive systems. Therefore, according to the assumptions from [10, 2, 4] we
make the following hypothesis concerning the coefficients of (1) and (2):

H1) (i) For each t ∈ R, A(t) = (aij(t)) is a Metzler matrix, i.e., aij(t) ≥ 0
for i �= j.

(ii) Si(t) � 0, i = 1, 2, ∀ t ∈ R.
(iii) Sij(t) 
 0, (i, j) ∈ {(1, 2), (2, 1)}, ∀ t ∈ R.
(iv) Ql(t) 
 0, t ∈ R, l = 1, 2.

Here and below � and 
 denote the corresponding componentwise ordering.

Our aim is to construct sequences of iterates which converge towards the
stabilizing solution of (1) and (2), respectively.

At each step we will have to solve two uncoupled symmetric Lyapunov
differential equations or uncoupled nonsymmetric Lyapunov equations (Syl-
vester equations), respectively.

2. STABILIZING SOLUTIONS

Since (1) and (2) are nonstandard (coupled) Riccati differential equa-
tions, we consider that the results obtained could be useful to clarify the
concept of stabilizing solutions of such equations.

To this end, we regard these equations as nonlinear differential equations
on a Hilbert space X . For equation (1) we take X = Sn⊕Sn while for equation
(2) we take X = Rn×n ⊕ Rn×n. The usual inner product is given by

〈X,Y 〉 = Tr
[

Y T
1 X1

]
+ Tr

[
Y T

2 X2

]
(3)
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for all X = (X1,X2), Y = (Y1, Y2) in X .
On X , (1) and (2) may be written in a compact form as

d
dt

X + R(t,X) + Q(t) = 0,(4)

where Q(t) =
(

Q1(t) Q2(t)
)

and R(t,X) =
( R1(t,X) R2(t,X)

)
, with

R1(t,X)=AT(t)X1+X1A(t)−X1S1(t)X1−X1S2(t)X2−X2S2(t)X1+X2S12(t)X2,

R2(t,X)=AT(t)X2+X2A(t)−X2S2(t)X2−X2S1(t)X1−X1S1(t)X2+X1S21(t)X1,

in case of (1), and

R1(t,X) = AT(t)X1 + X1A(t) − X1S1(t)X1 − X1S2(t)X2,

R2(t,X) = AT(t)X2 + X2A(t) − X2S1(t)X1 − X2S2(t)X2,

in case of (2).
For each solution X(t) = (X1(t),X2(t)) of equation (4) we may con-

struct the operator valued function LX : R → B[X] defined by LX(t)U =
(L1X(t)U,L2X(t)U) where

L1X(t)U = (A(t) − S1(t)X1(t) − S2(t)X2(t))U1 + U1(A(t)−(5)

− S1(t)X1(t) − S2(t)X2(t))T−(S1(t)X2(t)−S21(t)X1(t))U2−
− U2(X2(t)S1(t) − X1(t)S21(t)),

L2X(t)U =−(S2(t)X1(t)−S12(t)X2(t))U1−U1(X1(t)S2(t)−X2(t)S12(t))+

+ (A(t) − S1(t)X1(t) − S2(t)X2(t))U2+

+ U2(A(t) − S1(t)X1(t) − S2(t)X2(t))T

in case of (1) and

L1X(t)U = (A(t) − S1(t)XT
1 (t))U1 + U1(A(t) − S1(t)X1(t) −(6)

−S2(t)X2(t))T − S1(t)XT
2 (t)U2,

L2X(t)U = (A(t) − S2(t)XT
2 (t))U2 + U2(A(t) − S1(t)X1(t) −

−S2(t)X2(t))T − S2(t)XT
1 (t)U1,

in case of (2). It is easy to see that

R′(t,X(t)) = L∗
X(t),(7)

where R′(t, ·) is the Fréchet derivative of the function X → R(t,X) while
L∗

X(t) is the adjoint operator of LX(t) with respect to the inner product (3).

Definition 2.1. We say that a solution X̃(t) = (X̃1(t), X̃2(t)) of (4) is
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a) a stabilizing solution if the zero state equilibrium of the linear differ-
ential equation

d
dt

Z = LX̃(t)Z(8)

on X is exponentially stable;
b) a closed-loop stabilizing solution if the zero state equilibrium of the

linear differential equation
d
dt

x = Acl(t)x(9)

on Rn is exponentially stable, where Acl(t) = A(t)− S1(t)X̃1(t)− S2(t)X̃2(t).

