ON POLYHARMONIC UNIVALENT MAPPINGS

J. CHEN, A. RASILA and X. WANG

In this paper, we introduce a class of complex-valued polyharmonic mappings, denoted by $HS_p(\lambda)$, and its subclass $HS_p^0(\lambda)$, where $\lambda \in [0,1]$ is a constant. These classes are natural generalizations of a class of mappings studied by Goodman in the 1950s. We generalize the main results of Avci and Złotkiewicz from the 1990s to the classes $HS_p(\lambda)$ and $HS_p^0(\lambda)$, showing that the mappings in $HS_p(\lambda)$ are univalent and sense preserving. We also prove that the mappings in $HS_p^0(\lambda)$ are starlike with respect to the origin, and characterize the extremal points of the above classes.

AMS 2010 Subject Classification: Primary 30C45; Secondary 30C20, 30C65.

Key words: polyharmonic mapping, starlikeness, convexity, extremal point.

1. INTRODUCTION

A complex-valued mapping F = u + iv, defined in a domain $D \subset \mathbb{C}$, is called *polyharmonic* (or *p-harmonic*) if F is 2p ($p \geq 1$) times continuously differentiable, and it satisfies the polyharmonic equation $\Delta^p F = \Delta(\Delta^{p-1}F) = 0$, where $\Delta^1 := \Delta$ is the standard complex Laplacian operator

$$\Delta = 4 \frac{\partial^2}{\partial z \partial \overline{z}} := \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}.$$

It is well known ([7, 20]) that for a simply connected domain D, a mapping F is polyharmonic if and only if F has the following representation:

$$F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_k(z),$$

where G_k are complex-valued harmonic mappings in D for $k \in \{1, \dots, p\}$. Furthermore, the mappings G_k can be expressed as the form

$$G_k = h_k + \overline{g_k}$$

for $k \in \{1, \dots, p\}$, where all h_k and g_k are analytic in D ([11, 13]).

Obviously, for p=1 (resp. p=2), F is a harmonic (resp. biharmonic) mapping. The biharmonic model arises from numerous problems in science and

engineering ([16, 18, 19]). However, the investigation of biharmonic mappings in the context of the geometric function theory has started only recently ([1–3, 5, 6, 8–10]). The reader is referred to [7, 20] for discussion on polyharmonic mappings, and [11, 13] for the properties of harmonic mappings.

In [4], Avci and Złotkiewicz introduced the class HS of univalent harmonic mappings F with the series expansion:

(1.1)
$$F(z) = h(z) + \overline{g(z)} = z + \sum_{n=2}^{\infty} a_n z^n + \sum_{n=1}^{\infty} \overline{b_n} \overline{z^n}$$

such that

$$\sum_{n=2}^{\infty} n(|a_n| + |b_n|) \le 1 - |b_1| \ (0 \le |b_1| < 1),$$

and the subclass HC of HS, where

$$\sum_{n=2}^{\infty} n^2(|a_n| + |b_n|) \le 1 - |b_1| \ (0 \le |b_1| < 1).$$

The corresponding subclasses of HS and HC with $b_1=0$ are denoted by HS^0 and HC^0 , respectively. These two classes constitute a harmonic counterpart of classes introduced by Goodman [15]. They are useful in studying questions of the so-called δ -neighborhoods (Ruscheweyh [22], see also [20]) and in constructing explicit k-quasiconformal extensions (Fait et~al.~[14]). In this paper, we define polyharmonic analogues $HS_p(\lambda)$ and $HS_p^0(\lambda)$, where $\lambda \in [0,1]$, to the above classes of mappings. Our aim is to generalize the main results of [4] to the mappings of the classes $HS_p(\lambda)$ and $HS_p^0(\lambda)$.

This paper is organized as follows. In Section 3, we discuss the starlikeness and convexity of polyharmonic mappings in $HS_p^0(\lambda)$. Our main result, Theorem 1, is a generalization of ([4], Theorem 4). In Section 4, we find the extremal points of the class $HS_p^0(\lambda)$. The main result of this section is Theorem 2, which is a generalization of ([4], Theorem 6). Finally, we consider convolutions and existence of neighborhoods. The main results in this section are Theorems 3 and 4 which are generalizations of ([4], Theorems 7 (i) and 8) respectively. Note that the bounds for convexity and starlikeness for harmonic mappings given in [4] have been recently improved by Kalaj et al. [17].

2. PRELIMINARIES

For r > 0, write $\mathbb{D}_r = \{z : |z| < r\}$, and let $\mathbb{D} := \mathbb{D}_1$, *i.e.*, the unit disk. We use H_p to denote the set of all polyharmonic mappings F in \mathbb{D} with a series

expansion of the following form:

$$(2.1) F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} \left(h_k(z) + \overline{g_k(z)} \right) = \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{n=1}^{\infty} (a_{n,k} z^n + \overline{b_{n,k}} \overline{z^n})$$

with $a_{1,1} = 1$ and $|b_{1,1}| < 1$. Let H_p^0 denote the subclass of H_p for $b_{1,1} = 0$ and $a_{1,k} = b_{1,k} = 0$ for $k \in \{2, \dots, p\}$.

