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In this paper, we propose a randomized algorithm based on quasi– Monte Carlo
method for estimating the condition number of a given matrix. Computational
results on various problems prove that on especially large scale matrix the pro-
posed algorithm is much faster than the MATLAB cond function.
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1. INTRODUCTION

The condition number of matrices is a widely used matrix feature in
many areas, such as in numerical analysis, linear algebra etc. [2]. In numerical
analysis, the condition number is basically a measure of stability or sensitivity
of a matrix to numerical operations. Suppose that A be a nonsingular matrix
then, the linear system, Ax = b, has a unique solution, x = A−1b. Now, if we
perturb the matrix A while keeping the vector b fixed, then we have [4]

(1)
‖δx‖
‖x+ δx‖

≤ ‖A‖‖A−1‖‖δA‖
‖A‖

.

The quantity ‖A‖‖A−1‖ which appears in (1) reflects the maximum possi-
ble relative change in the exact solution of a linear system induced by a change
in the data. The condition number of a nonsingular matrix A is defined by

(2) κp(A) = ‖A‖p‖A−1‖p,

where p is usually 1, 2,∞. Throughout this paper we consider 2-norm, however
we note that there are some relationship among κp(A). For example [4]

(3) n−3κ1(A) ≤ n−1κ∞(A) ≤ κ2(A) ≤ nκ∞(A) ≤ n3κ1(A)

MATH. REPORTS 15(65), 3 (2013), 203–210



204 Farshid Mehrdoust 2

The matrix A is called a well-conditioned matrix, if κp(A) is relatively
small and A is called ill-conditioned matrix if κ(A) is large. Since I = AA−1

and ‖AA−1‖ ≤ ‖A‖‖A−1‖, we can see κ(A) ≥ 1.
Suppose that the values λ1 and λn are largest and smallest eigenvalue of

matrix ATA, respectively. Then we have [4]

(4) κ(A) =

(
λ1
λn

) 1
2

,

where An×n is a given nonsingular matrix.
There are several methods for estimating the condition number of large

matrices [1, 3]. In this paper, we present a new algorithm based on quasi
Monte Carlo algorithm to estimate the condition number of large matrices. The
computational cost of proposed algorithm on large dimensions is significantly
lower than MATLAB cond function.

2. RESOLVENT QUASI–MONTE CARLO METHOD

Here, we describe some results based on quasi Monte Carlo methods using
resolvent matrix and then extend it for evaluating the eigenvalue problem.
Now, we consider computing the eigenvalues of the matrix A

(5) Ax = λx,

where the matrix A is symmetric. Let us order all the eigenvalues of A in
decreasing order, i.e.

λmax = λ1 > λ2 ≥ . . . > λn = λmin.

Now, consider an algorithm based on Monte Carlo iterations using resol-
vent operator Rq = [I− qA]−1, where q is a parameter that can be chosen such
that |q| < 1

‖R‖ .

It is known that [6]

(6) Rmq = [I − qR]−m =

∞∑
i=0

qiCim+i−1A
i.

The eigenvalues of the operators [I−qA]−1 and R are connected with the
equality µ = 1

1−qλ . If q > 0, then the largest eigenvalue of the resolvent matrix
Rmq corresponds to the largest eigenvalue of the matrix A, but if q < 0, then
it corresponds to the smallest eigenvalue of the matrix A. Also, as m→∞ we
have [6]

(7) µ(m) =
([I − qA]−mf, h)

([I − qA]−(m−1)f, h)
−→ µ =

1

1− qλ
, f, h ∈ Rn.
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Here, we apply continuous Markov chain showed by Tl of length l starting
at state x0

Tl : x0 → x1 → · · · → xl

where xj ∈ Dj show the chosen state , for each j = 1, 2, . . . , l, alsoDj = [j−1, j)
and D =

⋃n
j=1Dj = [0, n). Assume that

(8) p(x) = pi, x ∈ Gi, for a given h ∈ Rn

and

(9) p(x, y) = pij , x ∈ Gi, y ∈ Gj ,

are the probability of starting chain at x0 and transition probability from state
xi to yj , respectively.

Now, define the random variable WQ
j based on quasi Monte Carlo meth-

ods by the following recursion equation

(10) W0 =
h(x0)

p(x0)
, WQ

j = WQ
j−1

a(xj−1, xj)

p(xj−1, xj)
, j = 1, 2, . . . , l.

It is shown [2] that

(11) E[Wifki ] =< Aif, h >, i = 1, 2, . . . .

Thus, we can write

(12) < Rmq f, h >= E[
∞∑
i=0

qiCim+i−1(A
if, h)], m = 1, 2, . . . .

