BRIOT-BOUQUET STRONG DIFFERENTIAL SUPERORDINATIONS AND SANDWICH THEOREMS

GHEORGHE OROS

The notion of differential superordination was introduced by Miller and Mocanu [3] as a dual concept of differential subordination [2] and was developed in [4]. The notion of strong differential subordination was introduced by Antonino and Romaguera [1]. The notion was developed in [8], [9], [10]. In [5] the author introduced the dual concept of strong differential superordinations. In this paper, a Briot-Bouquet strong differential superordination is studied.

AMS 2000 Subject Classification: Primary 30C80;

Secondary 30C45, 30A20, 34A40.

Key words: differential subordination, differential superordination, strong differential subordination, strong differential superordination, analytic function, univalent function, best subordinant.

1. INTRODUCTION AND PRELIMINARIES

Let the unit disc of the complex plane

 $U = \{ z \in \mathbb{C} : |z| < 1 \} \text{ and } \overline{U} = \{ z \in \mathbb{C} : |z| \le 1 \}.$

Let $\mathcal{H}(U \times \overline{U})$ denote the space of holomorphic functions in $U \times \overline{U}$. For n a positive integer and $a \in \mathbb{C}$, in [7] the authors introduced the classes

$$\mathcal{H}^*[a,n,\xi] = \{ f \in \mathcal{H}(U \times \overline{U}) \mid$$

 $f(z,\xi) = a + a_n(\xi)z^n + a_{n+1}(\xi)z^{n+1} + \dots, \ z \in U, \ \xi \in \overline{U}\},$

with $a_k(\xi)$ holomorphic functions in \overline{U} , $k \ge n$, and

$$\mathcal{H}_u(U) = \{ f \in \mathcal{H}^*[a, n, \xi] : f(\cdot, \xi) \text{ univalent in } U \text{ for all } \xi \in U \},\$$

$$K = \left\{ f \in \mathcal{H}^*[a, n, \xi] : \operatorname{Re} \frac{z f''(z, \xi)}{f'(z, \xi)} + 1 > 0, \ z \in U \text{ for all } \xi \in \overline{U} \right\}$$

the class of convex functions.

Definition 1 ([6]). We denote by Q the set of function $f(\cdot, \xi)$ that are analytic and injective on the set $\overline{U} \setminus E(f)$, where

$$E(f) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} f(z,\xi) = \infty, \ z \in U, \ \xi \in \overline{U} \right\}$$

MATH. REPORTS 12(62), 3 (2010), 277-283

and are such that $f'(z,\xi) \neq 0$ for $\zeta \in \partial U \setminus E(f), \xi \in U$.

The subclass of Q for which $f(0,\xi) \equiv a$ is denoted by Q(a).

Definition 2 ([7]). Let $f(z,\xi)$ and $H(z,\xi)$ be analytic in $U \times \overline{U}$. The function $f(z,\xi)$ is said to be strongly **subordinate** to $H(z,\xi)$, or $H(z,\xi)$ is said to be strongly **superordinate** to $f(z,\xi)$, if there exists a function w analytic in U, with w(0) = 0 and |w(z)| < 1, and such that $f(z,\xi) = H(w(z),\xi)$ for all $\xi \in \overline{U}$. In such a case we write

$$f(z,\xi) \prec \prec H(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

If $H(\cdot,\xi)$ is univalent in U, for all $\xi \in \overline{U}$, then $f(z,\xi) \prec \prec F(z,\xi)$ if and only if $f(0,\xi) = F(0,\xi)$ and $f(U \times \overline{U}) \subset F(U \times \overline{U})$.

Remark 1. If $H(z,\xi) \equiv H(z)$, and $f(z,\xi) \equiv f(z)$, then the strong superordination becomes the usual notion of superordination.

Let β and γ be complex numbers, let Ω_{ξ} and Δ_{ξ} be sets in the complex plane, and $p(\cdot, \xi)$ analytic in $U \times \overline{U}$.