Remark 2.2. a) On account of (7), in the time invariant case, the concept
of a stabilizing solution introduced above can be characterized by the fact that
the eigenvalues of the operator R′(X) are located in the open left half-plane
Reλ < 0.

b) It was shown in [4] that if X̃(t) 
 0 is a stabilizing solution of (1),
then it also is a closed-loop stabilizing solution of the same equation.

Reasoning as in Lemma 8.1 (ii), (iii) in [4], we deduce that if X̃(t) 
 0 is
a stabilizing solution of (2), then the solution Zk = 0 of the linear differential
equations

d
dt

Zk = Λk,X̃(t)Zk, k = 1, 2,(10)

is exponentially stable, where

Λk,X̃(t)Zk = (A(t) − Sk(t)X̃T
k (t))Zk + Zk(A(t) −(11)

−S1(t)X̃1(t) − S2(t)X̃2(t))T

is a nonsymmetric Lyapunov operator (i.e., a Sylvester operator).
Unfortunately, we are unable to show that the exponential stability of

the evolution generated by the Sylvester operator (11) implies the exponential
stability of the corresponding closed-loop matrix Acl(t) defined by (9).

c) Necessary and sufficient conditions under which a closed-loop stabi-
lizing solution of (4) is also a stabilizing solution can be derived using the
developments from Section 6 in [4].

In [10, 2, 4] sequences of iterates Xj = (Xj
1 ,Xj

2) converging towards
the stabilizing solution were provided. At each step Xj is obtained either as
solution of the linear differential equations

d
dt

Xj + L∗
Xj−1(t)Xj + Qj(t) = 0(12)

on X in the time-varying case or as solution of the algebraic linear equations

L∗
Xj−1X

j + Qj = 0(13)
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on X in the time invariant case.
In this paper we replace equations (12) and (13) respectively, by uncou-

pled Lyapunov differential equations or uncoupled algebraic Lyapunov equa-
tions, respectively.

At the end of this section we introduce the set of functions

Ω(R, Q)=
{

P : R → X | P (t)
0 and
d
dt

P (t)+R(t, P (t))+Q(t) ≺ 0
}

.(14)

related to equation (4).
We recall that for H : R → X we write H(t) �� 0 if there exists a

positive constant δ such that H(t) 
 δ 1n � 0, where 1n is the n × n matrix
with all entries equal to 1 (for details see Ex. 2.5 (ii) in [4]). We shall write
H(t) ≺≺ 0 if −H(t) �� 0.

Remark 2.3. In (14), the operator R(· , ·) takes different forms according
to whether the set Ω(R, Q) is associated either with (1) or with (2).

3. LYAPUNOV TYPE ITERATIONS FOR EQUATION (1)

Let {Xj(t)}j≥0 be the sequence of functions Xj : R → X , Xj(t) =
(Xj

1(t),Xj
2(t)) with Xj

l (t) being the unique solution bounded on R of the
Lyapunov differential equation

d
dt

Xj
l (t) + [A(t) − S1(t)X

j−1
1 (t) − S2(t)X

j−1
2 (t)]TXj

l (t)+(15)

+Xj
l (t)[A(t) − S1(t)X

j−1
1 (t) − S2(t)X

j−1
2 (t)] + Qj−1

l (t) = 0,

with l = 1, 2, X0
l (t) = 0, t ∈ R, where

(16) Qj−1
1 (t) = Q1(t) + Xj−1

1 (t)S1(t)X
j−1
1 + Xj−1

2 (t)S12(t)X
j−1
2 ,

(17) Qj−1
2 (t) = Q2(t) + Xj−1

2 (t)S2(t)X
j−1
2 (t) + Xj−1

1 (t)S21(t)X
j−1
1 (t).

Before stating the main result of this section we make the assumption

H2) (i) The zero state equilibrium of the linear differential equation
d
dt

x(t) = A(t)x(t)

on Rn is exponentially stable.
(ii) The set Ω(R, Q) is not empty.

