STATES ON PSEUDO-BCK ALGEBRAS

LAVINIA CORINA CIUNGU

The notion of a state is an analogue of a probability measure and was first introduced by Köpka and Chovanec for MV-algebras and by Riečan for BL-algebras. The states have also been studied for different types of non-commutative fuzzy structures such as pseudo-MV algebras, pseudo-BL algebras, bounded Rℓ-monoids, residuated lattices and pseudo-BCK semilattices. In this paper we investigate the states on pseudo-BCK algebras and show that Georgescu’s original problem in [10] for pseudo-BL algebras has a negative solution for good pseudo-BCK algebras. We prove that every Bosbach state on a pseudo-BCK algebra is a Riečan state and that every Riečan state on a good pseudo-BCK algebra with pseudo-double negation is a Bosbach state. In contrast to the case of pseudo-BL algebras, we show that there exist linearly ordered pseudo-BCK algebras having no Bosbach states.

AMS 2000 Subject Classification: 06B05, 03G25, 28E15.

Key words: Pseudo-BCK algebra, Bosbach state, Riečan state, state-morphism, deductive system.

1. INTRODUCTION

The notion of a state is an analogue of a probability measure and has a very important role in the theory of quantum structures (see [8]). The state on MV algebras was first introduced by Köpka and Chovanec [16] while the state on BL algebras was introduced by Riečan [19]. In the case of non-commutative fuzzy structures, the states were introduced by Dvurečenskij [5] for pseudo-MV algebras, by Georgescu [10] for pseudo-BL algebras and by Dvurečenskij and Rachůnek [9] for bounded non-commutative Rℓ-monoids. In the case of a pseudo-MV algebra M, Dvurečenskij [4] proved that there is an $ℓ$-group (G, u) with strong unit u such that M is isomorphic to $\Gamma(G, u) = \{ g \in G \mid 0 \leq g \leq u \}$. This allowed him to define a partial addition $+$, that is, $x + y$ is defined if $x \leq y^{-} = u - y$ and the state is a mapping $s : M \rightarrow [0, 1]$ which preserves the partial addition $+$ and $s(1) = 1$. We recall that the elements a and b are orthogonal if $a + b$ is defined in M. The other non-commutative structures do not have such a group representation and it was more difficult to define the notion of states for these structures. We recall that a state on MV-algebras
always exists in contrast to pseudo-MV algebras (see [5]); on the other hand, in [6] was solved the existence of states for linearly ordered pseudo-BL algebras (see also [7]). In the case of pseudo-BL algebras Georgescu [10] defined the Bosbach and Riečan states and, for a good pseudo-BL algebra, he proved that any Bosbach state is also a Riečan state. He asked to find an example of Riečan state on a good pseudo-BL algebra which is not a Bosbach state.

The notions of Bosbach and Riečan states on good pseudo-BL algebras were generalized by Dvurečenskij and Rachünk [9] for bounded \(R\ell \)-monoids. They also proved that for good bounded \(R\ell \)-monoids the two notions of states coincide. In [1] there were investigated the Bosbach and Riečan states on residuated lattices and was proved that there exist Riečan states on good residuated lattices which are not Bosbach states. In [18] the above results were also proved in the case of pseudo-BCK semilattices. Inspired by the above mentioned results, in this paper we extend the notion of states to pseudo-BCK algebras. One of the main results consists of proving that any Bosbach state on a good pseudo-BCK algebra is a Riečan state, but the converse turns out not to be true. We also prove that every Riečan state on a good pseudo-BCK algebra with pseudo-double negation is a Bosbach state. In contrast to the case of pseudo-BL algebras, we show that there exist linearly ordered pseudo-BCK algebras having no Bosbach states. Additionally, we prove some new properties of pseudo-BCK algebras and give examples of pseudo-BCK algebras and good pseudo-BCK algebras.

2. PSEUDO-BCK ALGEBRAS AND THEIR BASIC PROPERTIES

The pseudo-BCK algebras were introduced by Georgescu and Iorgulescu [11] as generalization of BCK algebras in order to give a structure corresponding to pseudo-MV algebras, as the bounded commutative BCK algebras correspond to MV algebras. Properties of pseudo-BCK algebras and their connection with others fuzzy structures were established by Iorgulescu [12], [13], [14], [15].

Definition 2.1 ([12]). A pseudo-BCK algebra (more precisely, reversed left-pseudo-BCK algebra) is a structure \(A = (A, \leq, \rightarrow, \leadsto, 1) \), where \(\leq \) is a binary relation on \(A \), \(\rightarrow \) and \(\leadsto \) are binary operations on \(A \) and 1 is an element of \(A \) satisfying, for all \(x, y, z \in A \), the axioms below:

\[
\begin{align*}
(A_1) \quad & x \rightarrow y \leq (y \rightarrow z) \leadsto (x \rightarrow z), \quad x \leadsto y \leq (y \leadsto z) \rightarrow (x \leadsto z); \\
(A_2) \quad & x \leq (x \rightarrow y) \leadsto y, \quad x \leq (x \leadsto y) \rightarrow y; \\
(A_3) \quad & x \leq x; \\
(A_4) \quad & x \leq 1; \\
(A_5) \quad & \text{if } x \leq y \text{ and } y \leq x, \text{ then } x = y; \\
(A_6) \quad & x \leq y \text{ iff } x \rightarrow y = 1 \text{ iff } x \leadsto y = 1.
\end{align*}
\]
Remarks 2.2 ([12]). (1) A pseudo-BCK algebra \(A = (A, \le, \to, \cdot, 1) \) is commutative if \(\to = \cdot \).

(2) Any commutative pseudo-BCK algebra is a BCK algebra.

Example 2.3. Let \(A = \{a_1, a_1, b_1, c_1, a_2, b_2, c_2, 1\} \) with \(a_1 < a_1, b_1 < c_1 < 1 \) and \(a_1, b_1 \) incomparable, \(o_2 < o_2, b_2 < c_2 < 1 \) and \(a_2, b_2 \) incomparable. Assume that any element of the set \(\{a_1, a_1, b_1, c_1\} \) is incomparable with any element of the set \(\{o_2, a_2, b_2, c_2\} \). Consider the operations \(\to, \cdot \) given by the tables

<table>
<thead>
<tr>
<th>(\to)</th>
<th>(a_1)</th>
<th>(a_1)</th>
<th>(b_1)</th>
<th>(c_1)</th>
<th>(a_2)</th>
<th>(b_2)</th>
<th>(c_2)</th>
<th>(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(b_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(c_1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(a_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(b_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(c_2)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Then \(A = (A, \le, \to, \cdot, 1) \) is a proper pseudo-BCK algebra.

Remark 2.4 ([17]). Let \((A_i, \le, \to, \cdot, 1)_{i \in I}\) be a collection of pseudo-BCK algebras such that

(i) \(I_i = 1 \) for all \(i \in I \),

(ii) \(A_i \cap A_j = \{1\} \) for all \(i, j \in I, i \neq j \).

Denote \(A = \bigcup_{i \in I} A_i \) and define

\[
\begin{align*}
 x \to y &= \begin{cases}
 x \to_i y & \text{if } x, y \in A_i \text{ for some } i \in I \\
 y & \text{otherwise},

 x \cdot y &= \begin{cases}
 x \cdot_i y & \text{if } x, y \in A_i \text{ for some } i \in I \\
 y & \text{otherwise}.

\end{cases}
\end{cases}
\]

Then \((A, \le, \to, \cdot, 1)\) is a pseudo-BCK algebra called the union of the pseudo-BCK algebras \((A_i, \le, \to, \cdot, 1)_{i \in I}\).