In [6] the authors have determined conditions such that

(1)
$$\left\{p(z,\xi) + \frac{zp'(z,\xi)}{\beta p(z,\xi) + \gamma}\right\} \subset \Omega_{\xi} \Rightarrow p(U \times \overline{U}) \subset \Delta_{\xi}, \quad z \in U, \ \xi \in \overline{U}.$$

In this article we consider the dual problem of determining conditions such that

(2)
$$\Omega_{\xi} \subset \left\{ p(z,\xi) + \frac{zp'(z,\xi)}{\beta p(z,\xi) + \gamma} \right\} \Rightarrow \Delta_{\xi} \subset p(U \times \overline{U}), \quad z \in U, \ \xi \in \overline{U}.$$

In particular, we are interested in determining the largest set Δ_{ξ} in \mathbb{C} for which (2) holds.

If the sets Ω_{ξ} and Δ_{ξ} in (1) and (2) are simply connected domains not equal to \mathbb{C} , then it is possible to rephrase these expressions very neatly in terms of strong subordination and to obtain

(1')
$$p(z,\xi) + \frac{zp'(z,\xi)}{\beta p(z,\xi) + \gamma} \prec h_2(z,\xi) \Rightarrow p(z,\xi) \prec q_2(z,\xi),$$

$$(2') \quad h_1(z,\xi) \prec \prec p(z,\xi) + \frac{zp'(z,\xi)}{\beta p(z,\xi) + \gamma} \Rightarrow g_1(z,\xi) \prec \prec p(z,\xi), \ z \in U, \ \xi \in \overline{U}.$$

The left side of (1') is called a Briot-Bouquet strong differential subordination, and the function q_2 is called a **dominant** of the differential subordination. The **best dominant**, which provides a sharp result, is the dominant that is subordinate to all other dominant.

The left side of (2') is called a Briot-Bouquet strong differential superordination, and the function $q_1(\cdot,\xi)$ is called a **subordinant** of the strong differential subordination. The **best subordinant**, which provides a sharp result is the subordinant which is superordinate to all other subordinants.

Definition 3 ([5]). Let Ω_{ξ} be a set in \mathbb{C} and $q(\cdot,\xi) \in \mathcal{H}^*[a,n,\xi]$ with $q'(z,\xi) \neq 0, z \in U, \xi \in \overline{U}$. The class of admissible functions $\phi_n[\Omega_{\xi}, q(\cdot,\xi)]$ consists of those functions $\varphi : \mathbb{C}^3 \times U \times \overline{U} \to \mathbb{C}$ that satisfy the admissibility condition:

(A)
$$\varphi(r, s, t; \zeta, \xi) \in \Omega_{\xi}$$

whenever

$$r = q(z,\xi), \quad s = \frac{zq'(z,\xi)}{m}, \quad \operatorname{Re}\frac{t}{s} + 1 \le \frac{1}{m}\operatorname{Re}\left[\frac{zq''(z,\xi)}{q'(z,\xi)} + 1\right],$$

where $\zeta \in \partial U$, $z \in U$, $\xi \in \overline{U}$ and $m \ge n \ge 1$. When n = 1 we write $\phi_1[\Omega_{\xi}, q(\cdot, \xi)]$ as $\phi[\Omega_{\xi}, q(\cdot, \xi)]$.

In the special case when $h(\cdot,\xi)$ is an analytic mapping of $U \times \overline{U}$ onto $\Omega_{\xi} \neq \mathbb{C}$ we denote this class $\phi_n[h(U \times \overline{U}), q(\cdot,\xi)]$ by $\phi_n[h(\cdot,\xi), q(\cdot,\xi)]$.