Now, we prove:

Theorem 3.1. Under assumptions H1 and H2, the sequence {Xj(t)}j≥0

defined by (15)–(17) is well defined and convergent. If X̃(t) := limj→∞ Xj(t)
then X̃(t) is the stabilizing solution of (1). Moreover, X̃(t) is the minimal
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solution of (1) with respect to the class of global bounded nonnegative solutions
of (1).

Proof. We shall show iteratively the following items:
aj) 0 � Xj(t) � P (t) for all P (t) ∈ Ω(R, Q);
bj) the zero state equilibrium of the linear differential equation

d
dt

x(t) = Aj(t)x(t)

is exponentially stable, where

Aj(t) = A(t) − S1(t)X
j
1(t) − S2(t)X

j
2(t);(18)

cj) Xj(t) � Xj+1(t) for all t ∈ R.
From assumption H2 together with X0

l (t) = 0, we get that items aj) and
bj) are fulfilled for j = 0.

To check that c0) is also true, let us remark that X1
l (t) is the unique

bounded solution of the Lyapunov differential equation

d
dt

X1
l (t) + AT(t)X1

l (t) + X1
l (t)A(t) + Ql(t) = 0.

Since Ql(t) 
 0, by Theorem 4.7 (iv) of [4] we have X1
l (t) 
 0 = X0

l (t), t ∈ R.
This is just c0).

Let us assume next that ai), bi), ci) are fulfilled for 0 ≤ i ≤ j − 1 and
prove that then they also hold for i = j.

If bj−1) is fulfilled, then it follows from Theorem 4.7 (i) of [4] that equa-
tion (15) has unique bounded solution on R, so that Xj(t) is well defined.

Seting P (t) = (P1(t), P2(t)) ∈ Ω(R, Q), one can see that it verifies the
differential equation

d
dt

P (t) + R̃(t, P (t)) + Q(t) + Q̂(t) = 0,(19)

where Q̂(t) = (Q̂1(t), Q̂2(t)) �� 0. It is easy to check that Pl(t) verifies the
Lyapunov equations

(20)
d
dt

Pl(t) + AT
j−1(t)Pl(t) + Pl(t)Aj−1(t) + Hj−1

l (t) = 0, l = 1, 2,

where Aj−1(t) is as in (18) with Xj
l (t) replaced by Xj−1

l (t) and Hj−1(t) =
(Hj−1

1 (t),Hj−1
2 (t)), with

Hj−1
1 (t) = −[P1(t) − Xj−1

1 (t)]S1(t)[P1(t) − Xj−1
1 (t)]−(21)

−[P2(t) − Xj−1
2 (t)]S2(t)P1(t) − P1(t)S2(t)[P2(t) − Xj−1

2 (t)]+

+P2(t)S12(t)P2(t) + Xj−1
1 (t)S1(t)X

j−1
1 (t) + Q1(t) + Q̂1(t),
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Hj−1
2 (t) = −[P2(t) − Xj−1

2 (t)]S2(t)[P2(t) − Xj−1
2 (t)]−(22)

−[P1(t) − Xj−1
1 (t)]S1(t)P2(t) − P2(t)S1(t)[P1(t) − Xj−1

1 (t)]+

+P1(t)S21(t)P1(t) + Xj−1
2 (t)S2(t)X

j−1
2 (t) + Q2(t) + Q̂2(t).

From (15) and (20) we get
d
dt

(Pl(t) − Xj
l (t)) + AT

j−1(t)(Pl(t) − Xj
l (t))+(23)

+(Pl(t) − Xj
l (t))Aj−1(t) + M j−1

l (t) = 0,

where M j−1
l (t) = Hj−1

l (t) − Qj−1
l (t).

