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1. INTRODUCTION AND PRELIMINARIES

In 1981, Sen [23] introduced the concept and notion of the I' - semigroup
as a generalization of semigroup and of ternary semigroup. Many classical
notions and results of the theory of semigroups have been extended and gen-
eralized to I' - semigroups. Weakly prime, prime ideals in ordered semigroups
have been introduced and studied by N. Kehayopulu in [8, 10] extending to
ordered semigroups the analogue concepts of rings and their characterizations
considered by N.H. McCoy and O. Steinfeld in [20, 21, 25]. Some results on
prime, weakly prime ideals of ordered semigroups can be found in [8, 10-15,
26-28] which extend the analogue notions and properties of rings and semi-
groups. Kwon and Lee [16-18] introduced the concepts of the prime ideals,
the weakly prime ideals and the weakly semiprime ideals in ordered I' - semi-
groups and gave some characterizations of them extending the analogue results
obtained in ordered semigroups considered by Kehayopulu [8]. Our purpose in
this paper is mainly to obtain and establish some other results and properties
in ordered I' - semigroups extending those for ordered semigroups concerning
prime, weakly prime, semiprime and weakly semiprime ideals, characterization
of semilattice congruences by means of prime ideals, characterization of an

MATH. REPORTS 16(66), 2 (2014), 253270



254 Kostaq Hila 2

arbitrary nonempty intersection of prime ideals. We prove that these results
remain true for ordered I'-semigroups as well. We also introduce the concept of
m-system in ordered I'-semigroups and characterize the weakly prime ideals by
m-system. We introduce the notion of prime radical in ordered I'-semigroups
and give the prime radical theorems of ordered I'-semigroups. In this paper, we
prove that every ideal of an N -class of an ordered I'-semigroup does not contain
proper prime ideals. As a consequence, every prime ideal of an ordered I'-
semigroup is decomposable into its N-clasess. Establishing an order-preserving
bijection between the set of all prime ideals of the po — I'-semigroup M and
the set of all prime ideals of the po — I'-semigroup S = M /N induced by the
complete semilattice congruence N on M, we extend to ordered I'-semigroups
the 11.2.15 Corollary [22] and the analogue result for ordered semigroup [26].
We establish some equivalent statements for the po — I'-semigroup S = M /N
to be a chain, extending the analogue result for the semigroup [22, I1.3.15.] and
for ordered semigroups [26]. Finally, we introduce the notion of radical of an
ideal on po — I'-semigroups and we give the prime radical theorems of po — I'-
semigroups analogue to that of ordered semigroups [28]. In this paper, we prove
that every weakly semiprime (resp., semiprime) ideal I of an po — I'-semigroup
M is the intersection of all weakly prime (resp., prime) ideals containing it. In
particular, on commutative po — I'-semigroups, the radical of an ideal I of M
is the intersection of all prime ideals containing it.

We first recall the definition of the I'-semigroup as a generalization of
semigroup and ternary semigroup in another way as follows (cf. [23, 24]):

Definition 1.1. Let M and I" be two non-empty sets. Any map from
M xT'x M — M will be called a I'-multiplication in M and denoted by (-)r.
The result of this multiplication for a,b € M and a € I' is denoted by aab.
A T-semigroup M is an ordered pair (M, (-)r) where M and I' are non-empty
sets and (+)r is a I'-multiplication on M which satisfies the following property

Y(a,b,c,a, B) € M3 x T2, (aab)Be = aa(bfc).

Example 1.2. Let M be a semigroup and I' be any nonempty set. Define
a mapping M xI' x M — M by ayb = ab for all a,b € M and v € I". Then M
is a I'-semigroup.

Example 1.3. Let M be a set of all negative rational numbers. Obviously,
M is not a semigroup under usual product of rational numbers. Let ' = {—% :p
is prime}. Let a,b,c € M and a € I'. Now, if aab is equal to the usual product
of rational numbers a, v, b, then aab € M and (aab)Bc = aa(bfc). Hence, M
is a ['-semigroup.