If $\varphi : \mathbb{C}^2 \times U \times \overline{U} \to \mathbb{C}$ and $q(\cdot, \xi) \in \mathcal{H}^*[a, n, \xi]$, then the admissibility condition (A) reduces to

(A')
$$\varphi\left(q(z,\xi),\frac{zq'(z,\xi)}{m};\zeta,\xi\right)\in\Omega_{\xi}$$

whenever $r = q(z,\xi), s = \frac{zq'(z,\xi)}{m}$, where $z \in U, \xi \in \overline{U}, \zeta \in \partial U$ and $m \ge n \ge 1$.

LEMMA A ([6]). Let $p(\cdot,\xi) \in Q(a)$, and let

$$q(z,\xi) = a + a_n(\xi)z^n + a_{n+1}(\xi)z^{n+1} + \dots$$

be analytic in $U \times \overline{U}$ with $q(z,\xi) \not\equiv a$ and $a \geq 1$. If $q(\cdot,\xi)$ is not subordinate to $p(\cdot,\xi)$, then there exist points $z_0 = r_0 e^{i\theta_0} \in U$ and $\zeta_0 \in \partial U \setminus E(p)$, and an $m \geq n \geq 1$ for which $q(U_{r_0} \times \overline{U}_{r_0}) \subset p(U \times \overline{U})$,

(i) $q(z_0,\xi) = p(\zeta_0,\xi),$ (ii) $z_0q'(z_0,\xi) = m\zeta_0p'(\zeta_0,\xi)$ and (iii) $\operatorname{Re} \frac{z_0q''(z_0,\xi)}{q'(z_0,\xi)} + 1 \ge m\operatorname{Re} \left[\frac{\zeta_0p''(\zeta_0,\xi)}{p'(\zeta_0,\xi)} + 1\right].$

2. MAIN RESULTS

THEOREM 1. Let $\Omega_{\xi} \subset \mathbb{C}$, $q(\cdot, \xi) \in \mathcal{H}^*[a, n, \xi]$, $\varphi : \mathbb{C}^2 \times U \times \overline{U} \to \mathbb{C}$, and suppose that

(3)
$$\varphi(q(z,\xi),tzq'(z,\xi);\zeta,\xi) \in \Omega_{\xi}$$

for $z \in U$, $\zeta \in \partial U$, $\xi \in \overline{U}$ and $0 < t \leq \frac{1}{n} \leq 1$. If $p(\cdot, \xi) \in Q(a)$ and $\varphi(p(z,\xi), zp'(z,\xi); z, \xi)$ is univalent in U, then

(4)
$$\Omega_{\xi} \subset \{\varphi(p(z,\xi), zp'(z,\xi); z,\xi)\}$$

implies

$$q(z,\xi) \prec \not\prec p(z,\xi), \quad z \in U, \ \xi \in U.$$

Proof. Assume $q(z,\xi) \not\prec p(z,\xi)$. By Lemma A, there exist points $z_0 = r_0 e^{i\theta_0} \in U$ and $\zeta_0 \in \partial U \setminus E(p)$, and an $m \geq n \geq 1$ that satisfy conditions (i)–(iii) of Lemma A. Using these conditions with $r = p(\zeta_0,\xi)$, $s = \zeta_0 p'(\zeta_0,\xi)$ and $\zeta = \zeta_0$ in Definition 3 we obtain

$$\varphi(p(\zeta_0,\xi),\zeta_0p'(\zeta_0,\xi);\zeta_0,\xi)\in\Omega_{\xi}$$

Since this contradicts (4) we must have $q(z,\xi) \prec \not\prec p(z,\xi), z \in U, \xi \in \overline{U}$. \Box

We next consider the special situation when $h(z,\xi)$ is analytic on $U \times \overline{U}$ and $h(U \times \overline{U}) = \Omega_{\xi} \neq \mathbb{C}$. Then Theorem 1 becomes

THEOREM 2. Let $h(\cdot,\xi)$ be analytic in $U \times \overline{U}$, $q(\cdot,\xi) \in \mathcal{H}^*[a,n,\xi]$, $\varphi : \mathbb{C}^2 \times U \times \overline{U} \to \mathbb{C}$, and suppose that

