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give the prime radical theorems of ordered Γ-semigroups.
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1. INTRODUCTION AND PRELIMINARIES

In 1981, Sen [23] introduced the concept and notion of the Γ - semigroup
as a generalization of semigroup and of ternary semigroup. Many classical
notions and results of the theory of semigroups have been extended and gen-
eralized to Γ - semigroups. Weakly prime, prime ideals in ordered semigroups
have been introduced and studied by N. Kehayopulu in [8, 10] extending to
ordered semigroups the analogue concepts of rings and their characterizations
considered by N.H. McCoy and O. Steinfeld in [20, 21, 25]. Some results on
prime, weakly prime ideals of ordered semigroups can be found in [8, 10–15,
26–28] which extend the analogue notions and properties of rings and semi-
groups. Kwon and Lee [16–18] introduced the concepts of the prime ideals,
the weakly prime ideals and the weakly semiprime ideals in ordered Γ - semi-
groups and gave some characterizations of them extending the analogue results
obtained in ordered semigroups considered by Kehayopulu [8]. Our purpose in
this paper is mainly to obtain and establish some other results and properties
in ordered Γ - semigroups extending those for ordered semigroups concerning
prime, weakly prime, semiprime and weakly semiprime ideals, characterization
of semilattice congruences by means of prime ideals, characterization of an
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arbitrary nonempty intersection of prime ideals. We prove that these results
remain true for ordered Γ-semigroups as well. We also introduce the concept of
m-system in ordered Γ-semigroups and characterize the weakly prime ideals by
m-system. We introduce the notion of prime radical in ordered Γ-semigroups
and give the prime radical theorems of ordered Γ-semigroups. In this paper, we
prove that every ideal of anN -class of an ordered Γ-semigroup does not contain
proper prime ideals. As a consequence, every prime ideal of an ordered Γ-
semigroup is decomposable into its N -clasess. Establishing an order-preserving
bijection between the set of all prime ideals of the po − Γ-semigroup M and
the set of all prime ideals of the po − Γ-semigroup S = M/N induced by the
complete semilattice congruence N on M , we extend to ordered Γ-semigroups
the II.2.15 Corollary [22] and the analogue result for ordered semigroup [26].
We establish some equivalent statements for the po− Γ-semigroup S = M/N
to be a chain, extending the analogue result for the semigroup [22, II.3.15.] and
for ordered semigroups [26]. Finally, we introduce the notion of radical of an
ideal on po− Γ-semigroups and we give the prime radical theorems of po− Γ-
semigroups analogue to that of ordered semigroups [28]. In this paper, we prove
that every weakly semiprime (resp., semiprime) ideal I of an po−Γ-semigroup
M is the intersection of all weakly prime (resp., prime) ideals containing it. In
particular, on commutative po− Γ-semigroups, the radical of an ideal I of M
is the intersection of all prime ideals containing it.

We first recall the definition of the Γ-semigroup as a generalization of
semigroup and ternary semigroup in another way as follows (cf. [23, 24]):

Definition 1.1. Let M and Γ be two non-empty sets. Any map from
M × Γ×M →M will be called a Γ-multiplication in M and denoted by (·)Γ.
The result of this multiplication for a, b ∈ M and α ∈ Γ is denoted by aαb.
A Γ-semigroup M is an ordered pair (M, (·)Γ) where M and Γ are non-empty
sets and (·)Γ is a Γ-multiplication on M which satisfies the following property

∀(a, b, c, α, β) ∈M3 × Γ2, (aαb)βc = aα(bβc).

Example 1.2. Let M be a semigroup and Γ be any nonempty set. Define
a mapping M ×Γ×M →M by aγb = ab for all a, b ∈M and γ ∈ Γ. Then M
is a Γ-semigroup.

Example 1.3. Let M be a set of all negative rational numbers. Obviously,
M is not a semigroup under usual product of rational numbers. Let Γ = {−1

p : p
is prime}. Let a, b, c ∈M and α ∈ Γ. Now, if aαb is equal to the usual product
of rational numbers a, α, b, then aαb ∈ M and (aαb)βc = aα(bβc). Hence, M
is a Γ-semigroup.

Example 1.4. Let M = {−i, 0, i} and Γ = M . Then M is a Γ-semigroup
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under the multiplication over complex numbers while M is not a semigroup
under complex number multiplication.

These examples show that every semigroup is a Γ-semigroup. Therefore,
Γ-semigroups are a generalization of semigroups.

A Γ-semigroup M is called commutative Γ-semigroup if for all a, b ∈ M
and γ ∈ Γ, aγb = bγa. A nonempty subset K of a Γ-semigroup M is called a
sub-Γ-semigroup of M if for all a, b ∈ K and γ ∈ Γ, aγb ∈ K.

Example 1.5. Let M = [0, 1] and Γ = { 1
n |n is a positive integer}. Then

M is a Γ-semigroup under usual multiplication. Let K = [0, 1/2]. We have
that K is a nonemtpy subset of M and aγb ∈ K for all a, b ∈ K and γ ∈ Γ.
Then K is a sub-Γ-semigroup of M .

Definition 1.6. A po-Γ-semigroup (: ordered Γ-semigroup) is an ordered
set M at the same time a Γ-semigroup such that for all a, b, c ∈M and for all
γ ∈ Γ

a ≤ b⇒ aγc ≤ bγc, cγa ≤ cγb.

Throughout this paper, M stands for an ordered Γ-semigroup. For non-
empty subsets A and B of M and a nonempty subset Γ′ of Γ, let AΓ′B =
{aγb : a ∈ A, b ∈ B and γ ∈ Γ′}. If A = {a}, then we also write {a}Γ′B as
aΓ′B, and similarly if B = {b} or Γ′ = {γ}.

Let T be a sub-Γ-semigroup of M . For A ⊆ T we denote

(A]T = {t ∈ T |t ≤ a, for some a ∈ A}
[A)T = {t ∈ T |t ≥ a, for some a ∈ A}

If T = M , then we always write (A] (resp., [A)) instead of (A]M (resp.
[A)M ). Clearly, A ⊆ (A]T ⊆ (A] and A ⊆ B implies (A]T ⊆ (B]T for any
nonempty subsets A,B of T . For A = {a}, we write (a] (resp., [a) instead of
({a}] (resp., [{a})).

Let M be a po-Γ-semigroup and A be a nonempty subset of M . Then A
is called a right (resp., left) ideal of M if

1. AΓM ⊆ A (resp. MΓA ⊆ A)
2. a ∈ A, b ≤ a for b ∈M ⇒ b ∈ A

Equivalent Definition.