In [20], J. Qiao and X. Wang introduced the class HS_p of polyharmonic mappings F with the form (2.1) satisfying the conditions

$$\begin{cases}
\sum_{k=1}^{p} \sum_{n=2}^{\infty} (2(k-1)+n)(|a_{n,k}|+|b_{n,k}|) \le 1-|b_{1,1}| - \sum_{k=2}^{p} (2k-1)(|a_{1,k}|+|b_{1,k}|), \\
0 \le |b_{1,1}| + \sum_{k=2}^{p} (|a_{1,k}|+|b_{1,k}|) < 1,
\end{cases}$$

and the subclass HC_p of HS_p , where

If

$$\begin{cases}
\sum_{k=1}^{p} \sum_{n=2}^{\infty} (2(k-1) + n^2)(|a_{n,k}| + |b_{n,k}|) \le 1 - |b_{1,1}| - \sum_{k=2}^{p} (2k-1)(|a_{1,k}| + |b_{1,k}|), \\
0 \le |b_{1,1}| + \sum_{k=2}^{p} (|a_{1,k}| + |b_{1,k}|) < 1.
\end{cases}$$

The classess of all mappings F in H_p^0 which are of the form (2.1), and subject to the conditions (2.2), (2.3), are denoted by HS_p^0 , HC_p^0 , respectively.

Now, we introduce a new class of polyharmonic mappings, denoted by $HS_p(\lambda)$, as follows: A mapping $F \in H_p$ with the form (2.1) is said to be in $HS_p(\lambda)$ if

$$\begin{cases}
\sum_{k=1}^{p} \sum_{n=2}^{\infty} (2(k-1) + n(\lambda n + 1 - \lambda))(|a_{n,k}| + |b_{n,k}|) \leq 2 - \sum_{k=1}^{p} (2k-1)(|a_{1,k}| + |b_{1,k}|), \\
1 \leq \sum_{k=1}^{p} (2k-1)(|a_{1,k}| + |b_{1,k}|) < 2,
\end{cases}$$

where $\lambda \in [0, 1]$. We denote by $HS_p^0(\lambda)$ the class consisting of all mappings F in H_p^0 , with the form (2.1), and subject to the condition (2.4). Obviously, if $\lambda = 0$ or $\lambda = 1$, then the class $HS_p(\lambda)$ reduces to HS_p or HC_p , respectively. Similarly, if $p - 1 = \lambda = 0$ or $p = \lambda = 1$, then $HS_p(\lambda)$ reduces to HS or HC.

$$F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{n=1}^{\infty} \left(a_{n,k} z^n + \overline{b_{n,k}} \overline{z^n} \right)$$

and

$$G(z) = \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{n=1}^{\infty} \left(A_{n,k} z^n + \overline{B_{n,k}} \overline{z^n} \right),$$

then the convolution F * G of F and G is defined to be the mapping

$$(F * G)(z) = \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{n=1}^{\infty} \left(a_{n,k} A_{n,k} z^n + \overline{b_{n,k} B_{n,k}} \overline{z^n} \right),$$

while the *integral convolution* is defined by

$$(F \diamond G)(z) = \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{n=1}^{\infty} \left(\frac{a_{n,k} A_{n,k}}{n} z^n + \frac{\overline{b_{n,k} B_{n,k}}}{n} \overline{z^n} \right).$$

See [12] for similar operators defined on the class of analytic functions.

Following the notation of J. Qiao and X. Wang [20], we denote the δ -neighborhood of F the set by

$$N_{\delta}(F(z)) = \left\{ G(z) : \sum_{k=1}^{p} \sum_{n=2}^{\infty} (2(k-1) + n)(|a_{n,k} - A_{n,k}| + |b_{n,k} - B_{n,k}|) + \sum_{k=2}^{p} (2k-1)(|a_{1,k} - A_{1,k}| + |b_{1,k} - B_{1,k}|) + |b_{1,1} - B_{1,1}| \le \delta \right\},$$

where $G(z) = \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{n=1}^{\infty} \left(A_{n,k} z^n + \overline{B_{n,k}} \overline{z^n} \right)$ and $A_{1,1} = 1$ (see also Ruscheweyh [22]).

3. STARLIKENESS AND CONVEXITY

We say that a univalent polyharmonic mapping F with F(0) = 0 is star-like with respect to the origin if the curve $F(re^{i\theta})$ is starlike with respect to the origin for each 0 < r < 1.

Proposition 1 ([21]). If F is univalent, F(0) = 0 and $\frac{d}{d\theta} (\arg F(re^{i\theta})) > 0$ for $z = re^{i\theta} \neq 0$, then F is starlike with respect to the origin.

A univalent polyharmonic mapping F with F(0) = 0 and $\frac{d}{d\theta}F(re^{i\theta}) \neq 0$ whenever 0 < r < 1, is said to be *convex* if the curve $F(re^{i\theta})$ is convex for each 0 < r < 1.

PROPOSITION 2 ([21]). If F is univalent, F(0) = 0 and $\frac{\partial}{\partial \theta} \left[\arg \left(\frac{\partial}{\partial \theta} F(re^{i\theta}) \right) \right] > 0$ for $z = re^{i\theta} \neq 0$, then F is convex.

Let X be a topological vector space over the field of complex numbers, and let D be a set of X. A point $x \in D$ is called an *extremal point* of D if it

has no representation of the form x = ty + (1 - t)z (0 < t < 1) as a proper convex combination of two distinct points y and z in D.