(5)
$$\varphi(q(z,\xi), tzq'(z,\xi); z,\xi) \in H(U \times \overline{U})$$

for $z \in U$, $\zeta \in \partial U$ and $0 < t \leq \frac{1}{n} \leq 1$. If $p(\cdot, \xi) \in Q(a)$ and $\varphi(p(z, \xi), zp'(z, \xi); z, \xi)$ is univalent in U for all $\xi \in \overline{U}$, then

(6)
$$h(z,\xi) \prec \varphi(p(z,\xi), zp'(z,\xi); z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

implies

$$q(z,\xi) \prec \prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

Furthermore, if

(7)
$$\varphi(q(z,\xi), zq'(z,\xi); z,\xi) = h(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

has a univalent solution $q(\cdot,\xi) \in Q(a)$, then $q(\cdot,\xi)$ is the best subordinant.

THEOREM 3. Let $h(\cdot,\xi)$ be convex in U, for all $\xi \in \overline{U}$ with $h(0,\xi) = a$, and let θ and ψ be analytic in a domain $D \subset \mathbb{C}$. Let $p(\cdot,\xi) \in \mathcal{H}^*[a,1,\xi] \cap Q$ and suppose that $\theta[p(z,\xi)] + zp'(z,\xi)\psi[p(z,\xi)]$ is univalent in U for all $\xi \in \overline{U}$. If the differential equation

If the differential equation

(8)
$$\theta[q(z,\xi)] + zq'(z,\xi)\psi[q(z,\xi)] = h(z,\xi), \quad z \in U, \ \xi \in U$$

has a univalent solution $q(\cdot,\xi)$ that satisfies $q(0,\zeta) = a$, $q(U \times \overline{U}) \subset D$, and

(9)
$$\theta[q(z,\xi)] \prec \prec h(z,\xi), \quad z \in U, \ \xi \in \overline{U},$$

then

(10)
$$h(z,\xi) \prec \prec \theta[p(z,\xi)] + zp'(z,\xi)\psi[p(z,\xi)]$$

implies

$$q(z,\xi) \prec \not\prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

Function q is the best subordinant.

Proof. We can assume that $h(\cdot,\xi), p(\cdot,\xi)$ and $q(\cdot,\xi)$ satisfy the conditions of this theorem on the closed $\overline{U} \times \overline{U}$, and that $q'(\zeta,\xi) \neq 0$ for $|\zeta| = 1$. If not, then we can replace $h(\cdot,\xi), p(\cdot,\xi)$ and $q(\cdot,\xi)$ with $h(\rho z,\xi), p(\rho z,\xi)$ and $q(\rho z,\xi)$, where $0 < \rho < 1$. These new functions have the desired properties on $\overline{U} \times \overline{U}$, and we can use them in the proof of the theorem. Theorem 3 would then follow by letting $\rho \to 1$. We will use Lemma A to prove this result. If we let $\varphi(r,s) = \theta[r] + s\psi[r], r = q(z,\xi), s = zq'(z,\xi)$, then (8) becomes

$$\varphi(q(z,\xi), zq'(z,\xi)) = h(z,\xi)$$

and we have

$$\varphi(q(z,\xi), tzq'(z,\xi)) = \theta[p(\zeta,\xi)] + t\zeta p'(\zeta,\xi)\psi[p(\zeta,\xi)]$$
$$= (1-t)\theta[p(\zeta,\xi)] + th(\zeta,\xi), \quad 0 < t \le 1.$$

From (9) and the convexity of $h(U \times \overline{U})$ we conclude that

$$\varphi(q(z,\xi), tzp'(z,\xi)) \in h(U \times \overline{U}) \quad \text{for } 0 < t \le 1.$$

Hence condition (5) of Theorem 2 is satisfied and the conclusions of this theorem follow. \Box

In the special case when $\theta[q(z,\xi)] = q(z,\xi)$ and

$$\theta[q(z,\xi)] = \frac{1}{\beta q(z,\xi) + \gamma}, \quad \beta, \gamma \in \mathbb{C},$$

we obtain the following result for the Briot-Bouquet strong differential superordination.