Proposition 2.5 ([14], [15]). In any pseudo-BCK algebra the following properties hold:

\((c_1) \) \(x \le y \) implies \(y \to z \le x \to z \) and \(y \cdot z \le x \cdot z \);

\((c_2) \) \(x \le y, y \le z \) implies \(x \le z \);

\((c_3) \) \(x \to (y \cdot z) = y \to (x \rightarrow z) \) and \(x \cdot (y \to z) = x \rightarrow (y \cdot z) \);

\((c_4) \) \(z \le y \to x \) iff \(y \le z \cdot x \);

\((c_5) \) \(z \to x \le (y \to z) \to (y \to x), z \cdot x \le (y \cdot z) \cdot (y \cdot z) \);

\((c_6) \) \(x \le y \to x, x \le y \cdot x \);

\((c_7) \) \(1 \to x = x = 1 \cdot x \);

\((c_8) \) \(x \le y \) implies \(z \to x \le z \to y \) and \(z \cdot x \le z \cdot y \);

\((c_9) \) \((y \to x) \cdot x \to x = y \to x, (y \cdot x) \cdot x \cdot x = y \cdot x \).
Definition 2.6 ([12]). If there is an element \(0\) of a pseudo-BCK algebra \(\mathcal{A} = (A, \leq, \rightarrow, \Leftarrow, 1)\) such that \(0 \leq x\) (i.e. \(0 \rightarrow x = 0 \Leftarrow x = 1\)) for all \(x \in A\), then it is called the zero of \(\mathcal{A}\). A pseudo-BCK algebra with zero is called a bounded pseudo-BCK algebra and is denoted by \(\mathcal{A} = (A, \leq, \rightarrow, \Leftarrow, 0, 1)\).

Example 2.7. Let \(A = \{0, a, b, c, 1\}\) with \(0 < a, b < c < 1\) and \(a, b\) incomparable. Consider the operations \(\rightarrow, \Leftarrow\) given by the tables

\[
\begin{array}{c|cccc}
\rightarrow & 0 & a & b & c \\
\hline
0 & 1 & 1 & 1 & 1 \\
a & 0 & 1 & b & 1 \\
b & a & a & 1 & 1 \\
c & 0 & a & b & 1 \\
1 & 0 & a & b & c \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\Leftarrow & 0 & a & b & c \\
\hline
0 & 1 & 1 & 1 & 1 \\
a & b & 1 & b & 1 \\
b & 0 & a & 1 & 1 \\
c & 0 & a & b & 1 \\
1 & 0 & a & b & c \\
\end{array}
\]

Then \(\mathcal{A} = (A, \leq, \rightarrow, \Leftarrow, 0, 1)\) is a bounded pseudo-BCK algebra.

Definition 2.8 ([12]). A pseudo-BCK algebra with \((pP)\) condition (i.e. with pseudo-product condition) or a pseudo-BCK\((pP)\) algebra for short, is a pseudo-BCK algebra \(\mathcal{A} = (A, \leq, \rightarrow, \Leftarrow, 1)\) satisfying the \((pP)\) condition: for all \(x, y \in A\) there exist \(x \odot y = \min\{z \mid x \leq y \rightarrow z\} = \min\{z \mid y \leq x \Leftarrow z\}\).

Definition 2.9 ([12]).

(1) Let \(\mathcal{A} = (A, \leq, \rightarrow, \Leftarrow, 0, 1)\) be a pseudo-BCK algebra. If the poset \((A, \leq)\) is a lattice, then we say that \(\mathcal{A}\) is a pseudo-BCK lattice.

(2) Let \(\mathcal{A} = (A, \leq, \rightarrow, \Leftarrow, 0, 1)\) be a reduct of a residuated lattice, then it is obvious that \(\mathcal{A}\) is a bounded pseudo-BCK\((pP)\) algebra.

Remark 2.10 ([14]). Pseudo-BCK\((pP)\) algebras are categorically isomorphic with left-porims (partially ordered, residuated, integral left-monoids).

Remark 2.11 ([12]). (Bounded) pseudo-BCK\((pP)\) lattices are categorically isomorphic with (bounded) residuated lattices.

Examples 2.12.

(1) If \(\mathcal{A} = (A, \leq, \rightarrow, \Leftarrow, 0, 1)\) is the bounded pseudo-BCK lattice from Example 2.7, then \(\min\{z \mid b \leq a \rightarrow z\} = \min\{a, b, c, 1\}\) and \(\min\{z \mid a \leq b \Leftarrow z\} = \min\{a, b, c, 1\}\) do not hold. Thus, \(b \odot a\) does not exist, so \(\mathcal{A}\) is not a pseudo-BCK\((pP)\) algebra. Moreover, since \((A, \leq)\) is a lattice, \(\mathcal{A}\) is a pseudo-BCK lattice.

(2) If \(\mathcal{A} = (A, \leq, \rightarrow, \Leftarrow, 0, 1)\) is a reduct of a residuated lattice, then it is obvious that \(\mathcal{A}\) is a bounded pseudo-BCK\((pP)\) algebra.

Remark 2.13 ([12]). Any bounded linearly ordered pseudo-BCK algebra is with \((pP)\) condition.
Proposition 2.14 ([15]). In any pseudo-BCK algebra \((pP)\) the following properties hold:

\((c_{10})\) \(x \circ y \leq x, y;\)
\((c_{11})\) \((x \rightarrow y) \circ x \leq x, y;\)
\((c_{12})\) \(y \leq x \rightarrow (y \circ x), y \leq x \rightarrow (x \circ y);\)
\((c_{13})\) \(x \rightarrow y \leq (x \circ z) \rightarrow (y \circ z), x \rightarrow y \leq (z \circ x) \rightarrow (z \circ y);\)
\((c_{14})\) \(x \circ (y \rightarrow z) \leq y \rightarrow (x \circ z), (y \rightarrow z) \circ x \leq y \rightarrow (z \circ x);\)
\((c_{15})\) \((y \rightarrow z) \circ (x \rightarrow y) \leq x \rightarrow z, (x \rightarrow y) \circ (y \rightarrow z) \leq x \rightarrow z;\)
\((c_{16})\) \((x \rightarrow y) = (x \circ y) \rightarrow z, x \rightarrow (y \rightarrow z) = (y \circ x) \rightarrow z;\)
\((c_{17})\) \((x \circ z) \rightarrow (y \circ z) \leq x \rightarrow (z \rightarrow y), (z \circ x) \rightarrow (z \circ y) \leq x \rightarrow (z \rightarrow y);\)
\((c_{18})\) \(x \rightarrow y \leq (x \circ z) \rightarrow (y \circ z) \leq x \rightarrow (z \rightarrow y), x \rightarrow y \leq (z \circ x) \rightarrow (z \circ y) \leq x \rightarrow (z \rightarrow y);\)
\((c_{19})\) \(x \leq y \text{ implies } x \circ z \leq y \circ z, z \circ x \leq z \circ y.\)

Let \(A = (A, \leq, \rightarrow, \leftrightarrow, 0, 1)\) be a bounded pseudo-BCK algebra. We define two negations \(\neg\) and \(\sim\) ([15]): for all \(x \in A, x^{-} = x \rightarrow 0, x^{\sim} = x \rightarrow 0.\)

Proposition 2.15 ([15]). In a bounded pseudo-BCK algebra the following properties hold:

\((c_{20})\) \(1^{-} = 0 = 1^{\sim}, 0^{-} = 1^{\sim};\)
\((c_{21})\) \(x \leq (x^{-})^{\sim}, x \leq (x^{\sim})^{-};\)
\((c_{22})\) \(x \rightarrow y \leq y^{-} \rightarrow x^{-}, x \rightarrow y \leq y^{\sim} \rightarrow x^{\sim};\)
\((c_{23})\) \(x \leq y \text{ implies } y^{-} \leq x^{-} \text{ and } y^{\sim} \leq x^{\sim};\)
\((c_{24})\) \(x \rightarrow y^{-} = y \rightarrow x^{-} \text{ and } x \rightarrow y^{\sim} = y \rightarrow x^{\sim};\)
\((c_{25})\) \(((x^{-})^{\sim})^{-} = x^{-}, ((x^{\sim})^{-})^{\sim} = x^{\sim}.\)

Proposition 2.16. In a bounded pseudo-BCK algebra the following properties hold:

\((c_{26})\) \(x \rightarrow y^{\sim} = y^{-} \rightarrow x^{-} = x^{-} \rightarrow y^{\sim} \quad \text{and} \quad x \rightarrow y^{-} = y^{\sim} \rightarrow x^{\sim} = x^{\sim} \rightarrow y^{\sim};\)
\((c_{27})\) \(x \rightarrow y^{\sim} = y^{-} \rightarrow x^{-} = x^{-} \rightarrow y^{\sim} \quad \text{and} \quad x \rightarrow y^{\sim} = y^{-} \rightarrow x^{\sim} = x^{\sim} \rightarrow y^{\sim};\)
\((c_{28})\) \((x \rightarrow y^{-})^{\sim} = x \rightarrow y^{-} \quad \text{and} \quad (x \rightarrow y^{\sim})^{\sim} = x \rightarrow y^{\sim}.\)

Proof. \((c_{26})\): By \((c_{24})\) we have \(y \rightarrow x^{-} = x \rightarrow y^{-}.\) Replacing \(y\) by \(y^{-}\) we get \(y^{-} \rightarrow x^{-} = x \rightarrow y^{-}.\) Replacing \(x\) by \(x^{\sim}\) in the last equality we get \(y^{-} \rightarrow x^{\sim} = x^{\sim} \rightarrow y^{-}.\) Hence, \((c_{25})\), we have \(y^{-} \rightarrow x^{-} = x^{\sim} \rightarrow y^{-}.\)

Thus, \(x \rightarrow y^{\sim} = y^{-} \rightarrow x^{\sim} = x^{\sim} \rightarrow y^{-}\) and, similarly, \(x \rightarrow y^{-} = y^{\sim} \rightarrow x^{\sim} = x^{\sim} \rightarrow y^{\sim}.\)

\((c_{27})\) The assertions follow replacing in \((c_{26})\) \(y^{-}\) by \(y\) and \(y^{\sim}\) by \(y^{-}\), and using \((c_{25})\).
(c_{28}) By (c_3) and (c_{27}) we have
\[1 = (x \to y^{-}) \sim (x \to y^{-}) = x \to ((x \to y^{-}) \sim y^{-}) = x \to ((x \to y^{-})^{-} \sim y^{-}) = (x \to y^{-})^{-} \sim (x \to y^{-}). \]
Hence \((x \to y^{-})^{-} \leq x \to y^{-}\). On the other hand, by (c_{21}) we have \(x \to y^{-} \leq (x \to y^{-})^{-} \), so \((x \to y^{-})^{-} = x \to y^{-}\). Similarly, \((x \to y^{-})^{-} = x \to y^{-}\). □

Proposition 2.17. In a bounded pseudo-BCK(\(pP\)) algebra the following properties hold:
\begin{itemize}
 \item [(c_{29})] \((x_{n-1} \to x_n) \circ (x_{n-2} \to x_{n-1}) \circ \ldots \circ (x_1 \to x_2) \leq x_1 \to x_n\) and \((x_1 \to x_2) \circ (x_2 \to x_3) \circ \ldots \circ (x_{n-1} \to x_n) \leq x_1 \to x_n\);
 \item [(c_{30})] \(x \circ 0 = 0 \circ x = 0\);
 \item [(c_{31})] \(x \circ 1 = 1 \circ x = x\);
 \item [(c_{32})] \(x^{-} \circ x = 0 \) and \(x \circ x^{-} = 0\);
 \item [(c_{33})] \(x \leq y^{-} \) if and only if \(x \circ y = 0\) and \(x \leq y^{-}\) if and only if \(y \circ x = 0\);
 \item [(c_{34})] \(x \to y^{-} = (x \circ y)^{-} \) and \(x \to y^{-} = (y \circ x)^{-}\);
 \item [(c_{35})] \(x \leq y^{-} \) if and only if \(y \leq x^{-}\).
\end{itemize}

Proof. (c_{29}): It follows from (c_{15}) by induction.
\begin{itemize}
 \item [(c_{30})]: By (c_{10}), for \(y = 0\) and \(x = 0\).
 \item [(c_{31})]: By (c_{12}), for \(y = 1\) we get \(1 \to x \to (1 \circ x)\), so \(x \to (1 \circ x) = 1\). It follows by (A_6) that \(x \leq 1 \circ x\). On the other hand, by (c_{10}), we have \(1 \circ x \leq x\). Thus, \(1 \circ x = x\). Similarly, \(1 \leq x \to (x \circ 1)\), so \(x \to (x \circ 1) = 1\), that is, \(x \leq x \circ 1\). Therefore, \(x \circ 1 = 1\).
 \item [(c_{32})]: By (c_{11}), for \(y = 0\).
 \item [(c_{33})]: Using \(x \leq y^{-}\). Applying (c_{19}) we get \(x \circ y \leq y^{-} \circ y = 0\), so \(x \circ y = 0\). Conversely, if \(x \circ y = 0\), by (c_{12}) we have \(x \leq y \to (x \circ y) = y \to 0 = y^{-}\). Similarly, \(x \leq y^{-} \) if and only if \(y \circ x = 0\).
 \item [(c_{34})]: By (c_{19}), taking \(z = 0\).
 \item [(c_{35})]: It follows from (c_{33}). □
\end{itemize}

Definition 2.18 ([12]). A bounded pseudo-BCK algebra \(\mathcal{A} = (A, \leq, \to, \sim, 0, 1)\) is with \((pDN)\) (pseudo-Double Negation) condition if it satisfies for all \(x \in A\) the condition \((pDN)\) \((x^{-})^{-} = (x^{-})^{-} = x\).

Proposition 2.19 ([12]). Let \(\mathcal{A}\) be a pseudo-BCK algebra with \((pDN)\) condition. Then for all \(x, y \in A\) the following properties hold:
\begin{itemize}
 \item [(c_{36})] \(x \leq y \) if and only if \(y^{-} \leq x^{-}\);
 \item [(c_{37})] \(x \to y = y^{-} \to x^{-}\), \(x \to y = y^{-} \to x^{-}\);
 \item [(c_{38})] \(x^{-} \to y = y^{-} \to x^{-}\);
 \item [(c_{39})] \(x \to y^{-} \) if and only if \(y \to x^{-}\).
\end{itemize}
Theorem 2.20 ([12]). A bounded pseudo-BCK algebra $\mathcal{A} = (A, \leq, \rightarrow, \sim, 0, 1)$ with (pDN) condition is with (pP) condition.

Definition 2.21. A bounded pseudo-BCK algebra \mathcal{A} is called good if $(x^-)^- = (x^-)^\sim$ for all $x \in A$.

Remark 2.22. It is easy to show that any bounded pseudo-BCK algebra can be embedded into a good one. Indeed, consider the bounded pseudo-BCK algebra $\mathcal{A} = (A, \leq, \rightarrow, \sim, 0, 1)$ and an element $0_1 \notin A$. Consider a new pseudo-BCK algebra $\mathcal{A}_1 = (A_1, \leq, \rightarrow_1, \sim_1, 0_1, 1)$, where $A_1 = A \cup \{0_1\}$ and the operations \rightarrow_1 and \sim_1 are defined as

$$x \rightarrow_1 y = \begin{cases} x \rightarrow y & \text{if } x, y \in A, \\ 1 & \text{if } x = 0_1, y \in A_1, \\ 0_1 & \text{if } x \in A, y = 0_1, \end{cases}$$

$$x \sim_1 y = \begin{cases} x \sim y & \text{if } x, y \in A, \\ 1 & \text{if } x = 0_1, y \in A_1, \\ 0_1 & \text{if } x \in A, y = 0_1. \end{cases}$$

One can easily check that \mathcal{A} as an subalgebra of \mathcal{A}_1 and \mathcal{A}_1 is a good pseudo-BCK algebra.

