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In this paper, we introduce a class of complex-valued polyharmonic mappings,
denoted by HSp(λ), and its subclass HS0

p(λ), where λ ∈ [0, 1] is a constant.
These classes are natural generalizations of a class of mappings studied by Good-
man in the 1950s. We generalize the main results of Avci and Z lotkiewicz from
the 1990s to the classes HSp(λ) and HS0

p(λ), showing that the mappings in
HSp(λ) are univalent and sense preserving. We also prove that the mappings
in HS0

p(λ) are starlike with respect to the origin, and characterize the extremal
points of the above classes.
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1. INTRODUCTION

A complex-valued mapping F = u + iv, defined in a domain D ⊂ C,
is called polyharmonic (or p-harmonic) if F is 2p (p ≥ 1) times continuously
differentiable, and it satisfies the polyharmonic equation ∆pF = ∆(∆p−1F ) =
0, where ∆1 := ∆ is the standard complex Laplacian operator

∆ = 4
∂2

∂z∂z
:=

∂2

∂x2
+

∂2

∂y2
.

It is well known ([7, 20]) that for a simply connected domain D, a mapping
F is polyharmonic if and only if F has the following representation:

F (z) =

p∑
k=1

|z|2(k−1)Gk(z),

where Gk are complex-valued harmonic mappings in D for k ∈ {1, · · · , p}.
Furthermore, the mappings Gk can be expressed as the form

Gk = hk + gk

for k ∈ {1, · · · , p}, where all hk and gk are analytic in D ([11, 13]).
Obviously, for p = 1 (resp. p = 2), F is a harmonic (resp. biharmonic)

mapping. The biharmonic model arises from numerous problems in science and
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engineering ([16, 18, 19]). However, the investigation of biharmonic mappings
in the context of the geometric function theory has started only recently ([1–3,
5, 6, 8–10]). The reader is referred to [7, 20] for discussion on polyharmonic
mappings, and [11, 13] for the properties of harmonic mappings.

In [4], Avci and Z lotkiewicz introduced the class HS of univalent har-
monic mappings F with the series expansion:

(1.1) F (z) = h(z) + g(z) = z +

∞∑
n=2

anz
n +

∞∑
n=1

bnzn

such that
∞∑
n=2

n(|an|+ |bn|) ≤ 1− |b1| (0 ≤ |b1| < 1),

and the subclass HC of HS, where

∞∑
n=2

n2(|an|+ |bn|) ≤ 1− |b1| (0 ≤ |b1| < 1).

The corresponding subclasses of HS and HC with b1 = 0 are denoted by
HS0 and HC0, respectively. These two classes constitute a harmonic coun-
terpart of classes introduced by Goodman [15]. They are useful in studying
questions of the so-called δ-neighborhoods (Ruscheweyh [22], see also [20]) and
in constructing explicit k-quasiconformal extensions (Fait et al. [14]). In this
paper, we define polyharmonic analogues HSp(λ) and HS0

p(λ), where λ ∈ [0, 1],
to the above classes of mappings. Our aim is to generalize the main results of
[4] to the mappings of the classes HSp(λ) and HS0

p(λ).

This paper is organized as follows. In Section 3, we discuss the starlike-
ness and convexity of polyharmonic mappings in HS0

p(λ). Our main result,
Theorem 1, is a generalization of ([4], Theorem 4). In Section 4, we find the
extremal points of the class HS0

p(λ). The main result of this section is The-
orem 2, which is a generalization of ([4], Theorem 6). Finally, we consider
convolutions and existence of neighborhoods. The main results in this section
are Theorems 3 and 4 which are generalizations of ([4], Theorems 7 (i) and 8)
respectively. Note that the bounds for convexity and starlikeness for harmonic
mappings given in [4] have been recently improved by Kalaj et al. [17].