Now, we are ready to prove results concerning the geometric properties of mappings in $HS_p^0(\lambda)$.

THEOREM A ([20], Theorems 3.1, 3.2 and 3.3). Suppose that $F \in HS_p$. Then F is univalent and sense preserving in \mathbb{D} . In particular, each member of HS_p^0 (or HC_p^0) maps \mathbb{D} onto a domain starlike w.r.t. the origin, and a convex domain, respectively.

THEOREM 1. Each mapping in $HS_p^0(\lambda)$ maps the disk \mathbb{D}_r , where $r \leq \max\{\frac{1}{2},\lambda\}$, onto a convex domain.

Proof. Let $F\in HS^0_p(\lambda)$, and let $r\in(0,1)$ be fixed. Then $r^{-1}F(rz)\in HS^0_p(\lambda)$ by (2.4), and we have

$$\sum_{k=1}^{p} \sum_{n=2}^{\infty} (2(k-1) + n^2) (|a_{n,k}| + |b_{n,k}|) r^{2k+n-3}$$

$$\leq \sum_{k=1}^{p} \sum_{n=2}^{\infty} (2(k-1) + n(\lambda n + 1 - \lambda)) (|a_{n,k}| + |b_{n,k}|) \leq 1$$

provided that

$$(2(k-1) + n^2)r^{2k+n-3} \le 2(k-1) + n(\lambda n + 1 - \lambda)$$

for $k \in \{1, \dots, p\}$, $n \ge 2$ and $0 \le \lambda \le 1$, which is true if $r \le \max\{\frac{1}{2}, \lambda\}$. Then the result follows from Theorem A. \square

Immediately from Theorem A, we get the following.

COROLLARY 1. Let $F \in HS_p(\lambda)$. Then F is a univalent, sense preserving polyharmonic mapping. In particular, if $F \in HS_p^0(\lambda)$, then F maps $\mathbb D$ onto a domain starlike w.r.t. the origin.

Example 1. Let $F_1(z) = z + \frac{1}{10}z^2 + \frac{1}{5}\overline{z^2}$. Then $F_1 \in HS_1^0(\frac{2}{3})$ is a univalent, sense preserving polyharmonic mapping. In particular, F_1 maps $\mathbb D$ onto a domain starlike w.r.t. the origin, and it maps the disk $\mathbb D_r$, where $r \leq \frac{2}{3}$, onto a convex domain. See Figure 1.

This example shows that the class $HS_p^0(\lambda)$ of polyharmonic mappings is more general than the class HS^0 which is studied in [4] even in the case of harmonic mappings (i.e. p=1).

Example 2. Let $F_2(z) = z + \frac{1}{101}z^2 + \frac{49}{101}\overline{z^2}$. Then $F_2 \in HS_1^0(\frac{1}{100})$ is a univalent, sense preserving polyharmonic mapping. In particular, F_2 maps $\mathbb D$

onto a domain starlike w.r.t. the origin, and it maps the disk \mathbb{D}_r , where $r \leq \frac{1}{2}$, onto a convex domain. See Figure 1.

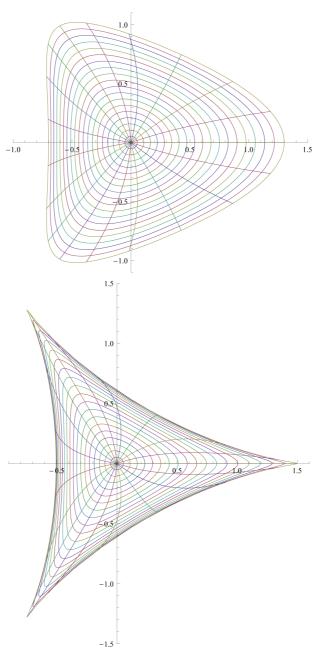


Fig. 1. The images of $\mathbb D$ under the mappings $F_1(z)=z+\frac{1}{10}z^2+\frac{1}{5}\overline{z^2}$ (left) and $F_2(z)=z+\frac{1}{101}z^2+\frac{49}{101}\overline{z^2}$ (right).

4. EXTREMAL POINTS

First, we determine the distortion bounds for mappings in $HS_p(\lambda)$.

Lemma 1. Suppose that $F \in HS_p(\lambda)$. Then, the following statements hold:

(1) For
$$0 \le \lambda \le \frac{1}{2}$$
,

$$(1 - |b_{1,1}|)|z| - \frac{1 - |b_{1,1}|}{2(1+\lambda)}|z|^2 \le |F(z)| \le (1 + |b_{1,1}|)|z| + \frac{1 - |b_{1,1}|}{2(1+\lambda)}|z|^2.$$

Equalities are obtained by the mappings

$$F(z) = z + |b_{1,1}|e^{i\mu}\overline{z} + \frac{1 - |b_{1,1}|}{2(1+\lambda)}e^{i\nu}z^2,$$

for properly chosen real μ and ν ;

(2) For
$$\frac{1}{2} < \lambda \le 1$$
,

$$|F(z)| \le (1+|b_{1,1}|)|z| + \frac{1-|b_{1,1}|-3(|a_{1,2}|+|b_{1,2}|)}{2(1+\lambda)}|z|^2 + (|a_{1,2}|+|b_{1,2}|)|z|^3$$

and

$$|F(z)| \ge (1 - |b_{1,1}|)|z| - \frac{1 - |b_{1,1}| - 3(|a_{1,2}| + |b_{1,2}|)}{2(1 + \lambda)}|z|^2 - (|a_{1,2}| + |b_{1,2}|)|z|^3.$$

Equalities are obtained by the mappings

$$F(z) = z + |b_{1,1}|e^{i\eta}\overline{z} + \frac{1 - |b_{1,1}| - 3(|a_{1,2}| + |b_{1,2}|)}{2(1+\lambda)}e^{i\varphi}z^2 + (|a_{1,2}| + |b_{1,2}|)e^{i\psi}z|z|^2,$$

for properly chosen real η , φ and ψ .