Example 2.23. Consider the pseudo-BCK lattice \mathcal{A} from Example 2.7. Since $(a^-)^\sim = 1$ and $(a^-)^\sim = a$, \mathcal{A} is not good. \mathcal{A} is embedded into the good pseudo-BCK lattice $\mathcal{A}_1 = (A_1, \leq, \rightarrow, \sim_1, 0_1, 1)$, where $A_1 = \{0, a, b, c, d, 1\}$ (in the construction given in Remark 2.22 we replaced c by d, b by c, a by b, 0 by a and 0_1 by 0, so $0 < a < b, c < d < 1$ and b, c are incomparable). The operations \rightarrow and \sim are defined as it the tables

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>1</th>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>b</td>
<td>0</td>
<td>c</td>
<td>1</td>
<td>c</td>
<td>1</td>
<td>1 .</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>b</td>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>c</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
<td>1</td>
<td>d</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>1</td>
</tr>
</tbody>
</table>

One can easily check that \mathcal{A}_1 is a good pseudo-BCK algebra. Moreover, we can see that $\min\{z \mid c \leq b \rightarrow z\} = \min\{b, c, d, 1\}$ and $\min\{z \mid b \leq c \sim z\} = \min\{b, c, d, 1\}$ do not hold. Thus, $c \ominus b$ does not exist, so \mathcal{A}_1 is without (pP) condition. Since (A_1, \leq) is a lattice, \mathcal{A}_1 is a good pseudo-BCK lattice without (pP) condition.

Proposition 2.24. Let $\mathcal{A} = (A, \leq, \rightarrow, \sim, 0, 1)$ be a good pseudo-BCK algebra. Define a binary operation \oplus on A by $x \oplus y := y^\sim \rightarrow x^\sim$. Then for all $x, y \in A$ the following properties hold:
(1) $x \oplus y = x^- \bowtie y^-;\\
(2) x, y \leq x \oplus y;\\
(3) x \oplus 0 = 0 \oplus x = x^-;\\
(4) x \oplus 1 = 1 \oplus x = 1;\\
(5) (x \oplus y)^- \bowtie = x \oplus y = x^- \oplus y^-;\\
(6) \oplus \text{ is associative.}

\textbf{Proof.} (1): It follows from the second identity in \((c_{28})\), replacing \(x\) by \(x^-\).
(2): Since \(x \leq x^- \leq y^- \rightarrow x^-\), we have \(x \leq x \oplus y\). Similarly, \(y \leq y^- \leq x^- \bowtie y^-\), so \(y \leq x \oplus y\).
(3): \(x \oplus 0 = 0^\sim \rightarrow x^- = 1 \rightarrow x^- = x^-\). Similarly, \(0 \oplus x = x^- \rightarrow 0^\sim = x^- \rightarrow 0 = 1 = 1\).
(4): \(1 \oplus x = x^- \rightarrow 1^\sim = x^- \rightarrow 1 = 1\). Similarly, \(x \oplus 1 = 1\).
(5): \((x \oplus y)^-\bowtie = (y^- \rightarrow x^-) \bowtie = y^- \rightarrow x^- = x \oplus y\) (we used \((c_{28})\)).

We also have \(x^- \oplus y^- \bowtie = (y^- \rightarrow x^-) \bowtie = (x^- \rightarrow) \bowtie = y^- \rightarrow x^- = x \oplus y\).
(6): By \((c_{28})\) and \((c_3)\) we have
\[
(x \oplus y) \oplus z = (x^- \bowtie y^-) \oplus z = z^- \rightarrow (x^- \bowtie y^-) \bowtie = z^- \rightarrow (x^- \bowtie y^-) = x^- \bowtie (y \oplus z) = x^- \bowtie (y \oplus z).
\]

\textbf{Remark 2.25.} The definition of \(\oplus\) is inspired from the case of pseudo-BCK algebras (see \([10]\)), where \(x \oplus y := (y^- \circ x^-)\). Since in a good residuated lattice we have
\[
(y^- \circ x^-)^- \bowtie = (y^- \circ x^-)\bowtie, \quad (x \circ y)^- \bowtie = x \rightarrow y^- \text{ and } (x \circ y)^- \bowtie = y \rightarrow x^-,
\]
the definition of \(\oplus\) is valid for the residuated structures, too.

Let \(A\) be a pseudo-BCK algebra. For all \(x, y \in A\), define (see \([11, 15]\))
\[
x \lor y = (x \rightarrow y) \bowtie y, \quad x \lor y = (x \rightarrow y) \rightarrow y.
\]

\textbf{Proposition 2.26} \([11, 15]\). In any bounded pseudo-BCK algebra, for all \(x \in A\),
\[
0 \lor x = x = 0 \cup x \quad \text{and} \quad x \lor 0 = (x^-)^-, \quad x \lor 0 = (x^-)^-.
\]

\textbf{Proposition 2.27.} In any bounded pseudo-BCK algebra \(A\) the following properties hold for all \(x, y \in A\):
(1) \(1 \lor x = x \lor 1 = 1 \cup x = x \cup 1;\)
(2) \(x \leq y \text{ implies } x \lor y = y \text{ and } x \lor y = y;\)
(3) \(x \lor x = x \cup x = x.\)

\textbf{Proof.} (1): We have \(1 \lor x = (1 \rightarrow x) \bowtie x = 1 \lor 1 = (x \rightarrow 1) \bowtie 1 = 1\), so \(1 \lor x = x \lor 1 = 1\). Similarly, \(1 \lor x = x \cup 1 = 1\).
(2): \(x \lor y = (x \rightarrow y) \bowtie y = 1 \bowtie y = y\). Similarly, \(x \lor y = y.\)
(3): By definition of \vee and \cup. \hfill \Box

Proposition 2.28. In any pseudo-BCK algebra, for all $x, y \in A$,

$$x \vee y \rightarrow y = x \rightarrow y \quad \text{and} \quad x \cup y \rightarrow y = x \rightarrow y.$$

Proof. It is a consequence of property (c_9). \hfill \Box

Lemma 2.29. In any pseudo-BCK algebra A:

1. $x \vee (y \vee x)$ is a upper bound of $\{x, y\}$;
2. $x \cup (y \cup x)$ is a upper bound of $\{x, y\}$.

Proof. (1): By (A_2) we have $x \leq (x \rightarrow y) \Rightarrow y$. Since, by (c_6), $y \leq (x \rightarrow y) \Rightarrow y$, we conclude that $x, y \leq x \vee y$. Similarly we get $x, y \leq y \vee x$.

(2): Similarly to (1). \hfill \Box

Definition 2.30 ([11], [15]). Let A be a pseudo-BCK algebra.

(i) If $x \vee y = y \vee x$ for all $x, y \in A$, then A is called \vee-commutative.

(i') If $x \cup y = y \cup x$ for all $x, y \in A$, then A is called \cup-commutative.

Lemma 2.31 ([11], [15]). If A is a pseudo-BCK algebra, then

(i) A is \vee-commutative iff it is a semilattice with respect to \vee (under \leq);

(i') A is \cup-commutative iff it is a semilattice with respect to \cup (under \leq).

Definition 2.32 ([11], [15]). A pseudo-BCK algebra is called sup-commutative if it is both \vee-commutative and \cup-commutative.

Theorem 2.33 ([11], [15]). A pseudo-BCK algebra is sup-commutative iff it is a semilattice with respect to both \vee and \cup.

Theorem 2.34 ([12]). Let $A = (A, \leq, \rightarrow, \leadsto, 1)$ be a sup-commutative pseudo-BCK(pP) algebra. Then

1. (A, \leq) is a lattice, where

$$x \vee y = (y \rightarrow x) \leadsto x = (y \leadsto x) \rightarrow x,$$

$$x \wedge y = ([x \rightarrow (x \odot y)] \lor [y \rightarrow (x \odot y)]) \leadsto (x \odot y)$$

$$= ([x \leadsto (x \odot y)] \lor [y \leadsto (x \odot y)]) \rightarrow (x \odot y)$$

for any $x, y \in A$.

2. $(x \rightarrow y) \lor (y \rightarrow x) = 1 = (x \leadsto y) \lor (y \leadsto x)$ for any $x, y \in A$.

Corollary 2.35 ([12]). A bounded sup-commutative pseudo-BCK algebra A is with (pDN) condition (and hence it is with (pP) condition).