2. PRELIMINARIES

For r > 0, write Dr = {z : |z| < r}, and let D := D1, i.e., the unit disk.
We use Hp to denote the set of all polyharmonic mappings F in D with a series
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expansion of the following form:

(2.1) F (z) =

p∑
k=1

|z|2(k−1)
(
hk(z) + gk(z)

)
=

p∑
k=1

|z|2(k−1)
∞∑
n=1

(an,kz
n + bn,kzn)

with a1,1 = 1 and |b1,1| < 1. Let H0
p denote the subclass of Hp for b1,1 = 0 and

a1,k = b1,k = 0 for k ∈ {2, · · · , p}.
In [20], J. Qiao and X. Wang introduced the class HSp of polyharmonic

mappings F with the form (2.1) satisfying the conditions
(2.2)

p∑
k=1

∞∑
n=2

(2(k − 1) + n)(|an,k|+ |bn,k|) ≤ 1− |b1,1| −
p∑

k=2

(2k − 1)(|a1,k|+ |b1,k|),

0 ≤ |b1,1|+
p∑

k=2

(|a1,k|+ |b1,k|) < 1,

and the subclass HCp of HSp, where
(2.3)

p∑
k=1

∞∑
n=2

(2(k − 1) + n2)(|an,k|+ |bn,k|) ≤1− |b1,1|−
p∑

k=2

(2k − 1)(|a1,k|+ |b1,k|),

0 ≤ |b1,1|+
p∑

k=2

(|a1,k|+ |b1,k|) < 1.

The classess of all mappings F in H0
p which are of the form (2.1), and

subject to the conditions (2.2), (2.3), are denoted by HS0
p , HC0

p , respectively.
Now, we introduce a new class of polyharmonic mappings, denoted by

HSp(λ), as follows: A mapping F ∈ Hp with the form (2.1) is said to be in
HSp(λ) if
(2.4)

p∑
k=1

∞∑
n=2

(
2(k−1) +n(λn+1−λ)

)
(|an,k|+ |bn,k|)≤2−

p∑
k=1

(2k−1)(|a1,k|+ |b1,k|),

1 ≤
p∑

k=1

(2k − 1)(|a1,k|+ |b1,k|) < 2,

where λ ∈ [0, 1]. We denote by HS0
p(λ) the class consisting of all mappings F

in H0
p , with the form (2.1), and subject to the condition (2.4). Obviously, if

λ = 0 or λ = 1, then the class HSp(λ) reduces to HSp or HCp, respectively.
Similarly, if p− 1 = λ = 0 or p = λ = 1, then HSp(λ) reduces to HS or HC.

If

F (z) =

p∑
k=1

|z|2(k−1)
∞∑
n=1

(
an,kz

n + bn,kzn
)
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and

G(z) =

p∑
k=1

|z|2(k−1)
∞∑
n=1

(
An,kz

n +Bn,kzn
)
,

then the convolution F ∗G of F and G is defined to be the mapping

(F ∗G)(z) =

p∑
k=1

|z|2(k−1)
∞∑
n=1

(
an,kAn,kz

n + bn,kBn,kzn
)
,

while the integral convolution is defined by

(F �G)(z) =

p∑
k=1

|z|2(k−1)
∞∑
n=1

(
an,kAn,k

n
zn +

bn,kBn,k
n

zn

)
.

See [12] for similar operators defined on the class of analytic functions.

Following the notation of J. Qiao and X. Wang [20], we denote the δ-
neighborhood of F the set by

Nδ(F (z)) =

{
G(z) :

p∑
k=1

∞∑
n=2

(
2(k − 1) + n

)
(|an,k −An,k|+ |bn,k −Bn,k|)

+

p∑
k=2

(2k − 1)(|a1,k −A1,k|+ |b1,k −B1,k|) + |b1,1 −B1,1| ≤ δ

}
,

where G(z) =
∑p

k=1 |z|
2(k−1)∑∞

n=1

(
An,kz

n +Bn,kzn
)

and A1,1 = 1 (see also
Ruscheweyh [22]).

3. STARLIKENESS AND CONVEXITY

We say that a univalent polyharmonic mapping F with F (0) = 0 is star-
like with respect to the origin if the curve F (reiθ) is starlike with respect to
the origin for each 0 < r < 1.

Proposition 1 ([21]). If F is univalent, F (0) = 0 and d
dθ

(
argF (reiθ)

)
>

0 for z = reiθ 6= 0, then F is starlike with respect to the origin.