Proof. Let $F \in HS_p(\lambda)$, where $\lambda \in [0,1]$. By (2.1), we have

$$|F(z)| \le (1+|b_{1,1}|)|z| + \left(\sum_{k=1}^{p} \sum_{n=2}^{\infty} (|a_{n,k}| + |b_{n,k}|) + \sum_{k=2}^{p} (|a_{1,k}| + |b_{1,k}|)\right)|z|^{2}.$$

For $0 \le \lambda \le \frac{1}{2}$, we have

$$(4.1) 2(1+\lambda) \le 2k-1,$$

where $k \in \{2, \dots, p\}$, and

$$(4.2) 2(1+\lambda) \le 2(k-1) + n(\lambda n + 1 - \lambda),$$

where $k \in \{1, \dots, p\}$ and $n \ge 2$. Then (4.1), (4.2) and (2.4) give

$$\sum_{k=1}^{p} \sum_{n=2}^{\infty} (|a_{n,k}| + |b_{n,k}|) + \sum_{k=2}^{p} (|a_{1,k}| + |b_{1,k}|)$$

$$\leq \frac{1}{2(1+\lambda)} \Big(1 - |b_{1,1}| - \sum_{k=1}^{p} \sum_{n=2}^{\infty} \Big(2(k-1) + n(\lambda n + 1 - \lambda) \Big)$$

$$-2(1+\lambda) \Big) (|a_{n,k}| + |b_{n,k}|) - \sum_{k=1}^{p} \Big((2k-1) - 2(1+\lambda) \Big) (|a_{1,k}| + |b_{1,k}|) \Big),$$

so

$$(1 - |b_{1,1}|)|z| - \frac{1 - |b_{1,1}|}{2(1+\lambda)}|z|^2 \le |F(z)| \le (1 + |b_{1,1}|)|z| + \frac{1 - |b_{1,1}|}{2(1+\lambda)}|z|^2.$$

By (2.1), we obtain

$$|F(z)| \leq (1+|b_{1,1}|)|z| + \left(\sum_{k=1}^{p} \sum_{n=2}^{\infty} (|a_{n,k}| + |b_{n,k}|) + \sum_{k=3}^{p} (|a_{1,k}| + |b_{1,k}|)\right) |z|^{2} + (|a_{1,2}| + |b_{1,2}|)|z|^{3}.$$

For $\frac{1}{2} < \lambda \le 1$, we have

$$(4.3) 2(1+\lambda) \le 2k-1,$$

where $k \in \{3, \dots, p\}$, and

$$(4.4) 2(1+\lambda) \le 2(k-1) + n(\lambda n + 1 - \lambda),$$

where $k \in \{1, \dots, p\}, \ n \ge 2$. Then (4.3), (4.4) and (2.4) imply

$$\sum_{k=1}^{p} \sum_{n=2}^{\infty} (|a_{n,k}| + |b_{n,k}|) + \sum_{k=3}^{p} (|a_{1,k}| + |b_{1,k}|)$$

$$\leq \frac{1}{2(1+\lambda)} \Big(1 - |b_{1,1}| - \sum_{k=1}^{p} \sum_{n=2}^{\infty} (2(k-1) + n(\lambda n + 1 - \lambda)) - 2(1+\lambda) \Big) (|a_{n,k}| + |b_{n,k}|)$$

$$- \sum_{k=3}^{p} (2k - 1 - 2(1+\lambda)) (|a_{1,k}| + |b_{1,k}|) - 3(|a_{1,2}| + |b_{1,2}|) \Big).$$

Then

$$|F(z)| \ge (1 - |b_{1,1}|)|z| - \frac{1 - |b_{1,1}| - 3(|a_{1,2}| + |b_{1,2}|)}{2(1 + \lambda)}|z|^2 - (|a_{1,2}| + |b_{1,2}|)|z|^3$$

and

$$|F(z)| \le (1+|b_{1,1}|)|z| + \frac{1-|b_{1,1}|-3(|a_{1,2}|+|b_{1,2}|)}{2(1+\lambda)}|z|^2 + (|a_{1,2}|+|b_{1,2}|)|z|^3.$$

The proof of this lemma is complete. \Box

Remark 1. Suppose that $F \in HS_p(\lambda)$ is of the form

$$F(z) = \sum_{k=1}^{p} |z|^{2(k-1)} G_k(z) = \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{n=1}^{\infty} \left(a_{n,k} z^n + \overline{b_{n,k}} \overline{z^n} \right).$$

Then for each $k \in \{1, \dots, p\}$,

$$|G_k(z)| \le (|a_{1,k}| + |b_{1,k}|)|z| + \frac{1 - |b_{1,1}|}{2(1+\lambda)}|z|^2.$$

LEMMA 2. The family $HS_p(\lambda)$ is closed under convex combinations.