Ezample 1.4. Let M = {—i,0,i} and I' = M. Then M is a I-semigroup
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under the multiplication over complex numbers while M is not a semigroup
under complex number multiplication.

These examples show that every semigroup is a I'-semigroup. Therefore,
I'-semigroups are a generalization of semigroups.

A T'-semigroup M is called commutative I'-semigroup if for all a,b € M
and v € I, ayb = bya. A nonempty subset K of a I'-semigroup M is called a
sub-I"-semigroup of M if for all a,b € K and y € I', ayb € K.

Ezample 1.5. Let M = [0,1] and I' = {|n is a positive integer}. Then
M is a I'-semigroup under usual multiplication. Let K = [0,1/2]. We have
that K is a nonemtpy subset of M and ayb € K for all a,b € K and v € T
Then K is a sub-I'-semigroup of M.

Definition 1.6. A po-I'-semigroup (: ordered I'-semigroup) is an ordered
set M at the same time a I'-semigroup such that for all a,b,c € M and for all
yeTl

a < b= ayc < byc,cya < cvyb.

Throughout this paper, M stands for an ordered I'-semigroup. For non-
empty subsets A and B of M and a nonempty subset IV of T', let AI'B =
{avb :a € A,b € B and v € T"}. If A = {a}, then we also write {a}I'B as
al’B, and similarly if B = {b} or I' = {~}.

Let T be a sub-I'-semigroup of M. For A C T we denote

(Alr ={t € T|t < a, for some a € A}
[A)r = {t € T|t > a, for some a € A}

If T'= M, then we always write (A] (resp., [4)) instead of (A]ps (resp.
[A)ar). Clearly, A C (Alr € (A] and A C B implies (A]r C (B]r for any
nonempty subsets A, B of T. For A = {a}, we write (a] (resp., [a) instead of
({a}] (resp., [{a})).

Let M be a po-I'-semigroup and A be a nonempty subset of M. Then A
is called a right (resp., left) ideal of M if

1. ATM C A (resp. MTAC A)
2.acAb<aforbeM=0bc A

Equivalent Definition.
1. ATM C A (resp. MTAC A).
2. (4] = A.

A is called an ideal of M if it is right and left ideal of M. A right, left or
ideal A of a po — I'-semigroup M is called proper if A £ M.
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Definition 1.7 ([7, 16]). Let M be a po—I'-semigroup. An ideal T" of M is
said to be prime if AB C T implies that A CT or B C T, where A, B C M.

Equivalent Definition. Let M be a po — I'-semigroup. An ideal T" of M is
said to be prime if aI'db C T implies that a € T or b € T'(a,b € M).

Definition 1.8 (]9, 19]). Let M be a po — I'-semigroup. An ideal T" of M
is said to be semiprime if AI'A C T implies that A C T, where A C M.

Equivalent Definition. Let M be a po — I'-semigroup. An ideal T of M is
said to be semiprime if al'a C T implies that a € T'(a € M).

Definition 1.9 ([8, 17]). Let M be a po — I'-semigroup. An ideal T of M
is said to be weakly prime if AI'B C T implies that A C T or B C T, for all
ideals A, B of M.

Definition 1.10 ([8, 17]). Let M be a po — I'-semigroup. An ideal T" of M
is said to be weakly semiprime if AA C T implies that A C T, for any ideal
A of M.

Definition 1.11 ([16]). Let M be a po — I'-semigroup. An equivalence
relation R on M is called congruence if

(a,b) € R = (aye, byc) € R, (cya,cyb) € R
forallyeI'and c € M.

Definition 1.12 ([16]). Let M be a po — I'-semigroup. A congruence R on
M is called semilattice congruence if

(aya,a) € R and (avyb, bya) € R
forall vy € I' and a,b € M.

Definition 1.13. Let M be a po — I'-semigroup. A semilattice congruence
R on M is called complete if a < b implies (a,avb) € R, a,b€ M,y € T.