1. AΓM ⊆ A (resp. MΓA ⊆ A).
2. (A] = A.

A is called an ideal of M if it is right and left ideal of M . A right, left or
ideal A of a po− Γ-semigroup M is called proper if A 6= M .
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Definition 1.7 ([7, 16]). Let M be a po−Γ-semigroup. An ideal T of M is
said to be prime if AΓB ⊆ T implies that A ⊆ T or B ⊆ T , where A,B ⊆M .

Equivalent Definition. Let M be a po−Γ-semigroup. An ideal T of M is
said to be prime if aΓb ⊆ T implies that a ∈ T or b ∈ T (a, b ∈M).

Definition 1.8 ([9, 19]). Let M be a po− Γ-semigroup. An ideal T of M
is said to be semiprime if AΓA ⊆ T implies that A ⊆ T , where A ⊆M .

Equivalent Definition. Let M be a po−Γ-semigroup. An ideal T of M is
said to be semiprime if aΓa ⊆ T implies that a ∈ T (a ∈M).

Definition 1.9 ([8, 17]). Let M be a po− Γ-semigroup. An ideal T of M
is said to be weakly prime if AΓB ⊆ T implies that A ⊆ T or B ⊆ T , for all
ideals A,B of M .

Definition 1.10 ([8, 17]). Let M be a po−Γ-semigroup. An ideal T of M
is said to be weakly semiprime if AΓA ⊆ T implies that A ⊆ T , for any ideal
A of M .

Definition 1.11 ([16]). Let M be a po − Γ-semigroup. An equivalence
relation < on M is called congruence if

(a, b) ∈ < ⇒ (aγc, bγc) ∈ <, (cγa, cγb) ∈ <

for all γ ∈ Γ and c ∈M .

Definition 1.12 ([16]). Let M be a po−Γ-semigroup. A congruence < on
M is called semilattice congruence if

(aγa, a) ∈ < and (aγb, bγa) ∈ <

for all γ ∈ Γ and a, b ∈M .

Definition 1.13. Let M be a po− Γ-semigroup. A semilattice congruence
< on M is called complete if a ≤ b implies (a, aγb) ∈ <, a, b ∈M , γ ∈ Γ.

Definition 1.14 ([7, 16]). Let M be a po − Γ-semigroup and F a sub-Γ-
semigroup. Then F is called a filter of M if

1. a, b ∈M,aγb ∈ F (γ ∈ Γ)⇒ a ∈ F and b ∈ F
2. a ∈ F, a ≤ c (c ∈M)⇒ c ∈ F or equivalently [F ) ⊆ F .

For a ∈M we denote by N(a) the filter of M generated by a(a ∈M). We
denote by “N” the equivalence relation on M defined by N = {(a, b)|N(a) =
N(b)} [7, 16].

For a po−Γ-semigroup M , from the Theorem 2.7(1)[16], N is a semilattice
congruence, and moreover, is a complete semilattice congruence on M , i.e. for
a, b ∈ M,a ≤ b implies (a, aγb) ∈ N , γ ∈ Γ. Indeed: Since N(a) 3 a ≤ b,
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we have b ∈ N(a). Since a, b ∈ N(a), aγb ∈ N(a) and N(aγb) ⊆ N(a). Since
aγb ∈ N(aγb) we have a ∈ N(aγb) and N(a) ⊆ N(aγb).

For any a ∈M , the N -class containing a is denoted by (a)N and it is clear
that it is an ordered sub-Γ-semigroup of M . Indeed: ∅ 6= (a)N ⊆M(a ∈ (a)N ).
Let x, y ∈ (a)N implies xNa and yNa, then xγyNaγa, γ ∈ Γ. Since aγaNa,
we have xγyNa. Then xγy ∈ (a)N . On the set M/N = {(a)N |a ∈ M}
we define (a)Nγ(b)N = (aγb)N , ∀a, b ∈ M,γ ∈ Γ. It is clear that the set
M/N is a Γ-semigroup. In this set, we define (a)N � (b)N if and only if
(a)N = (aγb)N ,∀γ ∈ Γ, then it can be easily seen that the set M/N is an
po-Γ-semigroup induced by the complete semilattice congruence N on M .

Example 1.15. Let us consider the po − Γ-semigroup M , where M = Z6

and Γ = {1, 3}. The ideals of M are the sets: L = {0}, L1 = {0, 2, 4}, L2 =
{0, 3}, L3 = {0, 2, 3, 4} and L4 = M .

It can be easily verified that L is not weakly prime. The other ideals
L1, L2, L3, L4 are weakly prime.

Example 1.16. Let us consider the sets M and Γ of Example 1.5 which
is an ordered Γ-semigroup under usual multiplication and usual partial order
relation. The ideals of M are Ia = [0, a] where 0 ≤ a ≤ 1. It can be easily
verified that all these ideals are not weakly prime.

Example 1.17. Let M = {x, y, z} and Γ = {α, β} with the multiplication
defined by the following tables:

α x y z

x x y x
y x y x
z x y x

β x y z

x x y x
y x y y
z x y z

If we define a relation ≤ on M as follows:

≤:= {(x, x), (y, y), (z, z), (x, y)}

then it can be easily verified that M is an ordered Γ-semigroup. The ideals of
M are I1 = {x, y} and I2 = M . It can be easily seen that I1, I2 are weakly
prime ideals.

Example 1.18. LetM = {{a, b, c}, ∅, {a}, {b}, {c}, {a, b}, {b, c}, {a, c}} and
Γ = {{a, b, c}, ∅, {a}}. If ABC = A ∩ B ∩ C and A ≤ C ⇔ A ⊆ C for all
A,C ∈ M and B ∈ Γ, then M is a po-Γ-semigroup. It can be easily verified
that the ideal {{a, b}, {a}, ∅} is a weakly prime ideal of M .
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2. ON PRIME IDEALS IN ORDERED Γ-SEMIGROUPS

For our results, we need to prove some preliminary results on ordered
Γ-semigroups. The following propositions hold true:

Proposition 2.19. Let M be an ordered Γ-semigroup. M does not con-
tain proper filter if and only if M does not contain proper prime ideals.

Proof. It is the same as the proof of Remark 2 in [11], we omit it. �

Proposition 2.20. Let M be an ordered Γ-semigroup, F a filter of M ,
a ∈ F ∩ (c)N (c ∈M). Then (c)N ⊆ F .