In a bounded sup-commutative pseudo-BCK algebra A for all $x, y \in A$ define (see [11], [15]) $x \wedge y = (x^{-} \lor y^{-})^{\sim}$, $x \cap y = (x^{-} \cup y^{-})^{\sim}$.
A bounded sup-commutative pseudo-BCK algebra is a lattice with respect to both \(\lor, \land \) and \(\cup, \cap \) (under \(\leq \)) and for all \(x, y \) we have
\[
x \lor y = x \cup y, \quad x \land y = x \cap y.
\]

Theorem 2.36 ([12]). Let \(\mathcal{A} = (A, \leq, \rightarrow, \sim, 0, 1) \) be a bounded sup-commutative pseudo-BCK algebra. Define \(\Phi_0(\mathcal{A}) = (A, \odot, \oplus, -, \sim, 0, 1) \) by
\[
x^- = x \rightarrow 0, \quad x^\sim = x \sim 0,
\]
\[
x \odot y = (x \rightarrow y^-)^\sim = (y \sim x^-^-),
\]
\[
y \oplus x = (x^- \odot y^-)^\sim = (x^- \sim y^-^-).
\]
Then \(\Phi_0(\mathcal{A}) \) is a pseudo-MV algebra.

(2) Conversely, let \(\mathcal{A} = (A, \odot, \oplus, -, \sim, 0, 1) \) be a pseudo-MV algebra. Define \(\Psi_0(\mathcal{A}) = (A, \leq, \rightarrow, \sim, 0, 1) \) by
\[
x \leq y \text{ iff } x \oplus y^- = 1 \text{ iff } y^- \oplus x = 1,
\]
\[
x \rightarrow y = y \odot x^- = (x \odot y^-^-),
\]
\[
x \sim y = x^- \oplus y = (y^- \odot x)^\sim.
\]
Then \(\Psi_0(\mathcal{A}) \) is a bounded sup-commutative pseudo-BCK algebra.

(3) The maps \(\Phi_0 \) and \(\Psi_0 \) are mutually inverse.

Corollary 2.38 ([12]). Bounded sup-commutative pseudo-BCK algebras are categorically isomorphic with pseudo-MV algebras.

Definition 2.39. Let \(\mathcal{A} \) be a pseudo-BCK algebra. A subset \(D \subseteq A \) is a deductive system of \(\mathcal{A} \) if it satisfies the conditions
\[
(DS_1) \ 1 \in D;
\]
\[
(DS_2) \text{ for all } x, y \in A, \text{ if } x, x \rightarrow y \in D, \text{ then } y \in D.
\]
Condition (DS2) is equivalent to the condition (DS₂) for all \(x, y \in A \), if \(x, x \sim y \in D \), then \(y \in D \).

A deductive system \(D \) of a pseudo-BCK algebra \(\mathcal{A} \) is called proper if \(D \neq A \).

Definition 2.40. A deductive system \(D \) of a pseudo-BCK algebra \(\mathcal{A} \) is called normal if it satisfies the condition
\[
(DS_3) \text{ for all } x, y \in A, \ x \rightarrow y \in D \text{ iff } x \sim y \in D.
\]

Definition 2.41. A deductive system is called maximal if it is proper and not strictly contained in any other deductive system.
Examples 2.42. Consider the pseudo-BCK lattice \mathcal{A} from Example 2.7.
(1) The deductive systems of \mathcal{A} are $D_1 = \{a, c, 1\}$, $D_2 = \{b, c, 1\}$, $D_3 = \{c, 1\}$ and $D_4 = \{1\}$.
(2) D_1 and D_2 are maximal deductive systems.
(3) D_3 is a normal deductive system.
(4) D_1 and D_2 are not normal deductive systems ($c \rightarrow a = a \in D_1$, while $c \rightleftharpoons a = b \notin D_1$ and $a \rightleftharpoons 0 = b \in D_2$, while $a \rightarrow 0 = 0 \notin D_2$).

Example 2.43. In the pseudo-BCK lattice \mathcal{A} from Example 2.23, $D = \{a, b, c, d, 1\}$ is a maximal normal deductive system.

3. STATES ON PSEUDO-BCK ALGEBRAS

Similarly by to [10], we introduce the notion of a Bosbach state on a bounded pseudo-BCK algebra \mathcal{A}.

Definition 3.1. A Bosbach state on a bounded pseudo-BCK algebra \mathcal{A} is a function $s : \mathcal{A} \rightarrow [0, 1]$ such that, for any $x, y \in \mathcal{A}$,

(B1) $s(x) + s(x \rightarrow y) = s(y) + s(y \rightarrow x)$;
(B2) $s(x) + s(x \rightleftharpoons y) = s(y) + s(y \rightleftharpoons x)$;
(B3) $s(0) = 0$ and $s(1) = 1$.

Example 3.2. Consider the bounded pseudo-BCK lattice \mathcal{A} from Example 2.23. The function $s : \mathcal{A} \rightarrow [0, 1]$ defined by $s(0) = 0$, $s(a) = 1$, $s(b) = 1$, $s(c) = 1$, $s(d) = 1$, $s(1) = 1$, is the unique Bosbach state on \mathcal{A}.

However, there are bounded pseudo-BCK algebras, that have no Bosbach state on them.

Example 3.3. Consider the bounded pseudo-BCK lattice \mathcal{A} from Example 2.7. Let us prove that \mathcal{A} has no Bosbach states on it. Indeed, assume that \mathcal{A} admits a Bosbach state s such that $s(0) = 0$, $s(a) = \alpha$, $s(b) = \beta$, $s(c) = \gamma$, $s(1) = 1$. From $s(x) + s(x \rightarrow y) = s(y) + s(y \rightarrow x)$, taking $x = a$, $y = 0$, $x = b$, $y = 0$ and then $x = c$, $y = 0$ we get $\alpha = 1$, $\beta = 0$, $\gamma = 1$. On the other hand, taking $x = b$, $y = 0$ in $s(x) + s(x \rightleftharpoons y) = s(y) + s(y \rightleftharpoons x)$, we get $\beta + 0 = 0 + 1$, so $0 = 1$, which is a contradiction. Hence \mathcal{A} does not admit a Bosbach state.

Proposition 3.4. Let \mathcal{A} be a bounded pseudo-BCK algebra and s a Bosbach state on it. Then for all $x, y \in \mathcal{A}$ the following properties hold:

(1) $y \leq x$ implies $s(y) \leq s(x)$ and $s(x \rightarrow y) = s(x \rightleftharpoons y) = 1 - s(x) + s(y)$;
(2) $s(x \rightarrow y) = 1 - s(x \vee y) + s(y)$ and $s(x \rightleftharpoons y) = 1 - s(x \uparrow y) + s(y)$;
(3) $s(x \vee y) = s(y \vee x)$ and $s(x \rightleftharpoons y) = s(y \rightleftharpoons x)$;
(4) $s(x^-) = s(x^-) = 1 - s(x)$;
(5) $s(x^-) = s(x^-) = s(x^-) = s(x^-) = s(x)$;
Proposition 2.28, from which is proved using Proposition 3.4(1), so (b) implies (c).

Proof. (1): By (B₁) and (A₆) we have \(s(x) + s(x \to y) = s(y) + 1 \), so

\[
s(x \to y) = 1 - s(x) + s(y).
\]

Similarly, by (B₂) and (A₆) we have \(s(x \vartriangleright y) = 1 - s(x) + s(y) \). Thus, \(s(x \to y) = s(x \vartriangleright y) = 1 - s(x) + s(y) \). Since \(s(y) - s(x) = s(x \to y) - 1 \leq 0 \), we have \(s(y) \leq s(x) \).

(2): Since \(y \leq x \lor y \), using (1), we get \(s(x \lor y \to y) = 1 - s(x \lor y) + s(y) \). Hence, by Proposition 2.28, we have \(s(x \to y) = 1 - s(x \lor y) + s(y) \). Similarly, from \(y \leq x \lor y \) and (1), we get \(s(x \lor y \to y) = 1 - s(x \lor y) + s(y) \). By Proposition 2.28, \(s(x \to y) = 1 - s(x \lor y) + s(y) \).