Proof. Suppose $F_i \in HS_p(\lambda)$ and $t_i \in [0,1]$ with $\sum_{i=1}^{\infty} t_i = 1$. Let

$$F_i(z) = \sum_{k=1}^p |z|^{2(k-1)} \sum_{n=1}^\infty (a_{n,k}^{(i)} z^n + \overline{b_{n,k}^{(i)}} \overline{z^n}).$$

By Lemma 1, there exists a constant M such that $|F_i(z)| \leq M$, for all $i=1,\cdots,p$. It follows that $\sum_{i=1}^{\infty} t_i F_i(z)$ is absolutely and uniformly convergent, and by Remark 1, the mapping $\sum_{i=1}^{\infty} t_i F_i(z)$ is polyharmonic. Since $\sum_{i=1}^{\infty} t_i F_i(z)$ is absolutely and uniformly convergent, we have

$$\sum_{i=1}^{\infty} t_i F_i(z) = \sum_{i=1}^{\infty} t_i \sum_{k=1}^{p} |z|^{2(k-1)} \left(\sum_{n=1}^{\infty} a_{n,k}^{(i)} z^n + \sum_{n=1}^{\infty} \overline{b_{n,k}^{(i)}} \overline{z^n} \right)$$

$$= \sum_{k=1}^{p} |z|^{2(k-1)} \left(\sum_{n=1}^{\infty} \sum_{i=1}^{\infty} t_i a_{n,k}^{(i)} z^n + \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} t_i \overline{b_{n,k}^{(i)}} \overline{z^n} \right).$$

By (2.4), we get

$$(4.5) \qquad \sum_{k=1}^{p} \sum_{n=1}^{\infty} \left(2(k-1) + n(\lambda n + 1 - \lambda) \right) \left(\left| \sum_{i=1}^{\infty} t_{i} a_{n,k}^{(i)} \right| + \left| \sum_{i=1}^{\infty} t_{i} b_{n,k}^{(i)} \right| \right)$$

$$\leq \sum_{i=1}^{\infty} t_{i} \left(\sum_{k=1}^{p} \sum_{n=1}^{\infty} \left(2(k-1) + n(\lambda n + 1 - \lambda) \right) (|a_{n,k}^{(i)}| + |b_{n,k}^{(i)}|) \right) \leq 2.$$

It follows from

$$1 \le \sum_{k=1}^{p} (2k-1) \left(\left| \sum_{i=1}^{\infty} t_i a_{1,k}^{(i)} \right| + \left| \sum_{i=1}^{\infty} t_i b_{1,k}^{(i)} \right| \right) < 2$$

and (4.5) that $\sum_{i=1}^{\infty} t_i F_i \in HS_p(\lambda)$. \square

From Lemma 1, we see that the class $HS_p(\lambda)$ is uniformly bounded, and hence, normal. Lemma 2 implies that $HS_p^0(\lambda)$ is also compact and convex. Then there exists a non-empty set of extremal points in $HS_p^0(\lambda)$.

Theorem 2. The extremal points of $HS_p^0(\lambda)$ are the mappings of the following form:

$$F_k(z) = z + |z|^{2(k-1)} a_{n,k} z^n \text{ or } F_k^*(z) = z + |z|^{2(k-1)} \overline{b_{m,k}} \overline{z^m},$$

where

$$|a_{n,k}| = \frac{1}{2(k-1) + n(\lambda n + 1 - \lambda)}, \text{ for } n \ge 2, k \in \{1, \dots, p\},$$

and

$$|b_{m,k}| = \frac{1}{2(k-1) + m(\lambda m + 1 - \lambda)}, \text{ for } m \ge 2, k \in \{1, \dots, p\}.$$

Proof. Assume that F is an extremal point of $HS_p^0(\lambda)$, of the form (2.1). Suppose that the coefficients of F satisfy the following:

$$\sum_{k=1}^{p} \sum_{n=2}^{\infty} (2(k-1) + n(\lambda n + 1 - \lambda))(|a_{n,k}| + |b_{n,k}|) < 1.$$

If all coefficients $a_{n,k}$ $(n \ge 2)$ and $b_{n,k}$ $(n \ge 2)$ are equal to 0, we let

$$F_1(z) = z + \frac{1}{2(1+\lambda)}z^2$$
 and $F_2(z) = z - \frac{1}{2(1+\lambda)}z^2$.

Then F_1 and F_2 are in $HS_p^0(\lambda)$ and $F = \frac{1}{2}(F_1 + F_2)$. This is a contradiction, showing that there is a coefficient, say a_{n_0,k_0} or b_{n_0,k_0} , of F which is nonzero. Without loss of generality, we may further assume that $a_{n_0,k_0} \neq 0$.