Proof. It is the same as the proof of Remark 3 in [11], we omit it. �

The following theorem extends to ordered Γ-semigroups, the analogue
results proved for ordered semigroups by Kehayopulu and Tsingelis [11].

Theorem 2.21. Let M be an ordered Γ-semigroup and c ∈M . If I is an
ideal of (c)N , then I does not contain proper prime ideals of I.

Proof. By Proposition 2.1, it is enough to prove that I does not contain
proper filter, i.e. I itself, is the only filter of I.

Let us assume that F is a filter of I. We prove that F = I. Let x ∈
F (F 6= ∅), T = {a ∈M |xγxαa ∈ F,∀α ∈ Γ and for some γ ∈ Γ}.

1) We have F = T ∩ I. Indeed: Let b ∈ F . Since xγx ∈ F , we have
xγxαb ∈ F,∀α ∈ Γ and for some γ ∈ Γ, i.e., b ∈ T . Since F is a filter of I we
have F ⊆ I. So, F ⊆ T ∩ I. Now, let b ∈ T ∩ I. Since b ∈ T, ∃γ ∈ Γ,∀α ∈
Γ, xγxαb ∈ F . Then, since xγx ∈ F ⊆ I, b ∈ I, F filter of I, we have b ∈ F ,
that is, T ∩ I ⊆ F . So, F = T ∩ I.

2) T is a filter of M . Indeed: ∅ 6= T ⊆ M (since (xγ)2x ∈ F,∀γ ∈
Γ, x ∈ T ). If a, b ∈ T , then aαb ∈ T, ∀α ∈ Γ. In fact: Let a, b ∈ T ; then
xγxαb ∈ F,∀α ∈ Γ and for some γ ∈ Γ. Since F ⊆ I ⊆ (c)N (c ∈ M),
then (bαx)N = (xγxαb)N = (c)N . Hence, bαx ∈ (c)N ,∀α ∈ Γ and thus,
bαxγx ∈ I. Furthermore, xγxα(bβxγx) = (xγxαb)βxγx ∈ F so that bβxγx ∈
F,∀α, β ∈ Γ. Similarly, xγxαa ∈ F implies xαa ∈ (c)N ,∀α ∈ Γ and for some
γ ∈ Γ. Since (xαaβb)N = (xαa)Nρ(xβb)N = (c)N ,∀α, β, ρ ∈ Γ, we have
xαaβb ∈ (c)N . Consequently, xγxαaβb ∈ I, ∀α, β ∈ Γ and for some γ ∈ Γ.
On the other hand, xγ1xαa, bβxγ2x ∈ F,∀α, β ∈ Γ and for some γ1, γ2 ∈ Γ,
implies (xγ1xαa)ρ(bβxγ2x) ∈ F . Then, also (xγ1xαaρb)βxγ2x ∈ F so that
xγ1xαaρb ∈ F,∀α, β, ρ ∈ Γ. Therefore, aαb ∈ T, ∀α ∈ Γ.

Conversely, if a, b ∈ M,aαb ∈ T, ∀α ∈ Γ, then a ∈ T and b ∈ T . Indeed:
let aαb ∈ T, ∀α ∈ Γ. Then xγ1xαaβb ∈ F,∀α, β ∈ Γ and for some γ1 ∈ Γ,
and thus, also (xγ1xαa)β(bρxγ2x) = (xγ1xαaβb)ρxγ2x) ∈ F , for all ρ ∈ Γ and
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for some γ2 ∈ Γ. Moreover, (xγ1xαaβb) ∈ F implies xαa, bρx ∈ (c)N , and
hence, xγ1xαa, bρxγ2x ∈ I. But since (xγ1xαa)ρ(bβxγ2x) ∈ F , it follows that
xγ1xαa, bβxγ2x ∈ F,∀α, β, ρ ∈ Γ and for some γ1, γ2 ∈ Γ. As before, since
(xγ1xαb)ρxγ2x = xγ1xα(bρxγ2x) ∈ F and xγ1xαb ∈ I, ∀α, ρ ∈ Γ and for some
γ1, γ2 ∈ Γ, we have that xγ1xαb ∈ F . Thus, a, b ∈ T .

Let now a ∈ T, S 3 b ≥ a. We prove that b ∈ T . We have xγxαb ≥
xγxαa ∈ F,∀α ∈ Γ and for some γ ∈ Γ. Also,

xγxαb = xγ(xαb), x ∈ F ⊆ I ⊆ (c)N

and

xγxαa ∈ F ⊆ I ⊆ (c)N ⇒ (c)N = (xγxαa)N = (xγx)Nρ(a)N =

= (x)Nρ(a)N = (xαa)N

for all ρ ∈ Γ. On the other hand, we have for all α, β ∈ Γ,

a ≤ b ⇒ xαa ≤ xαb⇒ (xαa, xαaβxαb) ∈ N
⇒ (xαa)N = (xαaβxαb)N = (x)Nα(a)Nβ(x)Nα(b)N

= (xαx)Nβ(a)Nα(b)N = (xαxβa)Nα(b)N = (c)Nα(b)N

= (x)Nα(b)N (x ∈ (c)N )

= (xαb)N .

Hence, xαb ∈ (xαb)N = (xαa)N = (c)N . Since I is an ideal of (c)N , we
have xγ(xαb) ∈ IΓ(c)N ⊆ I, and xγxαb ∈ I. Then, since F is a filter of I, we
have xγxαb ∈ F , and so b ∈ T . Since T is a filter of M , x ∈ T, x ∈ (c)N , by
Proposition 2.2, (c)N ⊆ T . Thus, we have

I ⊇ F = T ∩ I ⊇ (c)N ∩ I = I

i.e., F = I. �

Corollary 2.22. Every prime ideal I of an ordered Γ-semigroup is a
union of N -classes of M .

Proof. Let a ∈ I and t ∈ (a)N . Since (a)N is an ideal of (a)N , by
Theorem 2.3, (a)N does not contain proper prime ideal. (a)N ∩ I is a prime
ideal of (a)N . Indeed, for all γ ∈ Γ:

∅ 6= (a)N ∩ I ⊆ (a)N (a ∈ (a)N , a ∈ I)

(a)Nγ((a)N ∩ I) ⊆ (a)Nγ(a)N ∩ (a)NγI = (aγa)N ∩ (a)NγI

= (a)N ∩ (a)NγI ⊆ (a)N ∩MγI ⊆ (a)N ∩ I
((a)N ∩ I)γ(a)N ⊆ (a)Nγ(a)N ∩ Iγ(a)N ⊆ (a)N ∩ IγM ⊆ (a)N ∩ I
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Let x ∈ (a)N ∩ I, (a)N 3 y ≤ x. Since y ≤ x ∈ I, I an ideal of M , y ∈ I.
Thus, y ∈ (a)N ∩ I. So, (a)N ∩ I is a prime ideal of (a)N .