(3): From the identities \(s(x \to y) = 1 - s(x \lor y) + s(y) \) and \(s(y \to x) = 1 - s(y \lor x) + s(x) \) we get \(s(x \lor y) - s(y \lor x) = s(x \to y) - s(x \to y) - s(x) + s(y) = 0 \) (in the later equation we used (B₁)). Thus, \(s(x \lor y) = s(y \lor x) \) and, similarly, \(s(x \lor y) = s(y \lor x) \).

(4): Take \(y = 0 \) in (B₁) and (B₂).

(5): It follows from (4).

(6): It follows by (c₂₆).

(7): It follows by (c₂₇). \(\square \)

Remark 3.5 ([18]). In the case of a pseudo-BCK semilattice, properties (2), (6) and (7) become

(2′) \(s(x \to y) = s(x \vartriangleright y) = 1 - s(x \lor y) + s(y) \);

(6′) \(s(x \to y) = s(y \leftrightarrow x) = s(x \leftrightarrow y) \) and \(s(x \vartriangleright y) = s(y \leftrightarrow x) = s(x \leftrightarrow y) \) = \(s(x \leftrightarrow y) \);

(7′) \(s(x \leftrightarrow y) = s(y \leftrightarrow x) = s(x \leftrightarrow y) = s(y \leftrightarrow x) \).

Proposition 3.6. Let \(A \) be a bounded pseudo-BCK algebra and a function \(s : A \to [0,1] \) such that \(s(0) = 0 \). Then the following properties are equivalent:

(a) \(s \) is a Bosbach state on \(A \);

(b) \(y \leq x \) implies \(s(x \to y) = s(x \vartriangleright y) = 1 - s(x) + s(y) \) for all \(x, y \in A \);

(c) \(s(x \to y) = 1 - s(x \lor y) + s(y) \) and \(s(x \vartriangleright y) = 1 - s(x \lor y) + s(y) \) for all \(x, y \in A \).

Proof. (a) implies (b): This is proved in Proposition 3.4(1).

(b) implies (c): Assertion (c) is in fact assertion (2) of Proposition 3.4 which is proved using Proposition 3.4(1), so (b) implies (c).
(c) implies (a): From (c) and Proposition 3.4(3) we have \(s(x) + s(x \to y) = s(x) + 1 - s(x \vee y) + s(y) = 1 - s(y \vee x) + s(x) + s(y) = s(y) + s(y \to x) \).
Similarly, \(s(x) + s(x \preceq y) = s(x) + 1 - s(x \cup y) + s(y) = 1 - s(y \cup x) + s(x) + s(y) = s(y) + s(y \preceq x) \). Moreover, by (c) and Proposition 2.27(3) we have \(s(1) = s(x \to x) = 1 - s(x) + s(x) = 1 \). Thus, \(s \) is a Bosbach state on \(A \).

Consider the bounded sup-commutative BCK(P) algebra (i.e. the MV algebra) \(A_L = ([0,1], \leq, \to_L, 0, 1) \), where \(\to_L \) is the Lukasiewicz implication \(x \to_L y = \min\{1 - x + y, 1\} \).

Definition 3.7. Let \(A \) be a bounded pseudo-BCK algebra. A state-morphism on \(A \) is a function \(m : A \to [0,1] \) such that
\[
\begin{align*}
(SM_1) & \quad m(0) = 0; \\
(SM_2) & \quad m(x \to y) = m(x \preceq y) = m(x) \to_L m(y).
\end{align*}
\]

Proposition 3.8. A state-morphism on a bounded pseudo-BCK algebra \(A \) is a Bosbach state on \(A \).

Proof. It is obvious that \(m(1) = m(x \to x) = m(x) \to_L m(x) = 1 \). We also have
\[
m(x) + m(x \to y) = m(x) + m(x) \to_L m(y) = m(x) + \min\{1 - m(x) + m(y), 1\} = \min\{1 + m(y), 1 + m(x)\} = m(y) + \min\{1 - m(y) + m(x), 1\} = m(y) + m(y) \to_L m(x) = m(y) + m(y \to x).
\]
Similarly, \(m(x) + m(x \preceq y) = m(y) + m(y \preceq x) \). Thus, \(s \) is a Bosbach state on \(A \).

Proposition 3.9. Let \(A \) be a bounded pseudo-BCK algebra. A Bosbach state \(m \) on \(A \) is a state-morphism if and only if
\[
m(x \vee y) = m(x \cup y) = \max\{m(x), m(y)\}
\]
for all \(x, y \in A \).

Proof. If \(m \) is a state-morphism on \(A \), then by Proposition 3.8 \(m \) is a Bosbach state. According to Proposition 3.4(2) we have
\[
m(x \vee y) = 1 + m(y) - m(x \to y) = 1 + m(y) - (m(x) \to_L m(y)) = 1 + m(y) - \min\{1 - m(x) + m(y), 1\} = 1 + m(y) + \max\{-1 + m(x) - m(y), -1\} = \max\{m(x), m(y)\}.
\]
Similarly,
\[
m(x \cup y) = 1 + m(y) - m(x \preceq y) = 1 + m(y) - (m(x) \to_L m(y)) = 1 + m(y) - \min\{1 - m(x) + m(y), 1\} = 1 + m(y) + \max\{-1 + m(x) - m(y), -1\} = \max\{m(x), m(y)\}.
\]
For the converse, assume that \(m \) is a Bosbach state on \(A \) such that
\[
m(x \vee y) = m(x \cup y) = \max\{m(x), m(y)\}
\]
for all \(x, y \in A \).

Then, by Proposition 3.4(2), we have
\[
m(x \rightarrow y) = 1 - m(x \vee y) + m(y) = 1 + m(y) - \max\{(m(x), m(y)) = \\
= 1 + m(y) + \min\{-m(x), -m(y)\} = \min\{1 - m(x) + m(y), 1\} = m(x) \rightarrow_L m(y).
\]
Similarly,
\[
m(x \leadsto y) = 1 - m(x \cup y) + m(y) = 1 + m(y) - \max\{(m(x), m(y)) = \\
= 1 + m(y) + \min\{-m(x), -m(y)\} = \min\{1 - m(x) + m(y), 1\} = m(x) \rightarrow_L m(y).
\]
Thus, \(m \) is a state-morphism on \(A \).

\[\square\]

Example 3.10. Consider \(A = \{0, a, b, c, 1\} \) with \(0 < a < b, c < 1 \) and \(b, c \) incomparable. Assume the operations \(\rightarrow, \leadsto \) given by the tables

\[
\begin{array}{c|cccc}
\rightarrow & 0 & a & b & c & 1 \\
\hline
0 & 1 & 1 & 1 & 1 & 1 \\
a & 0 & 1 & 1 & 1 & 1 \\
b & 0 & a & 1 & c & 1 \\
c & 0 & b & b & 1 & 1 \\
1 & 0 & a & b & c & 1 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\leadsto & 0 & a & b & c & 1 \\
\hline
0 & 1 & 1 & 1 & 1 & 1 \\
a & 0 & 1 & 1 & 1 & 1 \\
b & 0 & c & 1 & c & 1 \\
c & 0 & a & b & 1 & 1 \\
1 & 0 & a & b & c & 1 \\
\end{array}
\]

Then \(A = (A, \leq, \rightarrow, \leadsto, 0, 1) \) is a bounded pseudo-BCK lattice. Since \((A, \leq) \) is a lattice, \(A \) is a pseudo-BCK lattice. Moreover, we can see that \(c \odot b = \min\{z \mid c \leq b \rightarrow z\} = \min\{b, c, 1\} \) does not exist. Hence, \(A \) is a pseudo-BCK lattice without \((pP)\) condition and the function \(m : A \rightarrow [0, 1] \) defined by
\[
m(0) = 0, \quad m(a) = 1, \quad m(b) = 1, \quad m(c) = 1, \quad m(d) = 1, \quad m(1) = 1
\]
is the unique state-morphism on \(A \). Moreover, \(m(x \vee y) = m(x \cup y) = \max\{m(x), m(y)\} \) for all \(x, y \in A \), hence \(m \) also is a Bosbach state on \(A \).