Using the Rayleigh quotient [3] we have

(13) λ ≈
E
∑l

i=0 q
iCim+i−1W

Q
i+1

E
∑l

i=0 q
iCim+i−1W

Q
i

·

Therefore, we have

(14) λ ≈
∑l

i=0 q
iCim+i−1

∫
D0

∫
D1
· · ·
∫
Di
WQ
i+1dx0 · · · dxi+1∑l

i=0 q
iCim+i−1

∫
D0
· · ·
∫
Di
WQ
i dx0 · · · dxi

.

Now, by some simple calculations we get

(15) λ≈

l∑
i=0
qiCim+i−1

∫
D0

· · ·
∫

Di+1

h(x0)a(x0, x1)a(x1, x2)· · ·a(xi, xi+1)dx0· · ·dxi+1

l∑
i=0
qiCim+i−1

∫
D0

· · ·
∫
Di

h(x0)a(x0, x1)a(x1, x2)· · ·a(xi−1, xi)dx0· · ·dxi
.
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In (15), the multi-dimensional integral can be efficiently estimated by
quasi Monte Carlo methods [7].

3. THE PROPOSED RANDOMIZED ALGORITHM

Given an m× n matrix A, we seek to approximate its condition number.
We note that for computing the largest and smallest eigenvalue of ATA we
have to obtain the multi-dimensional integral [4]. This leads to the following
algorithm for estimating κ(A).

1. Compute C = ATA.

2. Call QMC algorithm for computing λ1(C) and λn(C) [2, 6].

3. Return κ(A) = λ1(C)
λn(C) .

4. End of algorithm.

4. IMPLEMENTATION DETAILS
AND RUNNING TIME OF ALGORITHM

A special property of our presented algorithm is that it is very simple
and can be easily implemented. The important ingredient of this algorithm
is to computing the eigenvalues of the matrix ATA by QMC algorithm. The
computational complexity for QMC is O((l + 1)N), where N is the number
of chains, l + 1 is the length of a single Markov chain [3]. Therefore, the
proposed algorithm has the linear complexity. In other hand, the function
cond in MATLAB software uses the SVD. There are many algorithms that
either exactly compute the SVD of a matrix in O(mn2 + m2n) time or using
Lanczos methods to approximate it faster [3]. Then, if we want to approximate
the condition number of a given matrix by direct method, the computational
cost for computing ‖A−1‖ is too high and thus, not applicable for large scale
problems.

5. NUMERICAL RESULTS

In this section, we present some numerical results to show the performance
of quasi Monte Carlo algorithm to MATLAB cond function. We run our results
on workstation, Intel(R) 1.83 GHz Dual CPU, 2.00 GB RAM using MATLAB
software 7.6. The number of Markov chains, N , and length of a single Markov
chain, l, in these experiments are 1000 and 10, respectively.

Estimation of condition number for the following matrix is considered.
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A =



3n+ 1 1 · · · 1

1 3n+ 1 1 · · ·
...

...
. . .

. . .
. . .

1 · · · 1 3n+ 1 1
1 · · · 1 3n+ 1


3n×3n

Results are summarized in Table 1 and Figure 1 for different values of n.

Table 1
Comparison of QMC algorithm and cond function in MATLAB

n QMC-cond Time (s) MATLAB-cond Time (s)

100 1.9998 2.16 2.0000 0.06
200 1.9998 2.28 2.0000 0.40
400 1.9998 2.61 2.0000 3.46
800 1.9998 4.77 2.0000 25.44
1600 1.9998 20.23 2.0000 194.14
2000 1.9998 36.15 2.0000 372.04

Fig. 1 – Time comparison for QMC and MATLAB procedures.

In this example, three different classes of matrices are considered. Results
are outlined in Table 2.
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Table 2
Comparison of QMC algorithm and cond function in MATLAB for some matrices, n = 2000

Type of matrix A = rand(n) A=gallery(′tridiag′, n) A = hilb(n)

λmax(A
TA), λmin(A

TA) 1.0007×106, 1.8685×10−4 16, 6.2754 × 10−12 6.8567, 2.4921×10−22

QMC-cond 7.3180 × 104 1.5968 × 106 2.7514 × 1022

Time (s) 3.79 4.19 3.76
MATLAB-cond 7.3180 × 104 1.6228 × 106 2.0691 × 1022

Time (s) 17.87 33.11 17.44

Fig. 2 – Time comparison and polynomial curves fitting

for QMC and MATLAB procedures.

Fig. 3 – Time comparison and polynomial curves fitting

for QMC and MATLAB procedures.
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Fig. 4 – Time comparison and polynomial curves fitting

for QMC and MATLAB procedures.

6. CONCLUSION

In this paper, we explain a randomized algorithm for estimating the condi-
tion number of matrices. Our computational results show that QMC algorithm
is extremely faster than MATLAB cond function, while resulting to very good
approximation of the condition number. Also, in Figs. 2–4 we see that the cor-
relation of computational time and dimension of matrix for QMC procedure
and MATLAB procedure is quadratic and cubic, respectively. Roughly, we can
say that in QMC algorithm, the computational time and dimension of matrix
have linear correlation (see Fig. 2).
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