Since (a)N ∩ I is a prime ideal of (a)N , then we get (a)N = (a)N ∩ I and
t ∈ I.

Let b, c ∈ (a)N , bαc ∈ (a)N ∩ I, α ∈ Γ. Since bαc ∈ I and I is a prime
ideal of M , we have b ∈ I or c ∈ I. Hence, b ∈ (a)N ∩ I or c ∈ (a)N ∩ I. �

The following corollary give us the relationship between the prime ideals
of the ordered Γ-semigroup M and the induced ordered Γ-semigroup S = M/N
extending the analogue result for semigroup (II.2.15 Corollary [22]) and for
ordered semigroup ([26, Proposition 2.1]).

Corollary 2.23. Let I and J be the sets of all prime ideals of ordered
Γ-semigroup M and S = M/N , respectively. Then, there exists an order-
preserving bijection between I and J .

Proof. Let M be an ordered Γ-semigroup and I a prime ideal of M . We
consider the set J = {(a)N ∈ S|a ∈ I}. We show that J is a prime ideal
of S. Indeed: Let (a)N ∈ J . Then, for any (b)N ∈ S, we have a ∈ I and
b ∈ M . Since I is an ideal of M , we have aαb ∈ I, α ∈ Γ. This implies
(a)Nγ(b)N = (aγb)N ∈ J, ∀γ ∈ Γ. Similarly, we also have for all γ ∈ Γ,
(b)Nγ(a)N ∈ J . Let (x)N ∈ J and (y)N ∈ S with (y)N � (x)N . Then it is
clear that x ∈ I and (y)N = (yαx)N , α ∈ Γ. Since I is an ideal of M , we have
yαx ∈ I. Consequently, we take (y)N ∈ J , and so J is an ideal of S. Moreover,
if (z)N , (t)N ∈ S, and (z)Nγ(t)N ∈ J, ∀γ ∈ Γ, then (zγt)N = (z)Nγ(t)N ∈ J ,
and so zγt ∈ I. Since I is a prime ideal, we have z ∈ I or t ∈ I. This implies
(z)N ∈ J or (t)N ∈ J . Hence, J is a prime ideal of S.

On the other hand, let J be a prime ideal of S. We consider the set
I = {a ∈ M |(a)N ∈ J}. We show that I is a prime ideal of M . Indeed, if
a ∈ I and b ∈ M , then (a)N ∈ J and (b)N ∈ S. Since J is an ideal of S,
we have (aγb)N = (a)Nγ(b)N ∈ J and (bγa)N = (b)Nγ(a)N ∈ J, ∀γ ∈ Γ.
Consequently, by definition, we have aγb, bγa ∈ I. Moreover, if x ∈ I and y ∈
M with y ≤ x, then we have (x)N ∈ J and (y, yγx) ∈ N since N is a complete
semilattice congruence as we proved in Section 1. From (y, yγx) ∈ N it follows
that (y)N = (yγx)N ,∀γ ∈ Γ. This implies (y)N � (x)N . By (x)N ∈ J and
(y)N � (x)N , since J is an ideal of S, we obtain (y)N ∈ J . It follows that
y ∈ I and so I is an ideal of M . Now, let z, t ∈ M such that zγt ∈ I, ∀γ ∈ Γ.
By definition we have (z)Nγ(t)N = (zγt)N ∈ J . This implies (z)N ∈ J or
(t)N ∈ J since J is a prime ideal. Hence, we have z ∈ I or t ∈ I, that is, I is
a prime ideal of M .

We define a map Φ : I → J by Φ(I) = J = {(a)N ∈ S|a ∈ I}, for any
I ∈ I. From the above, it is clear that Φ is a surjection. We prove that Φ is
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injective. Indeed:

J1 = Φ(I1) = {(a)N ∈ S|a ∈ I1} and J2 = Φ(I2) = {(a)N ∈ S|a ∈ I2},

for any I1, I2 ∈ I. If J1 = J2, then for any a ∈ I1, we have (a)N ∈ J1 = J2.
This shows that a ∈ I2 and hence, I1 ⊆ I2. Similarly, we have I2 ⊆ I1. Thus,
I1 = I2 and Φ is injective.

We prove now that Φ preserves the ordering. Indeed, if I1 ⊆ I2, then we
have

{(a)N ∈ S|a ∈ I1} ⊆ {(a)N ∈ S|a ∈ I2},
that is, Φ(I1) ⊆ Φ(I2). So, we proved that Φ is an order-preserving bijection
from I into J . �

The following theorem gives us some necessary and sufficient conditions
for the induced ordered Γ-semigroup S = M/N by N to be a chain extending
the analogue result for ordered semigroups ([26], Theorem 2.2).

Theorem 2.24. Let M be an ordered Γ-semigroup and S = M/N the
induced ordered Γ-semigroup by N . Then, the following conditions are equiva-
lent:

1. S is a chain;
2. the set of prime ideals of M is a chain under inclusion;
3. every non-empty intersection of prime ideals of M is a prime ideal of M ;
4. ∀a, b ∈M, {a, b} ∩N(a) ∩N(b) 6= ∅.

Proof. (1) ⇒ (2). Let I, J be prime ideals of M . If there exist a, b ∈ M
such that a ∈ I\J and b ∈ J\I, then aΓb ⊆ I ∩J because I and J are ideals of
M . By (1) we assume that (a)N � (b)N , that is, (a)N = (aγb)N ,∀γ ∈ Γ. By
aΓb ⊆ J and Corollary 2.4, we have (aγb)N ⊆ J . Consequently, we have a ∈
(a)N = (aγb)N ⊆ J, ∀γ ∈ Γ, which is impossible because a ∈ I\J . Therefore,
I ⊆ J or J ⊆ I.

(2)⇒ (3). Let we suppose that I =
⋂
α∈A

Iα 6= ∅, where Iα are prime ideals

of M and A is an index set. Let a ∈ I, b ∈ M . Then a ∈ Iα, ∀α ∈ A, and
aΓb, bΓa ⊆ I. Let c ∈ M such that c ≤ d. Since d ∈ Iα and Iα is an ideal of
M for all α ∈ A, we have c ∈ Iα,∀α ∈ A and hence, c ∈ I. Therefore, I is an
ideal of M .