For $\gamma > 0$ small enough, choosing $x \in \mathbb{C}$ with |x| = 1 properly and replacing a_{n_0,k_0} by $a_{n_0,k_0} - \gamma x$ and $a_{n_0,k_0} + \gamma x$, respectively, we obtain two mappings F_3 and F_4 such that both F_3 and F_4 are in $HS_p^0(\lambda)$. Obviously, $F = \frac{1}{2}(F_3 + F_4)$. Hence, the coefficients of F must satisfy the following equality:

$$\sum_{k=1}^{p} \sum_{n=2}^{\infty} (2(k-1) + n(\lambda n + 1 - \lambda))(|a_{n,k}| + |b_{n,k}|) = 1.$$

Suppose that there exists at least two coefficients, say, a_{q_1,k_1} and b_{q_2,k_2} or a_{q_1,k_1} and a_{q_2,k_2} or b_{q_1,k_1} and b_{q_2,k_2} , which are not equal to 0, where $q_1, q_2 \geq 2$. Without loss of generality, we assume the first case. Choosing $\gamma > 0$ small enough and $x \in \mathbb{C}$, $y \in \mathbb{C}$ with |x| = |y| = 1 properly, leaving all coefficients of F but a_{q_1,k_1} and b_{q_2,k_2} unchanged and replacing a_{q_1,k_1}, b_{q_2,k_2} by

$$a_{q_1,k_1} + \frac{\gamma x}{2(k_1-1) + q_1(\lambda q_1 + 1 - \lambda)}$$
 and $b_{q_2,k_2} - \frac{\gamma y}{2(k_2-1) + q_2(\lambda q_2 + 1 - \lambda)}$,

or

$$a_{q_1,k_1} - \frac{\gamma x}{2(k_1 - 1) + q_1(\lambda q_1 + 1 - \lambda)}$$
 and $b_{q_2,k_2} + \frac{\gamma y}{2(k_2 - 1) + q_2(\lambda q_2 + 1 - \lambda)}$,

respectively, we obtain two mappings F_5 and F_6 such that F_5 and F_6 are in $HS_p^0(\lambda)$. Obviously, $F = \frac{1}{2}(F_5 + F_6)$. This shows that any extremal point $F \in HS_p^0(\lambda)$ must have the form $F_k(z) = z + |z|^{2(k-1)}a_{n,k}z^n$ or $F_k^*(z) = z + |z|^{2(k-1)}\overline{b_{m,k}}\overline{z^m}$, where

$$|a_{n,k}| = \frac{1}{2(k-1) + n(\lambda n + 1 - \lambda)}, \text{ for } n \ge 2, k \in \{1, \dots, p\},$$

and

$$|b_{m,k}| = \frac{1}{2(k-1) + m(\lambda m + 1 - \lambda)}, \text{ for } m \ge 2, k \in \{1, \dots, p\}.$$

Now, we are ready to prove that for any $F \in HS_p^0(\lambda)$ with the above form must be an extremal point of $HS_p^0(\lambda)$. It suffices to prove the case of F_k , since the proof for the case of F_k^* is similar.

Suppose there exist two mappings F_7 and $F_8 \in HS_p^0(\lambda)$ such that $F_k = tF_7 + (1-t)F_8$ (0 < t < 1). For q = 7, 8, let

$$F_q(z) = \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{n=1}^{\infty} (a_{n,k}^{(q)} z^n + \overline{b_{n,k}^{(q)}} \overline{z^n}).$$

Then

$$(4.6) |ta_{n,k}^{(7)} + (1-t)a_{n,k}^{(8)}| = |a_{n,k}| = \frac{1}{2(k-1) + n(\lambda n + 1 - \lambda)}.$$

Since all coefficients of F_q (q=7,8) satisfy, for $n\geq 2$ and $k\in\{1,\cdots,p\}$,

$$|a_{n,k}^{(q)}| \leq \frac{1}{2(k-1) + n(\lambda n + 1 - \lambda)}, \quad |b_{n,k}^{(q)}| \leq \frac{1}{2(k-1) + n(\lambda n + 1 - \lambda)},$$

(4.6) implies $a_{n,k}^{(7)} = a_{n,k}^{(8)}$, and all other coefficients of F_7 and F_8 are equal to 0. Thus, $F_k = F_7 = F_8$, which shows that F_k is an extremal point of $HS_p^0(\lambda)$.

5. CONVOLUTIONS AND NEIGHBORHOODS

Let C_H^0 denote the class of harmonic univalent, convex mappings F of the form (1.1) with $b_1 = 0$. It is known [11] that the below sharp inequalities hold:

$$2|a_n| \le n+1, \ \ 2|b_n| \le n-1.$$

It follows from ([11], Theorems 5.14) that if H and G are in C_H^0 , then H * G (or $H \diamond G$) is sometime not convex, but it may be univalent or even

convex if one of the mappings H and F satisfies some additional conditions. In this section, we consider convolutions of harmonic mappings $F \in HS_1^0(\lambda)$ and $H \in C_H^0$.

THEOREM 3. Suppose that $H(z) = z + \sum_{n=2}^{\infty} (A_n z^n + \overline{B_n} \overline{z^n}) \in C_H^0$ and $F \in HS_1^0(\lambda)$. Then for $\frac{1}{2} \leq \lambda \leq 1$, the convolution F * H is univalent and starlike, and the integral convolution $F \diamond H$ is convex.