A univalent polyharmonic mapping F with F (0) = 0 and d
dθF (reiθ) 6= 0

whenever 0 < r < 1, is said to be convex if the curve F (reiθ) is convex for each
0 < r < 1.

Proposition 2 ([21]). If F is univalent, F (0) = 0 and ∂
∂θ

[
arg
(
∂
∂θF (reiθ)

)]
>

0 for z = reiθ 6= 0, then F is convex.

Let X be a topological vector space over the field of complex numbers,
and let D be a set of X. A point x ∈ D is called an extremal point of D if it
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has no representation of the form x = ty + (1 − t)z (0 < t < 1) as a proper
convex combination of two distinct points y and z in D.

Now, we are ready to prove results concerning the geometric properties
of mappings in HS0

p(λ).

Theorem A ([20], Theorems 3.1, 3.2 and 3.3). Suppose that F ∈ HSp.
Then F is univalent and sense preserving in D. In particular, each member of
HS0

p (or HC0
p) maps D onto a domain starlike w.r.t. the origin, and a convex

domain, respectively.

Theorem 1. Each mapping in HS0
p(λ) maps the disk Dr, where r ≤

max{12 , λ}, onto a convex domain.

Proof. Let F ∈ HS0
p(λ), and let r ∈ (0, 1) be fixed. Then r−1F (rz) ∈

HS0
p(λ) by (2.4), and we have

p∑
k=1

∞∑
n=2

(
2(k − 1) + n2

)
(|an,k|+ |bn,k|)r2k+n−3

≤
p∑

k=1

∞∑
n=2

(
2(k − 1) + n(λn+ 1− λ)

)
(|an,k|+ |bn,k|) ≤ 1

provided that(
2(k − 1) + n2

)
r2k+n−3 ≤ 2(k − 1) + n(λn+ 1− λ)

for k ∈ {1, · · · , p}, n ≥ 2 and 0 ≤ λ ≤ 1, which is true if r ≤ max{12 , λ}. Then
the result follows from Theorem A. �

Immediately from Theorem A, we get the following.

Corollary 1. Let F ∈ HSp(λ). Then F is a univalent, sense preserving
polyharmonic mapping. In particular, if F ∈ HS0

p(λ), then F maps D onto a
domain starlike w.r.t. the origin.

Example 1. Let F1(z) = z+ 1
10z

2+ 1
5z

2. Then F1 ∈ HS0
1(23) is a univalent,

sense preserving polyharmonic mapping. In particular, F1 maps D onto a
domain starlike w.r.t. the origin, and it maps the disk Dr, where r ≤ 2

3 , onto
a convex domain. See Figure 1.

This example shows that the class HS0
p(λ) of polyharmonic mappings is

more general than the class HS0 which is studied in [4] even in the case of
harmonic mappings (i.e. p=1).

Example 2. Let F2(z) = z + 1
101z

2 + 49
101z

2. Then F2 ∈ HS0
1( 1

100) is a
univalent, sense preserving polyharmonic mapping. In particular, F2 maps D
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onto a domain starlike w.r.t. the origin, and it maps the disk Dr, where r ≤ 1
2 ,

onto a convex domain. See Figure 1.

Fig. 1. The images of D under the mappings F1(z) = z + 1
10
z2 + 1

5
z2 (left) and

F2(z) = z + 1
101

z2 + 49
101

z2 (right).
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4. EXTREMAL POINTS

First, we determine the distortion bounds for mappings in HSp(λ).

Lemma 1. Suppose that F ∈ HSp(λ). Then, the following statements
hold:

(1) For 0 ≤ λ ≤ 1
2 ,

(1− |b1,1|)|z| −
1− |b1,1|
2(1 + λ)

|z|2 ≤ |F (z)| ≤ (1 + |b1,1|)|z|+
1− |b1,1|
2(1 + λ)

|z|2.