COROLLARY 1. Let $\beta, \gamma \in \mathbb{C}$, and let $h(\cdot, \xi)$ be convex in U for all $\xi \in \overline{U}$, with $h(0,\xi) = a$. Suppose that the differential equation

(11)
$$q(z,\xi) + \frac{zq'(z,\xi)}{\beta q(z,\xi) + \gamma} = h(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

has a univalent solution $q(\cdot,\xi)$ that satisfies $q(0,\xi) = a$ and $q(z,\xi) \prec \prec h(z,\xi)$, $z \in U, \xi \in \overline{U}$.

If $p(\cdot,\xi) \in \mathcal{H}[a,1] \cap Q$ and $p(z,\xi) + \frac{zp'(z,\xi)}{\beta p(z,\xi) + \gamma}$ is univalent in U for all $\xi \in \overline{U}$, then

(12)
$$h(z,\xi) \prec q(z,\xi) + \frac{zp'(z,\xi)}{\beta p(z,\xi) + \gamma}$$

implies

$$q(z,\xi) \prec \not\prec p(z,\xi), \quad z \in U, \ \xi \in \overline{U}.$$

The function $q(\cdot, \xi)$ is the best subordinant.

We can combine that result with Theorem 3 and we obtain the following sandwich theorem.

THEOREM 4. Let $h_1(\cdot, \xi)$ and $h_2(\cdot, \xi)$ be convex in $U \times \overline{U}$, for all $\xi \in \overline{U}$ with $h_1(0,\xi) = h_2(0,\xi) = a$, and let θ and ψ be analytic in a domain $D \subset \mathbb{C}$. Let $p(\cdot,\xi) \in \mathcal{H}[a,1,\xi] \cap Q$ and suppose that $\theta[p(z,\xi)] + zp'(z,\xi)\psi[p(z,\xi)]$ is univalent in U, for all $\xi \in \overline{U}$. If the differential equations

$$\theta[q_i(z,\xi)] + zq'_i(z,\xi)\psi[q_i(z,\xi)] = h_i(z,\xi)$$

have univalent solutions q_i that satisfy $q_i(0,\xi) = a$, $q_i(U \times \overline{U}) \subset D$, and

$$\theta[q_i(z,\xi)] \prec \prec h_i(z,\xi),$$

for i = 1, 2, then

$$h_1(z,\xi) \prec \prec \theta[p(z,\xi)] + zp'(z,\xi)\psi[p(z,\xi)] \prec \prec h_2(z,\xi)$$

implies

$$q_1(z,\xi) \prec \not\prec p(z,\xi) \prec \prec q_2(z,\xi), \quad z \in U, \ \xi \in U.$$

In the special case when $\theta[p(z,\xi)] = p(z,\xi)$ and

$$\psi[p(z,\xi)] = \frac{1}{\beta p(z,\xi) + \gamma},$$

we obtain the following Briot-Bouquet sandwich result.

COROLLARY 2. Let $\beta, \gamma \in \mathbb{C}$ and let $h_i(\cdot, \xi)$ be convex in U, for all $\xi \in \overline{U}$, with $h_i(0,\xi) = a$, for i = 1, 2. Suppose that the differential equations