Let us show now that I is prime. First, we show that each M\Iα is
either a sub-Γ-semigroup of M or is empty. Suppose that M\Iα 6= ∅. Then,
let a, b ∈ M\Iα. If aΓb 6⊆ M\Iα, then aΓb ⊆ Iα. Since Iα is prime, we have
a ∈ Iα or b ∈ Iα, which is impossible. Thus, aΓb ⊆ M\Iα, that is, M\Iα is a
sub-Γ-semigroup of M .
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Now, we show that M\I is a sub-Γ-semigroup of M or is empty. By (2)
it follows that {Iα}α∈A is a chain under inclusion. Suppose that M\I 6= ∅. Let
x, y ∈M\I. Since

M\I = M\
⋂
α∈A

Iα =
⋃
α∈A

(M\Iα),

we have x ∈ M\Iβ for some β ∈ A and y ∈ M\Iγ for some γ ∈ A. Since
{Iα}α∈A is a chain, then we may suppose that Iβ ⊆ Iγ . Then M\Iγ ⊆ M\Iβ,
and so, y ∈ M\Iβ. Since M\Iβ is a sub-Γ-semigroup of M , we have xΓy ⊆
M\Iβ. Hence, xΓy ⊆

⋃
α∈A

(M\Iα) = M\I, that is, M\I is a sub-Γ-semigroup

of M .
Let us show now that I is prime. If M\I = ∅, then I = M , and so I is

prime. Let us assume that M\I 6= ∅ and let s, t ∈M such that sγt ∈ I, ∀γ ∈ Γ.
If s /∈ I and t /∈ I, then s, t ∈ M\I. Thus, since M\I is a sub-Γ-semigroup of
M , we have sΓt ∈ M\I which is impossible. Therefore, s ∈ I or t ∈ I, and
hence, I is a prime ideal.

(3) ⇒ (4). If there exist a, b ∈ M such that {a, b} ∩ N(a) ∩ N(b) = ∅,
then a /∈ N(b) and b /∈ N(a). Since N(a) and N(b) are filters of M , then we
have aΓb 6⊆ N(a) and aΓb 6⊆ N(b). Hence, we have

aΓb ⊆ (M\N(a)) ∩ (M\N(b)) and a, b /∈ (M\N(a)) ∩ (M\N(b)).

By Lemma [16], we have that M\N(a) and M\N(b) are both prime ideals. So,
we have that the non-empty intersection of prime ideals M\N(a) and M\N(b)
is not prime, which contradicts the condition (3).

(4) ⇒ (1). Let us suppose that the ordered Γ-semigroup S = M/N is
not a chain. Then for some a, b ∈ M , we have (b)N 6� (a)N and (b)N 6� (a)N ,
that is, (aγb)N 6= (a)N and (aγb)N 6= (b)N ,∀γ ∈ Γ. However, these imply
that (aγb, a) 6⊆ N and (aγb, b) 6⊆ N . So, by the definition of N , we have
N(aγb) 6= N(a) and N(aγb) 6= N(b). Consequently, b /∈ N(a), for if otherwise,
b ∈ N(a), then we have aγb ∈ N(a),∀γ ∈ Γ. It implies N(aγb) = N(a) which
is a contradiction. Similarly, we have a /∈ N(b). This shows that {a, b}∩N(a)∩
N(b) = ∅ which contradicts the condition (4). Thus, S is a chain. �

3. ON PRIME RADICALS FOR ORDERED Γ-SEMIGROUPS

In 1994, Dutta and Adhikari introduced the concept of m-system in Γ-
semigroups [1]. We introduce here the concepts of m-systems and n-systems in
ordered Γ-semigroups as an extending form of the analogue concepts in ordered
semigroups defined by Wu and Xie [27] and Kehayopulu [15]. In this section, we
characterize the weakly prime and semiprime ideals of ordered Γ-semigroups by
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m-system and n-system. We also introduce the notion of radical of an ideal on
po−Γ-semigroups and we give the prime radical theorems of po−Γ-semigroups
analogue to that of ordered semigroups [28].

Definition 3.25. Let T be a nonempty subset of an ordered Γ-semigroup
M . T is called an m− system if

∀a, b ∈ T, ∃x ∈M, (aΓxΓb] ∩ T 6= ∅.
T is called n− system of M if

∀a ∈ T, ∃x ∈M, (aΓxΓa] ∩ T 6= ∅.
Lemma 3.26 ([15]). Let M be an ordered Γ-semigroup and I an ideal of

M . Then the following statements are true:
1. I is weakly prime if and only if either M\I = ∅ or the set M\I is an
m-system.

2. I is weakly semiprime if and only if either M\I = ∅ or the set M\I is
an n-system.

Proof. 1). Let M\I 6= ∅. Let us suppose that, there exist a, b ∈M\I such
that (aΓMΓb]∩M\I = ∅. Then a, b /∈ I and so J(a), J(b) 6⊆ I. By Lemma 1.4
((5), (7)) [3] (cf.[8]), we have (aΓMΓb] ⊆ (J(a)ΓJ(b)] ⊆ J(a)ΓJ(b) ⊆ I. It is
impossible, since I is weakly prime. Therefore, M\I is a m-system.

Conversely, let M\I is a m-system. Let U, V 6⊆ I where U, V are two
ideals of M . Then there exist c ∈ U, d ∈ V such that c /∈ I, d /∈ I. Since c, d ∈
M\I and M\I is an m-system, there exists x ∈M such that (cΓxΓd]∩M\I 6=
∅. Since c ∈ U , then c ∈ J(U) so, c ∈ M1ΓUΓM1; similarly, d ∈ M1ΓV ΓM1.
If UΓV ⊆ I, then we have (cΓxΓd] ⊆ (M1ΓUΓ(M1ΓxΓM1)ΓV ΓM1] ⊆ I
since I is an ideal and hence, (cΓxΓd] ⊆ I ∩M\I. This is impossible. By
contraposition we conclude that I is weakly prime.

2). The proof is similar to 1). �

We prove now the following results on ordered Γ-semigroups which extend
the analogue results on ordered semigroups [28].