Definition 1.14 ([7, 16]). Let M be a po — I'-semigroup and F' a sub-I'-
semigroup. Then F is called a filter of M if
l.a,be Maybe F (yel')=ac Fand be F
2.a€F,a<c(ce M)= ceF orequivalently [F) C F.

For a € M we denote by N(a) the filter of M generated by a(a € M). We
denote by “N” the equivalence relation on M defined by N' = {(a,b)|N(a) =
N(b)} [7, 16].

For a po—TI'-semigroup M, from the Theorem 2.7(1)[16], N is a semilattice
congruence, and moreover, is a complete semilattice congruence on M, i.e. for
a,b € M,a < b implies (a,ayb) € N,y € T'. Indeed: Since N(a) 3 a < b,
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we have b € N(a). Since a,b € N(a),ayb € N(a) and N(ayb) C N(a). Since
ayb € N(avyb) we have a € N(ayb) and N(a) C N(avb).

For any a € M, the N'-class containing a is denoted by (a)x and it is clear
that it is an ordered sub-I'-semigroup of M. Indeed: 0 # (a)nr C M(a € (a)y).
Let z,y € (a)x implies xNa and yNa, then xyyNavya, v € T. Since ayaNa,
we have zyyNa. Then zyy € (a)y. On the set M/N = {(a)n|a € M}
we define (a)py(b)y = (ayb)ar,Va,b € M,y € T'. It is clear that the set
M/N is a I-semigroup. In this set, we define (a)yr =< (b)n if and only if
(a)ny = (ayb)nr,Vy € T, then it can be easily seen that the set M/N is an
po-I'-semigroup induced by the complete semilattice congruence N’ on M.

Ezxample 1.15. Let us consider the po — I'-semigroup M, where M = Zg
and I' = {1,3}. The ideals of M are the sets: L = {0},L; = {0,2,4}, Ly =
{0,3}, L3 = {0,2,3,4} and Ly = M.

It can be easily verified that L is not weakly prime. The other ideals
Ly, Lo, L3, Ly are weakly prime.

Ezample 1.16. Let us consider the sets M and I' of Example 1.5 which
is an ordered I'-semigroup under usual multiplication and usual partial order
relation. The ideals of M are I, = [0,a] where 0 < a < 1. It can be easily
verified that all these ideals are not weakly prime.

Ezample 1.17. Let M = {x,y, 2z} and ' = {a, 8} with the multiplication
defined by the following tables:

SIS o)
8 8 8|8
ESEENSIINS N
8 8 8|
N R I®
8 8 8|8
ESEENSIINSE NS
SNSRI\

If we define a relation < on M as follows:

<= {(x,x), (y7 y)a (Zv 2)7 ($7y)}

then it can be easily verified that M is an ordered I'-semigroup. The ideals of
M are I) = {x,y} and Iy = M. It can be easily seen that [, I, are weakly
prime ideals.

Fxample 1.18. Let M = {{a,b,c}, 0, {a}, {b},{c}, {a,b},{b,c},{a,c}} and
I' = {{a,b,c},0,{a}}. If ABC = ANBNC and A < C & A C C for all
A,C € M and B € T', then M is a po-I'-semigroup. It can be easily verified
that the ideal {{a,b},{a}, 0} is a weakly prime ideal of M.
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2. ON PRIME IDEALS IN ORDERED I'-SEMIGROUPS

For our results, we need to prove some preliminary results on ordered
I'-semigroups. The following propositions hold true:

PROPOSITION 2.19. Let M be an ordered I"-semigroup. M does not con-
tain proper filter if and only if M does not contain proper prime ideals.

Proof. Tt is the same as the proof of Remark 2 in [11], we omit it. [

PROPOSITION 2.20. Let M be an ordered I'-semigroup, F' a filter of M,
ac Fn(c)x(ce M). Then (c)p C F.

Proof. Tt is the same as the proof of Remark 3 in [11], we omit it. [

The following theorem extends to ordered I'-semigroups, the analogue
results proved for ordered semigroups by Kehayopulu and Tsingelis [11].

THEOREM 2.21. Let M be an ordered I'-semigroup and ¢ € M. If I is an
ideal of (c)nr, then I does not contain proper prime ideals of I.