Proof. If $F(z) = z + \sum_{n=2}^{\infty} (a_n z^n + \overline{b_n} \overline{z^n}) \in HS_1^0(\lambda)$, then for F * H, we obtain

$$\sum_{n=2}^{\infty} n(|a_n A_n| + |b_n B_n|) \le \sum_{n=2}^{\infty} n\left(\frac{n+1}{2}|a_n| + \frac{n-1}{2}|b_n|\right)$$

$$\le \sum_{n=2}^{\infty} n(\lambda n + 1 - \lambda)(|a_n| + |b_n|) \le 1.$$

Hence, $(F * H) \in HS^0$. The transformations

$$\int_0^1 \frac{F(z) * H(tz)}{t} dt = (F \diamond H)(z)$$

now show that $(F \diamond H) \in HC^0$. By Theorem A, the result follows. \square

Remark 2. The proof of Theorem 3 does not generalize to polyharmonic mappings, when $p \geq 2$. For example, let p = 2, and write

$$H(z) = z + \sum_{k=1}^{2} |z|^{2(k-1)} \sum_{n=2}^{\infty} (A_{n,k} z^n + \overline{B_{n,k}} \overline{z^n})$$

and

$$F(z) = z + \sum_{k=1}^{2} |z|^{2(k-1)} \sum_{n=2}^{\infty} (a_{n,k} z^n + \overline{b_{n,k}} \overline{z^n}).$$

Suppose that $|A_{n,k}| \leq \frac{n+1}{2}$, $|B_{n,k}| \leq \frac{n-1}{2}$ and $F \in HS_2^0(\lambda)$. Then for $\lambda = 1$, the convolution F * H is univalent and starlike but it is not clear if this is true for $\frac{1}{2} \leq \lambda < 1$. However, the integral convolution $F \diamond H$ is convex for $\frac{1}{2} \leq \lambda \leq 1$.

Example 3. Let $H(z) = \operatorname{Re}\left\{\frac{z}{1-z}\right\} + i\operatorname{Im}\left\{\frac{z}{(1-z)^2}\right\} \in C_H^0$. Then H(z) maps $\mathbb D$ onto the half-plane $\operatorname{Re}\{w\} > \frac{1}{2}$, and let $F(z) = z + \frac{1}{10}z^2 + \frac{1}{5}\overline{z^2} \in HS_1^0(\frac{2}{3})$. Then the convolution F * H is univalent and starlike, and the integral convolution $F \diamond H$ is convex (see Figure 2).

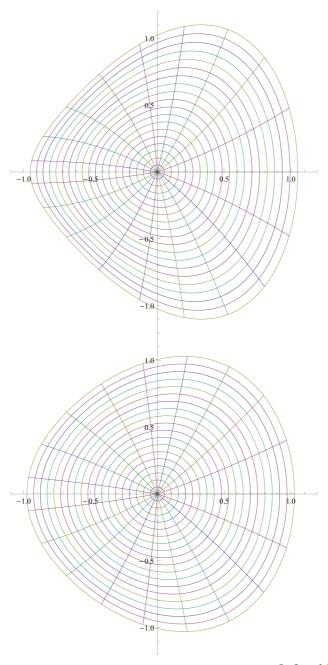


Fig. 2. The images of $\mathbb D$ under the mappings $(F*H)(z)=z+\frac{3}{20}z^2-\frac{1}{10}\overline{z^2}$ (left) and $(F\diamond H)(z)=z+\frac{3}{40}z^2-\frac{1}{20}\overline{z^2}$ (right).

Finally, we are going to prove the existence of neighborhoods for mappings in the class $HS_p(\lambda)$.

THEOREM 4. Assume that
$$\lambda \in (0,1]$$
 and $F \in HS_p(\lambda)$. If
$$\delta \leq \frac{\lambda}{p+\lambda} \left(2 - \sum_{k=1}^p (2k-1)(|a_{1,k}| + |b_{1,k}|) \right),$$

$$\delta \leq \frac{1}{p+\lambda} \left(2 - \sum_{k=1}^{n} (2k-1)(|a_{1,k}| + |b_{1,k}|) \right),$$

$$then \ N_{\delta}(F) \subset HS_{p}.$$

$$Proof. \ \text{Let } H(z) = \sum_{k=1}^{p} |z|^{2(k-1)} \sum_{n=1}^{\infty} (A_{n,k}z^{n} + \overline{B_{n,k}}\overline{z}^{n}) \in N_{\delta}(F). \ \text{Then}$$

$$\sum_{k=1}^{p} \sum_{n=2}^{\infty} \left(2(k-1) + n \right) (|A_{n,k}| + |B_{n,k}|) + \sum_{k=2}^{p} (2k-1)(|A_{1,k}| + |B_{1,k}|) + |B_{1,1}|$$

$$\leq \sum_{k=1}^{p} \sum_{n=2}^{\infty} \left(2(k-1) + n \right) (|A_{n,k} - a_{n,k}| + |B_{n,k} - b_{n,k}|)$$

$$+ \sum_{k=2}^{p} \sum_{n=2}^{\infty} \left(2(k-1) + n \right) (|a_{n,k}| + |b_{n,k}|) + \sum_{k=2}^{p} (2k-1)(|a_{1,k}| + |b_{1,k}|) + |b_{1,1}|$$

$$\leq \delta + \sum_{k=1}^{p} \sum_{n=2}^{\infty} \left(2(k-1) + n \right) (|a_{n,k}| + |b_{n,k}|) + \sum_{k=2}^{p} (2k-1)(|a_{1,k}| + |b_{1,k}|) + |b_{1,1}|$$