Since aj−1) is fulfilled, it follows from (16), (17) and (21)–(22) that
M j−1

l (t) �� 0, t ∈ R.
Applying Theorem 4.7 (iv) in [4] to equation (23), we conclude that

Pl(t) − Xj
l (t) � c 1n, t ∈ R,(24)

where c is a positive constant. Thus, we deduce that aj) is fulfilled.
To check that bj) is fulfilled, we rewrite equation (20) in the form:

(25)
d
dt

Pl(t) + AT
j (t)Pl(t) + Pl(t)Aj(t) + HJ

l (t) = 0,

where Aj(t) is as in (18) and the matrices Hj
l (t) are as in (21)–(22), with

Xj−1
l (t) replaced by Xj

l (t).
Equation (20) can be rewritten as

d
dt

Xj
l (t) + AT

j (t)Xj
l (t) + XJ

l (t)Aj(t) + Gj
l (t) = 0,(26)

where Aj(t) is given by (18) and

Gj
1(t) = Q1(t) + Xj−1

1 (t)S1(t)X
j−1
1 (t) + Xj−1

2 (t)S12(t)X
j−1
2 (t)−(27)

−(Xj−1
1 (t) − Xj

1(t))S1(t)XJ
1 (t) − Xj

1(t)S1(t)(X
j−1
1 (t) − Xj

1(t))−
−Xj

2(t)X2(t)(X
j−1
2 (t) − Xj

2(t)) − (Xj−1
2 (t) − Xj

2(t))S2(t)X
j
2(t),

Gj
2(t) = Q2(t) + Xj−1

1 (t)S21(t)X
j−1
1 (t) + Xj−1

2 (t)S2(t)X
j−1
2 (t)−(28)

−Xj
2(t)S1(t)(X

j−1
1 (t) − Xj

1(t)) − (Xj−1
1 (t) − Xj

1(t))S1(t)X
j
2(t)−

−XJ
2 (t)S2(t)(X

j−1
2 (t) − Xj

2(t)) − (Xj−1
2 (t) − Xj

2(t))S2(t)X
j
2(t).

Subtracting (26) from (25) and taking into account (24), we obtain that
the function t → Pl(t) − Xj

l (t) is a bounded and uniform positive solution of
the Lyapunov equation

d
dt

Yl(t) + AT
j (t)Yl(t) + Yl(t)Aj(t) + Θj

l (t) = 0(29)
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with Θj
l (t) = Hj

l (t) − Gj
l (t). It is easy to see that Θj

l (t) �� 0.
Applying the implication (vi) → (i) of Theorem 4.5 in [4] to equation

(29), we conclude that the zero state equilibrium of the equation

d
dt

x(t) = Aj(t)x(t)

is exponentially stable. Thus, we proved that item bj) is fulfilled.
To check the validity of item cj), we subtract equation (26) from equation

(15) written for Xj+1
l (t) and obtain

d
dt

(Xj
l (t) − Xj+1

l (t)) = AT
j (t)(Xj+1

l (t) − Xj
l (t))+(30)

+(Xj+1
l (t) − Xj

l (t))Aj(t) + ∆j
l (t),

where ∆j
l (t) = Qj

l (t) − Gj
l (t), l = 1, 2. Combining (16)–(17) written for j + 1

instead of j with (27)–(28), one can see that ∆j
l (t) �� 0. Applying Theorem

4.7 (iv) of [4] to equation (30), we conclude that

Xj+1
l (t) − Xj

l (t) ≥ 0, t ∈ R.

This shows that cj) is fulfilled.
It follows from aj) and cj), j ≥ 0, that the sequences {Xj

l (t)}j≥0, l = 1, 2,
t ∈ R, are convergent. Set X̃l(t) = limj→∞ Xj

l (t), l = 1, 2, t ∈ R. By standard
arguments we deduce that t → X̃(t) = (X̃1(t), X̃2(t)) is a solution of (1). As
in [4], one can prove that X̃(t) is just the stabilizing solution of (1).

In the same way as in the proof of item aj), one shows that Xj
l (t) � Yl(t)

for arbitrary Y (t) =
(

Y1(t), Y2(t)
)

which verifies

d
dt

Y (t) + R(t, Y (t)) + Q(t) � 0, Yl(t) 
 0.