Similarly to [10], for the case of good pseudo-BL algebras, we define the notion below.

Definition 3.11. Let \(A \) be a good bounded pseudo-BCK algebra. Two elements \(x, y \in A \) are called **orthogonal**, and we write \(x \perp y \), iff \(x \sim y \subseteq y \sim \). If \(x, y \in A \) are orthogonal, we define a partial operation \(+ \) on \(A \) by \(x + y := x \oplus y \).

Lemma 3.12. Let \(A \) be a good bounded pseudo-BCK algebra and \(x, y \in A \).

Then
1. \(x \perp y \iff y \sim \leq x \sim \);
2. \(x \perp x \sim \) and \(x + x \sim = 1 \);
3. \(x \sim \perp x \) and \(x \sim + x = 1 \);
4. \(x \perp 0 \) and \(x + 0 = x \sim \).
One can easily check that

\begin{align*}
(5) & \ 0 \perp x \text{ and } 0 + x = x^-; \\
(6) & \text{if } x \leq y, \text{ then } x \perp y, \ y^- \perp x \text{ and } x + y^- = y \rightarrow x^- , \ y^- + x = y \rightsquigarrow x^- .
\end{align*}

Proof. (1): $x^- \leq y^- \iff y^- \leq x^- \rightsquigarrow = x^-.$
(2): Since $x^- \leq x^- \rightsquigarrow = (x^-)^\sim$, we have $x \perp x$ and $x + x^- = x^- \rightarrow x^- = 1.$
(3): Similarly, from $x^- \leq x^- \rightsquigarrow = (x^-)^\sim$ we get $x^- \perp x$ and $x^- + x = x^- \rightarrow x^- \rightsquigarrow = x^- \rightarrow x^- = 1.$
(4): Since $x^- \leq 1 = 0^\sim$, we have $x \perp 0$ and $x + 0 = 0^- \rightarrow x^- \rightsquigarrow = 1 \rightarrow x^- \rightsquigarrow = x^- .$
(5): Since $x^- \leq 1 = 0^-$, we have $0 \perp x$ and $0 + x = x^- \rightarrow 0^- \rightsquigarrow = x^- \rightarrow 0 = x^- .$
(6): Since $x \leq y$, we have $y^- \leq x^-$, that is, $(y^-)^\sim \leq x^-$, so $x \perp y^-$. Moreover, $x + y^- = y^- \rightarrow x^- = y \rightarrow x^- \rightsquigarrow$ (by (c26)). Similarly, we have $y^- \leq x^-$, so $(y^-)^\sim \leq x^-$, that is, $y^- \perp x$ and $y^- + x = x^- \rightsquigarrow = x^- \rightarrow y^- = y \rightsquigarrow x^- \rightsquigarrow$ (by (c26)). □

Definition 3.13. Let \mathcal{A} be a good bounded pseudo-BCK algebra. A Riečan state on \mathcal{A} is a function $s : \mathcal{A} \rightarrow [0, 1]$ such that, for all $x, y \in \mathcal{A}$,
(R1) if $x \perp y$, then $s(x + y) = s(x) + s(y)$;
(R2) $s(1) = 1$.

Example 3.14. Consider again the good bounded pseudo-BCK algebra \mathcal{A} from Example 2.23. We claim that the Bosbach state $s : \mathcal{A} \rightarrow [0, 1]$ defined by
$s(0) = 0, \ s(a) = 1, \ s(b) = 1, \ s(c) = 1, \ s(d) = 1, \ s(1) = 1$
also is a Riečan state on \mathcal{A}. Indeed, the pairs (x, y) of orthogonal elements of \mathcal{A} are given in the table

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
<td>x^-</td>
<td>$y^- x + y$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>a</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>b</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>c</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>d</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

One can easily check that s is a Riečan state.
Proposition 3.15. If \(s \) is a Riečan state on a good bounded pseudo-BCK algebra \(A \), then for all \(x, y \in A \) the following properties hold:

1. \(s(x^\bot) = s(x^\bot) = 1 - s(x) \);
2. \(s(0) = 0 \);
3. \(s(x^\bot) = s(x^\bot) = s(x^\bot) = s(x) \);
4. if \(x \leq y \), then \(s(x) \leq s(y) \) and \(s(y \rightarrow x^\bot) = s(y \rightarrow x^\bot) = 1 + s(x) - s(y) \);
5. \(s((x \vee y) \rightarrow x^\bot) = s((x \vee y) \rightarrow x^\bot) = 1 - s(x \vee y) + s(x) \) and \(s((x \wedge y) \rightarrow x^\bot) = s((x \wedge y) \rightarrow x^\bot) = 1 - s(x \wedge y) + s(x) \);
6. \(s((x \vee y) \rightarrow y^\bot) = s((x \vee y) \rightarrow y^\bot) = 1 - s(x \vee y) + s(y) \) and \(s((x \wedge y) \rightarrow y^\bot) = s((x \wedge y) \rightarrow y^\bot) = 1 - s(x \wedge y) + s(y) \).

Proof. (1): Since \(x \perp x^\bot \) and \(x + x^\bot = 1 \), we have \(s(x) + s(x^\bot) = s(1) = 1 \), so \(s(x^\bot) = 1 - s(x) \). Similarly, \(s(x^\bot) = 1 - s(x) \).

(2): It follows from the fact that \(0 \perp 0 \) and \(0 + 0 = 0 \).

(3): Using the fact that \(x \perp 0 \) and \(x + 0 = x^\bot \), we get \(s(x) = s(x^\bot) \) and, similarly, the other equalities.

(4): Since \(x \leq y \), we have \(x \perp y^\bot \) and \(x + y^\bot = y \rightarrow x^\bot \). Hence \(s(x) + s(y^\bot) = s(y \rightarrow x^\bot) \), so \(s(x) - s(y) = s(y \rightarrow x^\bot) = 1 \), that is, \(s(x) \leq s(y) \). We get \(s(y \rightarrow x^\bot) = 1 + s(y) - s(x) \). Similarly, from \(x \leq y \) we have \(y^\bot \perp x \) and \(y^\bot + x = y \rightarrow x^\bot \), and we get \(s(y \rightarrow x^\bot) = 1 + s(x) - s(y) \).

(5): We use Lemma 3.12. It follows from \(x \leq x \vee y \), that \(x \perp (x \vee y)^\bot \) and \(x + (x \vee y)^\bot = (x \vee y) \rightarrow x^\bot \). Hence \(s(x + (x \vee y)^\bot) = s((x \vee y) \rightarrow x^\bot) \). Thus, \(s((x \vee y) \rightarrow x^\bot) = 1 - s(x \vee y) + s(x) \). Similarly, from \(x \leq x \vee y \) we get \((x \vee y)^\bot \perp x \) and \((x \vee y)^\bot + x = (x \vee y) \rightarrow x^\bot \). Hence \(s((x \vee y)^\bot + x) = s((x \vee y) \rightarrow x^\bot) \) and we get \(1 - s(x \vee y) + s(x) = s((x \vee y) \rightarrow x^\bot) \). Thus, \(s((x \vee y) \rightarrow x^\bot) = s((x \vee y) \rightarrow x^\bot) = 1 - s(x \vee y) + s(x) \) and, similarly, \(s((x \vee y) \rightarrow y^\bot) = s((x \vee y) \rightarrow y^\bot) = 1 - s(x \vee y) + s(y) \).

(6): This follows similarly to (5). \(\square \)

Remark 3.16 ([18]). In the case of a pseudo-BCK semilattice, properties (5) and (6) become

\[(5') \quad s(x \rightarrow y^\bot) = s(x \rightarrow y^\bot) = 1 - s(x \vee y) + s(y). \]

Theorem 3.17. Let \(A \) be a good bounded pseudo-BCK algebra. Any Bosbach state on \(A \) is a Riečan state.