$$\leq \delta + \sum_{k=1}^{p} \sum_{n=2}^{\infty} \left(2(k-1) + n \right) (|a_{n,k}| + |b_{n,k}|) + \sum_{k=2}^{p} (2k-1)(|a_{1,k}| + |b_{1,k}|) + |b_{1,1}|$$

$$\leq \delta + \frac{p}{p+\lambda} \sum_{k=1}^{p} \sum_{n=2}^{\infty} \left(2(k-1) + n(\lambda n + 1 - \lambda) \right) (|a_{n,k}| + |b_{n,k}|)$$

$$+ \sum_{k=2}^{p} (2k-1)(|a_{1,k}| + |b_{1,k}|) + |b_{1,1}| \leq \delta + \frac{p-\lambda}{p+\lambda} + \frac{\lambda}{p+\lambda} \sum_{k=1}^{p} (2k-1)(|a_{1,k}| + |b_{1,k}|) < 1.$$
Hence, $H \in HS_{n}$. \square

Acknowledgments. The research was partly supported by NSF of China (No.11071063) and Hunan Provincial Innovation Foundation for Postgraduates (No.125000-4242).

REFERENCES

- Z. Abdulhadi and Y. Abu Muhanna, Landau's theorem for biharmonic mappings. J. Math. Anal. Appl. 338 (2008), 705-709.
- [2] Z. Abdulhadi, Y. Abu Muhanna and S. Khuri, On univalent solutions of the biharmonic equation. J. Inequal. Appl. 5 (2005), 469–478.
- [3] Z. Abdulhadi, Y. Abu Muhanna and S. Khuri, On some properties of solutions of the biharmonic equation. Appl. Math. Comput. 117 (2006), 346–351.
- [4] Y. Avci and E. Złotkiewicz, On harmonic univalent mappings. Ann. Univ. Mariae Curie-Skłodowska Sect. A 44 (1990), 1–7.
- [5] Sh. Chen, S. Ponnusamy and X. Wang, Landau's theorem for certain biharmonic mappings. Appl. Math. Comput. 208 (2009), 427–433.
- [6] Sh. Chen, S. Ponnusamy and X. Wang, Compositions of harmonic mappings and biharmonic mappings. Bull. Belg. Math. Soc. Simon Stevin. 17 (2010), 693–704.

- [7] Sh. Chen, S. Ponnusamy and X. Wang, Bloch constant and Landau's theorem for planar p-harmonic mappings. J. Math. Anal. Appl. **373** (2011), 102–110.
- [8] J. Chen, A. Rasila and X. Wang, Starlikeness and convexity of polyharmonic mappings. To appear in Bull. Belg. Math. Soc. Simon Stevin, arXiv:1302.2398.
- [9] J. Chen, A. Rasila and X. Wang, Landau's theorem for polyharmonic mappings. To appear in J. Math. Anal. Appl. arXiv:1303.6760
- [10] J. Chen and X. Wang, On certain classes of biharmonic mappings defined by convolution. Abstr. Appl. Anal. 2012, Article ID 379130, 10 pages. doi:10.1155/2012/379130.
- [11] J.G. Clunie and T. Sheil-Small, Harmonic univalent functions. Ann. Acad. Sci. Fenn. Math. 9 (1984), 3–25.
- [12] P. Duren, Univalent Functions. Spring-Verlag, New York, 1983.
- [13] P. Duren, *Harmonic Mappings in the Plane*. Cambridge University Press, Cambridge 2004.
- [14] M. Fait, J. Krzyż and J. Zygmunt, Explicit quasiconformal extensions for some classes of univalent functions. Comment. Math. Helv. 51 (1976), 279–285.
- [15] A.W. Goodman, Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc. 8 (1957), 588–601.
- [16] J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media. Prentice-Hall, Englewood Cliffs, NJ, USA, 1965.
- [17] D. Kalaj, S. Ponnusamy and M. Vuorinen, Radius of close-to-convexity of harmonic functions. To appear in Complex Var. Elliptic Equ., 14 pages. doi:10.1080/17476933.2012.759565 arXiv:1107.0610
- [18] S.A. Khuri, Biorthogonal series solution of Stokes flow problems in sectorial regions. SIAM J. Appl. Math. 56 (1996), 19–39.
- [19] W.E. Langlois, Slow Viscous Flow. Macmillan, New York, NY, USA, 1964.
- [20] J. Qiao and X. Wang, On p-harmonic univalent mappings (in Chinese). Acta Math. Sci. 32A (2012), 588–600.
- [21] C. Pommerenke, Univalent Functions. Vandenhoeck and Ruprecht, Göttingen, 1975.
- [22] S. Ruscheweyh, Neighborhoods of univalent functions. Proc. Amer. Math. Soc. 18 (1981), 521–528.

Received 13 February 2013

Hunan Normal University, Department of Mathematics, Changsha, Hunan 410081, People's Republic of China jiaolongche n@sina.com

Hunan Normal University, Department of Mathematics, Changsha, Hunan 410081, People's Republic of China and

Aulto University,

Department of Mathematics and Systems Analysis, P.O. Box 11100, FI-00076 Aalto, Finland

antti.rasila@iki.fi

Hunan Normal University, Department of Mathematics, Changsha, Hunan 410081, People's Republic of China xtwang@hunnu.edu.cn