Equalities are obtained by the mappings

F (z) = z + |b1,1|eiµz +
1− |b1,1|
2(1 + λ)

eiνz2,

for properly chosen real µ and ν;

(2) For 1
2 < λ ≤ 1,

|F (z) ≤ (1 + |b1,1|)|z|+
1− |b1,1| − 3(|a1,2|+ |b1,2|)

2(1 + λ)
|z|2 + (|a1,2|+ |b1,2|)|z|3

and

|F (z)| ≥ (1− |b1,1|)|z| −
1− |b1,1| − 3(|a1,2|+ |b1,2|)

2(1 + λ)
|z|2 − (|a1,2|+ |b1,2|)|z|3.

Equalities are obtained by the mappings

F (z) = z+ |b1,1|eiηz+
1− |b1,1| − 3(|a1,2|+ |b1,2|)

2(1 + λ)
eiϕz2+(|a1,2|+ |b1,2|)eiψz|z|2,

for properly chosen real η, ϕ and ψ.

Proof. Let F ∈ HSp(λ), where λ ∈ [0, 1]. By (2.1), we have

|F (z)| ≤ (1 + |b1,1|)|z|+

(
p∑

k=1

∞∑
n=2

(|an,k|+ |bn,k|) +

p∑
k=2

(|a1,k|+ |b1,k|)

)
|z|2.

For 0 ≤ λ ≤ 1
2 , we have

(4.1) 2(1 + λ) ≤ 2k − 1,

where k ∈ {2, · · · , p}, and

(4.2) 2(1 + λ) ≤ 2(k − 1) + n(λn+ 1− λ),
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where k ∈ {1, · · · , p} and n ≥ 2. Then (4.1), (4.2) and (2.4) give

p∑
k=1

∞∑
n=2

(|an,k|+ |bn,k|) +

p∑
k=2

(|a1,k|+ |b1,k|)

≤ 1

2(1 + λ)

(
1− |b1,1| −

p∑
k=1

∞∑
n=2

(
2(k − 1) + n(λn+ 1− λ)

−2(1 + λ)
)
(|an,k|+ |bn,k|)−

p∑
k=2

(
(2k − 1)− 2(1 + λ)

)
(|a1,k|+ |b1,k|)

)
,

so

(1− |b1,1|)|z| −
1− |b1,1|
2(1 + λ)

|z|2 ≤ |F (z)| ≤ (1 + |b1,1|)|z|+
1− |b1,1|
2(1 + λ)

|z|2.

By (2.1), we obtain

|F (z)| ≤ (1 + |b1,1|)|z|+

(
p∑

k=1

∞∑
n=2

(|an,k|+ |bn,k|) +

p∑
k=3

(|a1,k|+ |b1,k|)

)
|z|2

+ (|a1,2|+ |b1,2|)|z|3.

For 1
2 < λ ≤ 1, we have

(4.3) 2(1 + λ) ≤ 2k − 1,

where k ∈ {3, · · · , p}, and

(4.4) 2(1 + λ) ≤ 2(k − 1) + n(λn+ 1− λ),

where k ∈ {1, · · · , p}, n ≥ 2. Then (4.3), (4.4) and (2.4) imply

p∑
k=1

∞∑
n=2

(|an,k|+ |bn,k|) +

p∑
k=3

(|a1,k|+ |b1,k|)

≤ 1

2(1 + λ)

(
1− |b1,1| −

p∑
k=1

∞∑
n=2

(
2(k − 1) + n(λn+ 1− λ)

−2(1 + λ)
)
(|an,k|+ |bn,k|)

−
p∑

k=3

(
2k − 1− 2(1 + λ)

)
(|a1,k|+ |b1,k|)− 3(|a1,2|+ |b1,2|)

)
.

Then

|F (z)| ≥ (1− |b1,1|)|z| −
1− |b1,1| − 3(|a1,2|+ |b1,2|)

2(1 + λ)
|z|2 − (|a1,2|+ |b1,2|)|z|3
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and

|F (z)| ≤ (1 + |b1,1|)|z|+
1− |b1,1| − 3(|a1,2|+ |b1,2|)

2(1 + λ)
|z|2 + (|a1,2|+ |b1,2|)|z|3.

The proof of this lemma is complete. �

Remark 1. Suppose that F ∈ HSp(λ) is of the form

F (z) =

p∑
k=1

|z|2(k−1)Gk(z) =

p∑
k=1

|z|2(k−1)
∞∑
n=1

(
an,kz

n + bn,kzn
)
.