Lemma 3.27. Let M be an ordered Γ-semigroup, I an ideal of M and T
a m-system such that I ∩ T = ∅. Then there exists an m-system T ∗ maximal
relative to the properties: I ∩ T ∗ = ∅, T ⊆ T ∗.

Proof. Let T be the partially ordered set of m-system N such that T ⊆ N
and I ∩ N = ∅. Then T 6= ∅ since T ∈ T . Let C be a chain in T and let
D =

⋃
C∈C C. If a, b ∈ D, then there exists C ∈ C such that a, b ∈ C, so

(aΓxΓb] ∩ C 6= ∅ for some x ∈ M . Hence, (aΓxΓb] ∩ D 6= ∅, that is, D is a
m-system satisfying that T ⊆ D and I ∩D = ∅. Hence, D ∈ T and by Zorn’s
Lemma, T contains a maximal element T ∗. �
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Lemma 3.28. Let M be an ordered Γ-semigroup, I an ideal of M , T a m-
system such that I ∩T = ∅ and let T ∗ be any m-system of M maximal relative
to the properties: I ∩ T ∗ = ∅, T ⊆ T ∗. Then M\T ∗ is a minimal weakly prime
ideal of M containing I.

Proof. Let P be the partially ordered set of all ideals P of M such that
I ⊆ P and T ∗ ∩ P = ∅. Similarly, as mentioned above (see Lemma 3.3), by
Zorn’s Lemma, P contains a maximal element Q.

Let U, V 6⊆ Q where U, V are two ideals of M . Let A = J(U) ∪ Q,B =
J(V ) ∪ Q. We see that A and B are ideals with property Q ⊂ A,Q ⊂ B.
Hence, I ⊆ A, I ⊆ B, and by maximality of Q, we must have A,B /∈ P.
Thus, T ∗ ∩ A 6= ∅, T ∗ ∩ B 6= ∅. Let c ∈ T ∗ ∩ A, d ∈ T ∗ ∩ B. Consequently,
since T ∗ is an m-system, there exists x ∈ M such that (cΓxΓd] ∩ T ∗ 6= ∅.
Since c ∈ T ∗ ∩ (J(U) ∪ Q) and T ∗ ∩ Q = ∅, we must have c ∈ J(U) so that
c ∈ M1ΓUΓM1; similarly d ∈ M1ΓV ΓM1. If UΓV ⊆ Q, then (cΓxΓd] ⊆
(M1ΓUΓ(M1ΓxΓM1)ΓV ΓM1] ⊆ Q, since Q is an ideal, and hence, (cΓxΓd] ⊆
T ∗∩Q, contradicting the fact that T ∗∩Q = ∅. By contraposition we conclude
that Q is a weakly prime ideal of M and thus, Q′ = M\Q is an m-system if
it is nonempty. Since Q ⊇ I and Q ∩ T ∗ = ∅, it follows that Q′ ∩ I = ∅ and
T ∗ ⊆ Q′. By maximality of T ∗, we must have Q′ = T ∗ so that M\T ∗ = Q.

Let J be a weakly prime ideal of M such that Q ⊃ J ⊃ I. Then M\J ⊃
M\Q = T ∗ contradicting maximality of T ∗ relative to the properties of T ⊆
T ∗, T ∗ ∩ I = ∅, since M\J is a m-system such that (M\J) ⊃M and (M\J)∩
I = ∅. Therefore, Q = M\T ∗ is a minimal weakly prime ideal of M containing
I. �

The following lemma characterizes the semiprime ideals.

Lemma 3.29. Let M be an ordered Γ-semigroup and I be a semiprime
ideal of M . Then

1. If aΓb ⊆ I, then aΓxΓb ⊆ I, ∀x ∈M .
2. If aΓbn ⊆ I, then aΓb ⊆ I, n ∈ N .
3. If a1Γa2Γ...Γan ⊆ I, then a1πΓa2πΓ...Γanπ ⊆ I for any permutation π of
{1, 2, ..., n}.

Proof. 1) If aΓb ⊆ I, then (bΓa)2 = bΓ(aΓb)Γa ⊆ I and thus, bΓa ⊆ I.
Let x ∈M . Then (aΓxΓb)2 = aΓxΓ(bΓa)ΓxΓb ⊆ I and thus, aΓxΓb ⊆ I.

2) Let us prove the statement for n = 2, that is, let aΓb2 ⊆ I. Then
(aΓb)Γb ⊆ I. Applying 1) for x = a, we have (aΓb)Γ(aΓb) ⊆ I, that is,
(aΓb)2 ⊆ I. Then we have aΓb ⊆ I since I is semiprime. By induction we can
prove that if aΓbn ⊆ I, then aΓb ⊆ I, n ∈ N .

3) If aΓb ⊆ I, then (bΓa)2 = bΓ(aΓb)Γa ⊆ I and thus, bΓa ⊆ I.
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Let us assume that aΓbΓc ⊆ I. Then we see successively that each of the
following sets is a subset of I: bΓcΓa, (bΓc)Γ(aΓc), (aΓc)Γ(bΓc), (bΓaΓcΓb)Γc,
(cΓb)Γ(aΓcΓb), (aΓcΓb)2, aΓcΓb, bΓaΓc, cΓbΓa. Furthermore, the assumption
implies cΓaΓb ⊆ I. Hence, the assertion of the lemma is valid for n = 2, 3.

In order to complete the proof, we only need to show that aΓxΓyΓb ⊆ I
implies aΓyΓxΓb ⊆ I. Let us assume that aΓxΓyΓb ⊆ I. Then we see succes-
sively that each of the following sets is a subset of I: (xΓyΓb)Γa, bΓ(xΓyΓbΓa),
(bΓa)Γ(yΓxΓy), (bΓa)Γ(yΓx)2, (yΓx)Γ(bΓa)Γ(yΓx), (bΓaΓyΓx)2, bΓ(aΓyΓx),
aΓyΓxΓb. �

Lemma 3.30. Let M be an ordered Γ-semigroup, S be a m-system and I
a semiprime ideal of M , I ∩ S = ∅. Then there exists a maximal semiprime
ideal P with respect to the properties of I ⊆ P, P ∩ S = ∅. Furthermore, the
following statements are true:

1. If a /∈ P , we denote P ′a = {b ∈M |aγb ∈ P,∀γ ∈ Γ}, then P ′a = P .
2. P is a prime ideal of M .

Proof. The existence of such semiprime ideal P of M is easily seen by
Zorn’s Lemma.