This allows us to conclude that X̃(t) is the minimal solution of (1), thus the
proof is complete. �

Remark 3.2. a) Using Theorem 4.7 (iii) in [4], we can deduce that in the
time invariant case the unique bounded solution of (15) is constant. Therefore,
in the time invariant case, for each iteration we have to solve two algebraic
Lyapunov equations, namely,

AT
j−1X

j
l + Xj

l Aj−1 + Qj
l = 0, l = 1, 2,

with Aj−1 = A − S1X
j−1
1 − S2X

j−1
2 and Qj−1

l as in (16)–(17).
b) If A(·), Sj(·), Skl(·), Ql(·) are periodic functions with period θ > 0,

then the unique bounded solution of (15) is a periodic function with the same
period θ.
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The initial value Xj
l (0) is obtained as a solution of the Stein equation:

Xj
l (0) = ΦT

j−1(θ, 0)Xj
l (0)Φj−1(θ, 0) +

∫ θ

0
ΦT

j−1(s, 0)Q
j−1
l (s)Φj−1(s, 0)ds,

where Φj−1(t, τ) is the fundamental matrix solution of d
dtx(t) = Aj−1(t)x(t).

4. LYAPUNOV TYPE ITERATIONS FOR EQUATION (2)

Consider the sequence of functions {Xj(t)}j≥0, Xj(t) = (Xj
1(t),Xj

2(t)),
where Xj

l : R → Rn×n is the unique bounded solution of the nonsymmetric
Lyapunov differential equations

d
dt

Xj
l (t) + (AT(t) − Xj−1

l (t)Sl(t))X
j
l (t)+(31)

+Xj
l (t)(A(t) − S1(t)X

j−1
1 (t) − S2(t)X

j−1
2 (t))

+Ql(t) + Xj−1
l (t)Sl(t)X

j−1
l (t) = 0,

l = 1, 2, j ≥ 1, X0
l (t) = 0, l = 1, 2.

The main result of this section is

Theorem 4.1. Under assumptions H1 and H2, the sequence {Xj(t)}j≥0

is well defined and convergent. If

X̃(t) = lim
j→∞

Xj(t), t ∈ R,(32)

then X̃(t) is the stabilizing and minimal solution of (2).

The proof follows the same line as in the case of Theorem 3.1, and it
is thus omitted. However we remark that instead of the item bj) we should
prove the new item

b∗
j) The zero state equilibrium of the linear differential equation

d
dt

Zl(t)=[A(t)−Sl(t)(X
j
l (t))T]Zl(t)+Zl(t)[A(t)−S1(t)X

j
1(t)−S2(t)X

j
2(t)]T

on Rn×n is exponentially stable.

Remarks 4.2. a) If A(·), Sj(·), Ql(·) in (2) are constant, then one can
deduce inductively that the unique solution of (31) is constant. Therefore, in
the time invariant case, at each iteration we have to solve the nonsymmetric
algebraic Lyapunov equations

(AT − Xj−1
l (t)Sl)X

j
l + Xj

l (A − S1X
j−1
1 − S2X

j
2) + Ql + Xj−1

l SlX
j−1
l = 0.

b) If A(·), Sj(·), Ql(·) in (2) are periodic functions with period θ > 0, then
one can deduce via Theorem 4.7 (ii) in [4] that the unique bounded solution
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of (31) is a periodic function with the same period θ. In this case, the initial
values Xj

l (0) are obtained as solutions of the nonsymmetric Stein equations

Xj
l (0) = ΘT

j−1,l(θ, 0)Xj
l (0)Φj−1(θ, 0)+

+
∫ θ

0
ΘT

j−1,l(s, 0)[Ql(s) + Xj−1
l (s)Sl(s)X

j−1
l (s)]Φj−1(s, 0)ds,

where Θj−1,l(t, τ) is the fundamental matrix solution of the differential equa-
tion

d
dt

x(t) = [A(t) − Sl(t)(X
j−1
l (t))T]x(t)

while Φj−1(t, τ) is the fundamental matrix solution of the differential equation

d
dt

x(t) = [A(t) − S1(t)X
j−1
1 (t) − S2(t)X

j−1
2 (t)]x(t).

At the end of this section we give the time varying counterpart of Corol-
lary 1 from [10].

Corollary 4.3. If there exists P (t) = (P1(t), P2(t)) ∈ Ω(R, Q) such that
the zero solution of the linear differential equation

d
dt

z(t) = [A(t) − S1(t)P1(t) − S2(t)P2(t)]z(t)

is exponentially stable then X̃(t) = (X̃1(t), X̃2(t))defined by (32) is a closed-
loop stabilizing solution of system (2).

Proof. From Theorem 4.1 we have X̃l(t) � Pl(t).The conclusion follows
from Proposition 4.1 (ii) in [4]. �
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