Then for each k ∈ {1, · · · , p},

|Gk(z)| ≤ (|a1,k|+ |b1,k|)|z|+
1− |b1,1|
2(1 + λ)

|z|2.

Lemma 2. The family HSp(λ) is closed under convex combinations.

Proof. Suppose Fi ∈ HSp(λ) and ti ∈ [0, 1] with
∑∞

i=1 ti = 1. Let

Fi(z) =

p∑
k=1

|z|2(k−1)
∞∑
n=1

(a
(i)
n,kz

n + b
(i)
n,kz

n).

By Lemma 1, there exists a constant M such that |Fi(z)| ≤ M, for all
i = 1, · · · , p. It follows that

∑∞
i=1 tiFi(z) is absolutely and uniformly con-

vergent, and by Remark 1, the mapping
∑∞

i=1 tiFi(z) is polyharmonic. Since∑∞
i=1 tiFi(z) is absolutely and uniformly convergent, we have

∞∑
i=1

tiFi(z) =

∞∑
i=1

ti

p∑
k=1

|z|2(k−1)
( ∞∑
n=1

a
(i)
n,kz

n +

∞∑
n=1

b
(i)
n,kz

n

)

=

p∑
k=1

|z|2(k−1)
( ∞∑
n=1

∞∑
i=1

tia
(i)
n,kz

n +

∞∑
n=1

∞∑
i=1

tib
(i)
n,kz

n

)
.

By (2.4), we get

(4.5)

p∑
k=1

∞∑
n=1

(
2(k − 1) + n(λn+ 1− λ)

)(∣∣∣∣∣
∞∑
i=1

tia
(i)
n,k

∣∣∣∣∣+

∣∣∣∣∣
∞∑
i=1

tib
(i)
n,k

∣∣∣∣∣
)

≤
∞∑
i=1

ti

(
p∑

k=1

∞∑
n=1

(
2(k − 1) + n(λn+ 1− λ)

)
(|a(i)n,k|+ |b

(i)
n,k|)

)
≤ 2.

It follows from

1 ≤
p∑

k=1

(2k − 1)

(∣∣∣∣∣
∞∑
i=1

tia
(i)
1,k

∣∣∣∣∣+

∣∣∣∣∣
∞∑
i=1

tib
(i)
1,k

∣∣∣∣∣
)
< 2

and (4.5) that
∑∞

i=1 tiFi ∈ HSp(λ). �
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From Lemma 1, we see that the class HSp(λ) is uniformly bounded, and
hence, normal. Lemma 2 implies that HS0

p(λ) is also compact and convex.
Then there exists a non-empty set of extremal points in HS0

p(λ).

Theorem 2. The extremal points of HS0
p(λ) are the mappings of the

following form:

Fk(z) = z + |z|2(k−1)an,kzn or F ∗k (z) = z + |z|2(k−1)bm,kzm,

where

|an,k| =
1

2(k − 1) + n(λn+ 1− λ)
, for n ≥ 2, k ∈ {1, · · · , p},

and

|bm,k| =
1

2(k − 1) +m(λm+ 1− λ)
, for m ≥ 2, k ∈ {1, · · · , p}.

Proof. Assume that F is an extremal point of HS0
p(λ), of the form (2.1).

Suppose that the coefficients of F satisfy the following:
p∑

k=1

∞∑
n=2

(
2(k − 1) + n(λn+ 1− λ)

)
(|an,k|+ |bn,k|) < 1.

If all coefficients an,k (n ≥ 2) and bn,k (n ≥ 2) are equal to 0, we let

F1(z) = z +
1

2(1 + λ)
z2 and F2(z) = z − 1

2(1 + λ)
z2.

Then F1 and F2 are in HS0
p(λ) and F = 1

2(F1 + F2). This is a contra-
diction, showing that there is a coefficient, say an0,k0 or bn0,k0 , of F which is
nonzero. Without loss of generality, we may further assume that an0,k0 6= 0.