Proof. By Proposition 2.1, it is enough to prove that I does not contain
proper filter, i.e. I itself, is the only filter of I.

Let us assume that F' is a filter of I. We prove that FF = I. Let z €
F(F #0), T ={a € M|zyzaa € F,Va € T and for some v € I'}.

1) We have F' = T'NI. Indeed: Let b € F. Since xzyx € F, we have
xyzab € F,Va € T" and for some v € I, i.e., b € T. Since F is a filter of I we
have FF C I. So, F CTNI. Now,letbeTNI. Sincebe T, Iy e I'\Va €
I',zyxab € F. Then, since zyx € I C I,b € I, F filter of I, we have b € I,
that is, TNI C F. So, F=TnN1I.

2) T is a filter of M. Indeed: () # T C M (since (z7)%x € F,Vy €
iz eT). If a,b € T, then aab € T,Va € I'. In fact: Let a,b € T; then
zyrab € F.¥a € T' and for some v € I'. Since FF C I C (¢)n(c € M),
then (bax)y = (zyzab)y = (c)n. Hence, bax € (¢)y,Va € T' and thus,
baxyx € I. Furthermore, xyxa(bfxyx) = (xyrab)Bxyr € F so that bfzyr €
F,Ya, € I'. Similarly, xyzaa € F implies xaa € (¢)n, Va € I' and for some
v € I'. Since (zaafb)y = (zaa)yp(xpb)y = (c)n,Va,B,p € T, we have
zaafb € (¢)n. Consequently, zyraafb € I,Va, € T' and for some vy € I'.
On the other hand, zyizaa,bfryx € F,Va,5 € I' and for some 71,7 € T,
implies (zy1z0a)p(bfryex) € F. Then, also (xyizaapb)Bfryex € F so that
xy1zaapb € F\Va, B, p € I'. Therefore, aab € T,Va € T'.

Conversely, if a,b € M,aab € T,)Va € I', then a € T and b € T. Indeed:
let aab € T,Va € T'. Then xzyizaafb € F,Va,5 € I' and for some vy; € T,
and thus, also (zy1z0a)B(bpryex) = (xy1z008b)prysz) € F, for all p € I' and
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for some v2 € I'. Moreover, (zyizaafb) € F implies xaa,bpr € (c)n, and
hence, zy1xaa,bpryex € I. But since (xyizaa)p(bfxyex) € F, it follows that
ry1zaa,bfrysxr € F,Va,3,p € I' and for some 1,7 € I'. As before, since
(xy1zad)prysx = zy1xa(bpryx) € F and xyizab € I,Va,p € T and for some
Y1,7v2 € I', we have that xy,xab € F. Thus, a,b € T.

Let now a € T,5 > b > a. We prove that b € T. We have zyxab >
xyraa € F,Va € T’ and for some v € T". Also,

zyrab = zy(xab),x € F C I C (c)yN

and

xyraa € F CIC (c)y = (o)y = (zyraa)y = (zyx)vpla)y =
= (@wpla)y = (zaa)y
for all p € I'. On the other hand, we have for all o, 5 € T,
a<b = zaa<zab= (raa,zaafrab) € N
= (zaa)y = (vaafrab)y = (z)vala)yB(z)valb)y
zaz)vBa)valb)y = (zazBa)va(b)y = (c)ya(b)y

= (
= (v (z e (@n)
= (

xab)y.

Hence, zab € (zab)n = (zaa)y = (¢)ar. Since [ is an ideal of (¢)nr, we
have zy(xzab) € IT(c)p C I, and zyzab € 1. Then, since F is a filter of I, we
have xyzxab € F, and so b € T. Since T is a filter of M, z € T,z € (¢)nr, by
Proposition 2.2, (¢)y € 7. Thus, we have

IDF=TNID(nNI=1

e, F=1. O

COROLLARY 2.22. Fvery prime ideal I of an ordered I'-semigroup is a
union of N -classes of M.