Proof. Let \(s \) be a Bosbach state on \(A \). Assume \(x \perp y \), i.e. \(x^\bot \leq y^\bot \). By Proposition 3.4(4) and (1) we have \(1 + s(x^\bot) = s(y^\bot) + s(y^\rightarrow x^\bot) \).

It follows that \(1 + s(x) = 1 - s(y) + s(y^\rightarrow x^\bot) \), hence \(s(y^\rightarrow x^\bot) = s(x) + s(y) \). Therefore, \(s(x + y) = s(x) + s(y) \). Since by hypothesis \(s(1) = 1 \), \(s \) is a Riečan state on \(A \). \(\square \)
In the next example we show that there exists a Riečan state which is not a Bosbach state.

Example 3.18. Consider $A = \{0, a, b, c, 1\}$ with $0 < a < b < c < 1$ and the operations \to, \Rightarrow given by the tables

<table>
<thead>
<tr>
<th>\to</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\Rightarrow</th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Then $(A, \leq, \to, \Rightarrow)$ is a good pseudo-BCK lattice. (Moreover, since $(A, \leq, \to, \Rightarrow)$ is a chain, it also is a good pseudo-BCK(pP) lattice, that is, a good residuated lattice). The function $s : A \to [0, 1]$ defined by

- $s(0) = 0$, $s(a) = 1/2$, $s(b) = 1/2$, $s(c) = 1$, $s(1) = 1$

is a Riečan state. Indeed, the orthogonal elements of A are the pairs (x, y) in the table

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>$x \sim y$</th>
<th>$y \sim x$</th>
<th>$x + y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>a</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td>b</td>
<td>0</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>0</td>
<td>c</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>b</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>b</td>
<td>1</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

One can easily check that s is a Riečan state, but the function s defined above is not a Bosbach state. Indeed, checking condition (B$_2$) we obtain

- $s(a) + s(a \Rightarrow b) = s(a) + s(1) = 1/2 + 1 = 3/2$,
- $s(b) + s(b \Rightarrow a) = s(b) + s(b) = 1/2 + 1/2 = 1$,

so condition (B$_2$) does not hold. We conclude that s is not a Bosbach state. Moreover, the pseudo-BCK algebra A has no Bosbach state on it. Indeed, assume that A admits a Bosbach state s such that $s(0) = 0$, $s(a) = \alpha$, $s(b) = \beta$, $s(c) = 1$, $s(1) = 1$.
\(s(c) = \gamma, s(1) = 1\). From \(s(x) + s(x \rightarrow y) = s(y) + s(y \rightarrow x)\), taking \(x = a, y = 0, x = b, y = 0\) and then \(x = c, y = 0\), we get \(\alpha = 1/2, \beta = 1/2, \gamma = 1\). But, we already proved that \(s\) is not a Bosbach state.

Remarks 3.19. (1). In the case of good pseudo-BL algebras, Georgescu [10] asked to find an example of Riečan state which is not a Bosbach state. The above example gives a positive answer to this problem in the case of good pseudo-BCK algebras.

(2) In ([9], Theorem 3.8) it is proved that in the case of good bounded non-commutative \(R\ell\)-monoids, the Bosbach and Riečan states coincide. The proof is based on the fact that \((x \rightarrow y)^{\sim} = x^{\sim} \rightarrow y^{\sim}\) and \((x \rightsquigarrow y)^{\sim} = x^{\sim} \rightsquigarrow y^{\sim}\) in any bounded non-commutative \(R\ell\)-monoid (see [9], Lemma 2.1). But these properties are not satisfied in any good pseudo-BCK algebra. Indeed, consider again the good pseudo-BCK\((pP)\) lattice from Example 3.18. We have \((b \rightarrow a)^{\sim} = 0\), but \(b^{\sim} \rightarrow a^{\sim} = 1\). Therefore, the above mentioned result for good bounded non-commutative \(R\ell\)-monoids is not valid in the case of good pseudo-BCK algebras, as we can see in the above example.

(3) Dvurečenskij [6] proved that every linearly ordered pseudo-BL algebra admits a Bosbach state. Since the pseudo-BCK algebra \(A\) from the above example is linearly ordered, we conclude that in contrast to pseudo-BL algebras, there exist linearly ordered pseudo-BCK algebras having no Bosbach state.

(4) In the case of pseudo-BL algebras Georgescu [10] proved that the existence of a state-morphism is equivalent to the existence of a maximal filter which is normal. In the case of pseudo-BCK algebras, this is not true. Indeed, in the pseudo-BCK algebra \(A\) from Example 3.18, \(D = \{c, 1\}\) is a maximal normal deductive system, but we proved that there is no Bosbach state on \(A\). Thus, there is no state-morphism on \(A\).

Theorem 3.20. Every Riečan state on a good pseudo-BCK\((pDN)\) algebra is a Bosbach state.

Proof. Let \(s\) be a Riečan state on a good pseudo-BCK\((pDN)\) algebra \(A\). By Proposition 3.15(2) we have \(s(0) = 0\). Since \(y^{\sim} = y\) for all \(y \in A\), by Proposition 3.15(6) we get \(s(x \lor y \rightarrow y) = 1 - s(x \lor y) + s(y)\) and \(s(x \lor y \rightarrow y) = 1 - s(x \lor y) + s(y)\). By Proposition 2.28, we have \(s(x \rightarrow y) = 1 - s(x \lor y) + s(y)\) and \(s(x \rightsquigarrow y) = 1 - s(x \lor y) + s(y)\). Finally, by Proposition 3.6, \(s\) is a Bosbach state on \(A\).

Theorem 3.21. If \(A\) is a good pseudo-BCK algebra satisfying the identities

\[(x \rightarrow y)^{\sim} = x \lor y \rightarrow y^{\sim}\quad \text{and} \quad (x \rightsquigarrow y)^{\sim} = x \lor y \rightsquigarrow y^{\sim},\]

then the Bosbach and Riečan states coincide.
Proof. Let \(s \) be a Riečan state on a good pseudo-BCK algebra \(A \). By Proposition 3.15(2) we have \(s(0) = 0 \). By Proposition 3.15(3), (5), (6) we get
\[
s(x \rightarrow y) = s((x \rightarrow y)^\sim) = s(x \vee y \rightarrow y^\sim) = 1 - s(x \vee y) + s(y)
\]
and
\[
s(x \rightsquigarrow y) = s((x \rightsquigarrow y)^\sim) = s(x \vee y \rightsquigarrow y^\sim) = 1 - s(x \vee y) + s(y).
\]
Thus, by Proposition 3.6, \(s \) is a Bosbach state on \(A \). \(\square \)

Example 3.22. Consider again the good bounded pseudo-BCK lattice \(A \) from Example 2.23. Since \(x^\sim = 1 \) and \(x \rightarrow y^\sim = 1 \) for all \(x, y \in A \), \(A \) satisfies the identities from Theorem 3.21. Hence the Bosbach and Riečan states coincide, which is in accordance with Example 3.14.

Remark 3.23. In the case of a good pseudo-BCK semilattice it was proved in [18] that \(x \vee y \rightarrow y^\sim = x \rightarrow y^\sim \) and \(x \vee y \rightsquigarrow y^\sim = x \rightsquigarrow y^\sim \) for all \(x, y \in A \). Hence the identities from Theorem 3.21 become
\[
(x \rightarrow y)^\sim = x \rightarrow y^\sim, \quad (x \rightsquigarrow y)^\sim = x \rightsquigarrow y^\sim.
\]
Thus, Theorem 3.21 becomes Theorem 6.11 from [18].

Acknowledgement. The author would like to thank Professor Afrodita Iorgulescu for her useful remarks and suggestions that helped to improve the presentation.

REFERENCES

Received 15 September 2007

Polytechnical University of Bucharest
Department of Mathematics
Splaiul Independenței 313
Bucharest, Romania
lavinia_ciungu@math.pub.ro