For γ > 0 small enough, choosing x ∈ C with |x| = 1 properly and
replacing an0,k0 by an0,k0 − γx and an0,k0 + γx, respectively, we obtain two
mappings F3 and F4 such that both F3 and F4 are in HS0

p(λ). Obviously,

F = 1
2(F3+F4). Hence, the coefficients of F must satisfy the following equality:

p∑
k=1

∞∑
n=2

(
2(k − 1) + n(λn+ 1− λ)

)
(|an,k|+ |bn,k|) = 1.

Suppose that there exists at least two coefficients, say, aq1,k1 and bq2,k2 or
aq1,k1 and aq2,k2 or bq1,k1 and bq2,k2 , which are not equal to 0, where q1, q2 ≥ 2.
Without loss of generality, we assume the first case. Choosing γ > 0 small
enough and x ∈ C, y ∈ C with |x| = |y| = 1 properly, leaving all coefficients of
F but aq1,k1 and bq2,k2 unchanged and replacing aq1,k1 , bq2,k2 by

aq1,k1 +
γx

2(k1 − 1) + q1(λq1 + 1− λ)
and bq2,k2 −

γy

2(k2 − 1) + q2(λq2 + 1− λ)
,
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or

aq1,k1 −
γx

2(k1 − 1) + q1(λq1 + 1− λ)
and bq2,k2 +

γy

2(k2 − 1) + q2(λq2 + 1− λ)
,

respectively, we obtain two mappings F5 and F6 such that F5 and F6 are in
HS0

p(λ). Obviously, F = 1
2(F5 + F6). This shows that any extremal point

F ∈ HS0
p(λ) must have the form Fk(z) = z + |z|2(k−1)an,kzn or F ∗k (z) =

z + |z|2(k−1)bm,kzm, where

|an,k| =
1

2(k − 1) + n(λn+ 1− λ)
, for n ≥ 2, k ∈ {1, · · · , p},

and

|bm,k| =
1

2(k − 1) +m(λm+ 1− λ)
, for m ≥ 2, k ∈ {1, · · · , p}.

Now, we are ready to prove that for any F ∈ HS0
p(λ) with the above

form must be an extremal point of HS0
p(λ). It suffices to prove the case of Fk,

since the proof for the case of F ∗k is similar.
Suppose there exist two mappings F7 and F8 ∈ HS0

p(λ) such that Fk =
tF7 + (1− t)F8 (0 < t < 1). For q = 7, 8, let

Fq(z) =

p∑
k=1

|z|2(k−1)
∞∑
n=1

(a
(q)
n,kz

n + b
(q)
n,kz

n).

Then

(4.6) |ta(7)n,k + (1− t)a(8)n,k| = |an,k| =
1

2(k − 1) + n(λn+ 1− λ)
.

Since all coefficients of Fq (q = 7, 8) satisfy, for n ≥ 2 and k ∈ {1, · · · , p},

|a(q)n,k| ≤
1

2(k − 1) + n(λn+ 1− λ)
, |b(q)n,k| ≤

1

2(k − 1) + n(λn+ 1− λ)
,

(4.6) implies a
(7)
n,k = a

(8)
n,k, and all other coefficients of F7 and F8 are equal to 0.

Thus, Fk=F7=F8, which shows that Fk is an extremal point of HS0
p(λ). �

5. CONVOLUTIONS AND NEIGHBORHOODS

Let C0
H denote the class of harmonic univalent, convex mappings F of

the form (1.1) with b1 = 0. It is known [11] that the below sharp inequalities
hold:

2|an| ≤ n+ 1, 2|bn| ≤ n− 1.

It follows from ([11], Theorems 5.14) that if H and G are in C0
H , then

H ∗ G (or H � G) is sometime not convex, but it may be univalent or even
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convex if one of the mappings H and F satisfies some additional conditions.
In this section, we consider convolutions of harmonic mappings F ∈ HS0

1(λ)
and H ∈ C0

H .

Theorem 3. Suppose that H(z) = z +
∑∞

n=2(Anz
n + Bnzn) ∈ C0

H and
F ∈ HS0

1(λ). Then for 1
2 ≤ λ ≤ 1, the convolution F ∗ H is univalent and

starlike, and the integral convolution F �H is convex.