(1) It is clear that P ⊆ P ′a. We have also P ′a ⊆ P . Indeed:

(A) If b ∈ P ′a, y ∈ M,y ≤ b, then aγy ≤ aγb ∈ P,∀γ ∈ Γ. Thus,
aγy ⊆ P,∀γ ∈ Γ, that is, y ∈ P ′a.

(B) Let x ∈ P ′a, y ∈ M . Then aΓx ⊆ P . It implies aΓxΓy ⊆ P , that is,
xΓy ⊆ P ′a. By Lemma 3.5(3), we have aΓyΓx ⊆ P , that is, yΓx ⊆ P ′a.

(C) Let xγx ∈ P ′a, ∀γ ∈ Γ, for any x ∈ M . Then aαxγx ∈ P,∀α, γ ∈ Γ,
by Lemma 3.5(2), we have aαx ∈ P,∀α ∈ Γ, that is, x ∈ P ′a. Therefore, we
have that P ′a is a semiprime ideal of M . On the other hand,

(D) If a ∈ S, then P ′a ∩ S = ∅. Indeed: if b ∈ S ∩ P ′a, then aΓb ⊆ P and
there exists x ∈M such that (aΓxΓb]∩S 6= ∅. Furthermore, by Lemma 3.5(1),
we have aΓxΓb ⊆ P , impossible. By hypothesis, P ′a = P .

(E) If a /∈ S, then also P ′a ∩ S = ∅. Indeed: if c ∈ P ′a ∩ S, then aΓc ⊆ P ,
thus, cΓa ⊆ P by Lemma 3.5(3). Therefore a ∈ P ′c. Since P ∩ S = ∅, we have
c /∈ P . By (D), P ′c = P , thus, a ∈ P , which is impossible. By hypothesis,
P ′a = P .

(2) By (1), if aΓb ⊆ P, a /∈ P , then b ∈ P ′a = P , that is, P is prime. �

It is easy to see that the nonempty intersection of weakly prime ideals of
an ordered Γ-semigroup M is a weakly semiprime ideal. The following theorem
gives the converse [28].

Theorem 3.31. Every weakly semiprime ideal I of an ordered Γ-semigroup
M is the intersection of weakly prime ideals containing I.
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Proof. Let {Iα}α∈A are all weakly prime ideals of M containing I. Then
I ⊆

⋂
α∈A Iα. If d0 ∈ M\I, we denote D = [d0), then there exists x0 ∈

M such that (d0Γx0Γd0] ∩ (M\I) 6= ∅ since I is weakly semiprime (Lemma
3.2). Thus, there exists d ∈ (d0Γx0Γd0] such that d ∈ M\I, that is, d /∈ I.
Therefore d0Γx0Γd0 6⊆ I. It follows that (d0Γx0Γd0] ∩ I 6= ∅. Let we denote
D1 = [d0Γx0Γd0), d1 = d0β0x0γ0d0 /∈ I, β0, γ0 ∈ Γ. Then, by induction we

denote S =
∞⋃
n=0

Dn, where Dn = [dn), dn = dn−1βn−1xn−1γn−1dn−1, di /∈ I(i =

1, 2, 3, ...), βn−1, γn−1 ∈ Γ. It is easily seen that S ∩ I = ∅. We have that S
is a m-system of M . Indeed: Let a, b ∈ S. Then there exist Di, Dj such that
a ∈ Di, b ∈ Dj , thus,

a ≥ di = di−1βi−1xi−1γi−1di−1, b ≥ dj = dj−1βj−1xj−1γj−1dj−1

where βi−1, βj−1, γi−1, γj−1 ∈ Γ.

1) If i = j, then aβixiγib ≥ diβixiγidi = di+1. Thus, [aΓxiΓb)⊆Dj+1 ⊆ S.

2) If j > i, then

dj = dj−1βj−1xj−1γj−1dj−1

= dj−2βj−2(xj−2γj−2dj−2βj−1xj−1γj−1dj−2βj−2xj−2)γj−2dj−2

= ... = diβikγidi

for some k ∈M,βi, γi ∈ Γ. Thus,

aβi(kγidiβjxj)γjb ≥ diβikγidiβjxjγjdj = djβjxjγjdj = dj+1.

Whence,

[aβi(kγidiβjxj)γjb) ⊆ Dj+1 ⊆ S.
3) If j < i, similar to 2), we can also prove that there exists h ∈M such

that [aΓhΓb) ⊆ Di+1 ⊆ S.

By 1), 2) and 3), we conclude that for any a, b ∈ S, there exists x ∈ M
such that (aΓxΓb] ∩ S 6= ∅. By Defenition 3.1, we have S is a m-system of
M . By Lemmas 3.3, 3.4, there exists a maximal m-system S∗ relative to the
properties: I ∩ S∗ = ∅, S ⊆ S∗, and M\S∗ is a minimal weakly prime ideal
of M containing I. Since d0 ∈ S∗, we have d0 /∈ M\S∗. Thus, d0 /∈

⋂
α∈A Iα.

Consequently,
⋂
α∈A Iα ⊆ I. �

Theorem 3.32. The following conditions on an ideal I of an ordered Γ-
semigroup M are equivalent:

1. I is the intersection of prime ideals containing it.
2. I is the intersection of minimal prime ideals containing it.
3. I is the union of N -classes.
4. I is semiprime.
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Proof. 1) ⇒ 2). Let I =
⋂
α∈A Iα where each Iα is a prime ideal. Let

fix α ∈ A and let = be the partially ordered set of all prime ideals J of M for
which I ⊆ J ⊆ Iα. Then = 6= ∅ since Iα ∈ =. Let C be a chain in = and let
A =

⋂
C∈C C. Then I ⊆ A ⊆ Iα and A is an ideal of M . Since the partially

ordered set {M\C|C ∈ C} forms a chain, it follows that M\A =
⋃
C∈C(M\C)

is an ordered sub-Γ-semigroup of M or is empty, which shows that A is a
prime ideal. Hence, A ∈ = and the Minimal Principle assures the existence of
a minimal element, say Jα in =. But then, Jα is also minimal relative to the
property of being a prime ideal containing I. In addition

I ⊆
⋂
α∈A

Jα ⊆
⋂
α∈A

Iα = I

so I =
⋂
α∈A

Jα.