(13)
$$q_i(z,\xi) + \frac{zq'_i(z,\xi)}{\beta q_i(z,\xi) + \gamma} = h_i(z,\xi)$$

have univalent solutions $q_i(\cdot,\xi)$ that satisfy $q_i(0,\xi) = a$ and $q_i(z,\xi) \prec \prec h_i(z,\xi)$, for $i = 1, 2, z \in U, \xi \in \overline{U}$. If

$$p(\cdot\,,\xi)\in\mathcal{H}[a,1,\xi]\cap Q$$

and

$$p(z,\xi) + \frac{zp'(z,\xi)}{\beta p(z,\xi) + \gamma} \in \mathcal{H}_u(U) \quad \text{for all } \xi \in \overline{U},$$

then

$$h_1(z,\xi) \prec \prec p(z,\xi) + \frac{zp'(z,\xi)}{\beta p(z,\xi) + \gamma} \prec \prec h_2(z,\xi)$$

implies

$$q_1(z,\xi) \prec \not\prec p(z,\xi) \prec \prec q_2(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

The functions $q_1(\cdot,\xi)$ and $q_2(\cdot,\xi)$ are the best subordinant and best dominant respectively.

If $\beta = 0$ and $\gamma \neq 0$ with $\operatorname{Re} \gamma \geq 0$, then (13) has univalent (convex) solutions given by

(14)
$$q_i(z,\xi) = \frac{\gamma}{z^{\gamma}} \int_0^z h_i(t,\xi) t^{\gamma-1} \mathrm{d}t,$$

for i = 1, 2. In this case we obtain the following sandwich corollary.

COROLLARY 3. Let $h_1(\cdot,\xi)$ and $h_2(\cdot,\xi)$ be convex in U, for all $\xi \in \overline{U}$, with $h_1(0,\xi) = h_2(0,\xi) = a$. Let $\gamma \neq 0$ with $\operatorname{Re} \gamma \geq 0$, and let the functions $q_i(\cdot,\xi)$ be defined by (14) for i = 1, 2. If $p(\cdot,\xi) \in \mathcal{H}^*[a,1,\xi] \cap Q$ and $p(z,\xi) + \frac{zp'(z,\xi)}{\gamma}$ is univalent in U for all $\xi \in \overline{U}$, then

$$h_1(z,\xi) \prec \not\prec p(z,\xi) + \frac{zp'(z,\xi)}{\gamma} \prec \not\prec h_2(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

implies

$$q_1(z,\xi) \prec q_2(z,\xi) \prec q_2(z,\xi), \quad z \in U, \ \xi \in \overline{U}$$

The functions $q_1(z,\xi)$ and $q_2(z,\xi)$ are the best subordinant and best dominant respectively.

REFERENCES

- J.A. Antonino and S. Romaguera, Strong differential subordination to Briot-Bouquet differential equations. J. Differential Equations 114 (1994), 101–105.
- [2] S.S. Miller and P.T. Mocanu, Differential subordinations and univalent functions. Michigan Math. J. 28 (1981), 157–171.
- [3] S.S. Miller and P.T. Mocanu, Subordinants of differential superordinations. Complex Variables 48 (2003), 815–826.
- [4] S.S. Miller and P.T. Mocanu, *Differential subordinations. Theory and Applications*. Pure and Applied Mathematics, Marcel Dekker, Inc., New York, 2000.
- [5] Georgia Irina Oros, Strong differential superordination. (To appear)
- [6] Georgia Irina Oros, On a new strong differential subordination. (To appear)
- [7] Georgia Irina Oros, Briot-Bouquet strong differential subordination. (To appear)
- [8] Georgia Irina Oros and Gheorghe Oros, Strong differential subordination. Turkish J. Math. 32 (2008).
- [9] Georgia Irina Oros and Gheorghe Oros, Second order nonlinear strong differential subordinations. Bull. Belg. Math. Soc. Simon Stevin. 16 (2009), 171–178.
- [10] Georgia Irina Oros, Sufficient conditions for univalence obtained by using second order linear strong differential subordinations. Turkish J. Math. 33 (2009).

Received 5 June 2009

University of Oradea Department of Mathematics Str. Universității no. 1 410087 Oradea, Romania gh_oros@yahoo.com