Proof. If F (z) = z +
∑∞

n=2(anz
n + bnzn) ∈ HS0

1(λ), then for F ∗H, we
obtain

∞∑
n=2

n(|anAn|+ |bnBn|) ≤
∞∑
n=2

n

(
n+ 1

2
|an|+

n− 1

2
|bn|
)

≤
∞∑
n=2

n(λn+ 1− λ)(|an|+ |bn|) ≤ 1.

Hence, (F ∗H) ∈ HS0. The transformations∫ 1

0

F (z) ∗H(tz)

t
dt = (F �H)(z)

now show that (F �H) ∈ HC0. By Theorem A, the result follows. �

Remark 2. The proof of Theorem 3 does not generalize to polyharmonic
mappings, when p ≥ 2. For example, let p = 2, and write

H(z) = z +

2∑
k=1

|z|2(k−1)
∞∑
n=2

(An,kz
n +Bn,kzn)

and

F (z) = z +

2∑
k=1

|z|2(k−1)
∞∑
n=2

(an,kz
n + bn,kzn).

Suppose that |An,k| ≤ n+1
2 , |Bn,k| ≤ n−1

2 and F ∈ HS0
2(λ). Then for

λ = 1, the convolution F ∗H is univalent and starlike but it is not clear if this
is true for 1

2 ≤ λ < 1. However, the integral convolution F �H is convex for
1
2 ≤ λ ≤ 1.

Example 3. Let H(z)=Re
{

z
1−z
}

+ iIm
{

z
(1−z)2

}
∈C0

H . Then H(z) maps D
onto the half-plane Re{w} > 1

2 , and let F (z) = z+ 1
10z

2+ 1
5z

2 ∈ HS0
1(23). Then

the convolution F ∗ H is univalent and starlike, and the integral convolution
F �H is convex (see Figure 2).
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Fig. 2. The images of D under the mappings (F ∗H)(z) = z + 3
20
z2 − 1

10
z2 (left) and

(F �H)(z) = z + 3
40
z2 − 1

20
z2 (right).

Finally, we are going to prove the existence of neighborhoods for mappings
in the class HSp(λ).
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Theorem 4. Assume that λ ∈ (0, 1] and F ∈ HSp(λ). If

δ ≤ λ

p+ λ

(
2−

p∑
k=1

(2k − 1)(|a1,k|+ |b1,k|)

)
,

then Nδ(F ) ⊂ HSp.
Proof. Let H(z) =

∑p
k=1 |z|

2(k−1)∑∞
n=1(An,kz

n+Bn,kz
n) ∈ Nδ(F ). Then

p∑
k=1

∞∑
n=2

(
2(k − 1) + n

)
(|An,k|+ |Bn,k|) +

p∑
k=2

(2k − 1)(|A1,k|+ |B1,k|) + |B1,1|

≤
p∑

k=1

∞∑
n=2

(
2(k − 1) + n

)
(|An,k − an,k|+ |Bn,k − bn,k|)

+

p∑
k=2

(2k − 1)(|A1,k − a1,k|+ |B1,k − b1,k|) + |B1,1 − b1,1|

+

p∑
k=1

∞∑
n=2

(
2(k − 1) + n

)
(|an,k|+ |bn,k|) +

p∑
k=2

(2k − 1)(|a1,k|+ |b1,k|) + |b1,1|

≤δ +

p∑
k=1

∞∑
n=2

(
2(k − 1) + n

)
(|an,k|+ |bn,k|) +

p∑
k=2

(2k − 1)(|a1,k|+ |b1,k|) + |b1,1|

≤δ +
p

p+ λ

p∑
k=1

∞∑
n=2

(
2(k − 1) + n(λn+ 1− λ)

)
(|an,k|+ |bn,k|)

+

p∑
k=2

(2k−1)(|a1,k|+|b1,k|)+|b1,1|≤δ+
p−λ
p+λ

+
λ

p+λ

p∑
k=1

(2k−1)(|a1,k|+|b1,k|)<1.

Hence, H ∈ HSp. �
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