2)⇒ 3). This follows by Corollary 2.4.
3) ⇒ 4). Let I =

⋃
{(x)N |x ∈ I} and aΓa ⊆ I. Then a ∈ (a)N =

(aγa)N ⊆ I, ∀γ ∈ Γ so that a ∈ I.
4) ⇒ 1). Let {Iα}α∈A is the set of all prime ideals containing I. Then

I ⊆
⋂
α∈A Iα. If a /∈ I, by the proof of Theorem 3.5, we can construct a m-

system S such that a ∈ S, S ∩ I = ∅. By Lemma 3.6, there exists a prime
ideal P such that a /∈ P and I ⊆ P . Therefore, a /∈

⋂
α∈A Iα. Consequently,⋂

α∈A Iα ⊆ I. Thus, I =
⋂
α∈A Iα. �

Definition 3.33. Let M be an ordered Γ-semigroup and I an ideal of M .
Then the subset of M

{x ∈M |(xγ)n−1x ∈ I, for all γ ∈ Γ and for some n ∈ N}

is called the radical of I and is denoted by
√
I.

The following theorem is an immediate consequence of Definition 3.8.

Theorem 3.34. Let M be an commutative ordered Γ-semigroup, I an
ideal of M . Then

√
I is an ideal in M and I ⊂

√
I.

It is clear that (
√
I] =

√
I.

Lemma 3.35. Let M be an commutative ordered Γ-semigroup. Let I be a
semiprime ideal of M . Then I =

√
I.

Proof. Theorem 3.10 implies I ⊂
√
I. Let x ∈

√
I, that is, there exists

an n ∈ N such that (xγ)n−1x ∈ I, ∀γ ∈ Γ. Theorem 3.8 implies that I is the
intersection of prime ideals containing it. Let {Pi}i∈A be the collection of all
prime ideals in M that contain I. We have I = ∩{Pi}i∈A. Since (xγ)n−1 ∈ I,
then for every i ∈ A, (xγ)n−1x ∈ Pi. Since Pi, i ∈ A are prime ideals, it follows
that x ∈ Pi, for all i ∈ A. Thus, x ∈ ∩{Pi}i∈A = I. �
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Corollary 3.36. Let M be an commutative ordered Γ-semigroup and I
be proper ideal in M . Then

√
I is semiprime.

Proof. Theorem 3.10 implies that the radical of I is a proper ideal in M

and
√
I ⊂

√√
I. Let x ∈

√√
I. Definition 3.9 implies that there exists an

n ∈ N such that (xγ)n−1x ∈
√
I. Moreover, Definition 3.9 now implies that

there exists an m ∈ N such that ((xγ)n−1x)γ)m−1x ∈ I. Thus, (xγ)nm−1x ∈ I
and Definition 3.0 implies x ∈

√
I. �

For any ideal I of an ordered Γ-semigroup M , we write

I∗ = The intersection of all prime ideals containing I.

Theorem 3.37. Let M be an commutative ordered Γ-semigroup and I be
proper ideal in M . Then

√
I = I∗.

Proof. Let x ∈ M such that x ∈
√
I, that is, for some positive integer n

it is valid that xn ∈ I. Let P be a prime ideal in M that contains I. Since P
is prime and xn ∈ P , it follows that x ∈ P . Since P was an arbitrary prime
ideal in M containing I, it follows that x ∈ I∗. Conversely, let us assume there
exists x ∈ I∗ such that for some γ ∈ Γ, (xγ)n−1x /∈ I for all positive integer
n. Choose one such x and let S = {x, xγx, (xγ)2x, ..., (xγ)nx, ...}. Since the
m-system S is a non-empty disjoint from I, that is, S ∩ I = ∅, by Lemma 3.3
and Lemma 3.4, there exists a prime ideal Q ⊇ I such that Q ∩ S = ∅. This
implies x /∈ Q. Thus, x /∈ I∗, a contradiction. �

Another independent proof of the first part of the above proof is given as
follows:

Corollary 3.12 implies that
√
I is semiprime. By Theorem 3.8,

√
I is the

intersection of all prime ideals containing it. Furthermore, if a prime ideal P
contains I, then for any x ∈

√
I, (xγ)n−1x ∈ I ⊆ P . Since P is prime, we have

x ∈ P , that is, P contains
√
I. Therefore,

√
I is the intersection of all prime

ideals containing I.

Corollary 3.38. Let M be an commutative ordered Γ-semigroup and
A,B be proper ideal in M . Then

1. If A ⊂ B, then
√
A ⊂

√
B;

2. If A ∩B 6= ∅, then
√
A ∩B =

√
A ∩
√
B.

Proof. (1). If x ∈
√
A, then there exists an n ∈ N such that (xγ)n−1x ∈

A ⊂ B. Hence, x ∈
√
B.

(2). Since A ∩ B 6= ∅, it is clear that A ∩ B is an ideal in M . Let
x ∈

√
A ∩B. Then there exists an n ∈ N such that (xγ)n−1x ∈ A ∩ B.

Therefore, (xγ)n−1x ∈ A and (xγ)n−1x ∈ B and it follows that x ∈
√
A and
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x ∈
√
B. Hence, x ∈

√
A ∩
√
B. Consequently, x ∈

√
A ∩
√
B implies that

there exist n,m ∈ N such that (xγ)n−1x ∈ A and (xγ)m−1x ∈ B. Clearly,
(xγ)nm−1x ∈ A ∩B. Thus, x ∈

√
A ∩B. �

Corollary 3.39. If I is a prime ideal in a commutative ordered Γ-
semigroup M , then I is semiprime.

Proof. Theorem 3.10 implies I ⊂
√
I. Let {Pi}i∈A be the collection of all

prime ideals in M that contain I. Clearly, I ∈ {Pi}i∈A and
√
I = ∩i∈APi ⊂ I.

Thus, I =
√
I. Lemma 3.11 implies I is semiprime. �

When the ordered Γ-semigroup M is not commmutative, the radical
√

(I)
of the ideal I, in general, is not an ideal of M and therefore, it is not intersection
of all prime ideals containing I. The following example shows this.

Example 3.40. Let M = {a, b, c, d, e} and Γ = {α, β, γ}. Then it can be
easily verified that M is a non-commutative Γ-semigroup with the Γ-multipli-
cation defined by

α a b c d e

a b b a b d
b b b b b b
c b b c b e
d b b b b b
e b b b b b

β a b c d e

a b b b b b
b b b b b b
c b b b b b
d a b b d b
e c b b e b

γ a b c d e

a a b b d b
b b b b b b
c c b b e b
d b b b b b
e b b b b b

It is easy verified that I = {b} is an ideal of M . Obviously, the radical√
I = {b, e} is not an ideal of M .
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