Proof. Let a € I and t € (a)y. Since (a)n is an ideal of (a)y, by
Theorem 2.3, (a)n does not contain proper prime ideal. (a)yr NI is a prime
ideal of (a)ar. Indeed, for all v € T

0# (@) NIC(a)y (ac(a)y,acl)

N

(a)ny(a)n N (a)nyI = (aya)y N (a)ny]
= (a)nv N (a)ayI € (a)y N MAyI C (a)ar N1
(a)ny(a)y N Iv(a)n € (a)y NIyM C (a)y NI

(@)a((a)y NI

N

((a)x N 1)y(a)n
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Let z € (a)y N1, (a)y 2y <z Sincey <x €I, I anideal of M, y € I.
Thus, y € (a)p NI. So, (a) NI is a prime ideal of (a)r.

Since (a)ar N1 is a prime ideal of (a)us, then we get (a)n = (a)y N1 and
tel.

Let b,c € (a)par,bac € (a)ar NI,a € T'. Since bac € I and I is a prime
ideal of M, we have b€ [ or c€ I. Hence, b€ (a)y NI orce (a)ynI. O

The following corollary give us the relationship between the prime ideals
of the ordered I'-semigroup M and the induced ordered I'-semigroup S = M /N
extending the analogue result for semigroup (II.2.15 Corollary [22]) and for
ordered semigroup ([26, Proposition 2.1}).

COROLLARY 2.23. Let T and J be the sets of all prime ideals of ordered
[-semigroup M and S = M/N, respectively. Then, there exists an order-
preserving bijection between I and J .

Proof. Let M be an ordered I'-semigroup and [ a prime ideal of M. We
consider the set J = {(a)r € Sla € I}. We show that J is a prime ideal
of S. Indeed: Let (a)nr € J. Then, for any (b)y € S, we have a € I and
b € M. Since I is an ideal of M, we have aab € I,a € I'. This implies
(a)nvy(b)y = (ayb)y € J,Vy € T'. Similarly, we also have for all v € T,
(D)ny(a)n € J. Let (x)ar € J and (y)p € S with (y)ar = (x)ar. Then it is
clear that x € I and (y)n = (yax)n, € T'. Since I is an ideal of M, we have
yax € I. Consequently, we take (y)n € J, and so J is an ideal of S. Moreover,
if (2)a, (W € S, and (2)yy(t)n € J, ¥y € T, then (29t)y = (2)ny(H)N € J,
and so zyt € I. Since [ is a prime ideal, we have z € I or t € I. This implies
(z2)x € J or (t)ar € J. Hence, J is a prime ideal of S.

On the other hand, let J be a prime ideal of S. We consider the set
I = {a € M|(a)sr € J}. We show that I is a prime ideal of M. Indeed, if
a € I and b e M, then (a)yy € J and (b)y € S. Since J is an ideal of 5,
we have (ayb)n = (a)ay(b)x € J and (bya)y = (D)ay(a)y € J,Vy € T.
Consequently, by definition, we have a+b, bya € I. Moreover, if z € I and y €
M with y < z, then we have () € J and (y,yyz) € N since N is a complete
semilattice congruence as we proved in Section 1. From (y,yyz) € N it follows
that (y)n = (yyx)n, ¥y € T'. This implies (y)a < (x)x. By () € J and
(y)v = (z)n, since J is an ideal of S, we obtain (y)n € J. It follows that
y € I and so [ is an ideal of M. Now, let z,t € M such that zyt € I,Vy € T.
By definition we have (2)ay(t)n = (27t)a € J. This implies (z)n € J or
(t)ar € J since J is a prime ideal. Hence, we have z € [ or ¢t € I, that is, I is
a prime ideal of M.

We define a map ¢ : Z — J by &(I) = J = {(a)x € S|a € I}, for any
I € Z. From the above, it is clear that @ is a surjection. We prove that @ is
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injective. Indeed:
J1 = (15([1) = {(Q)N € S]a S [1} and Jo = @(Ig) = {(a)/\[ S S\a S IQ},

for any I1,I, € Z. If J; = Jo, then for any a € I, we have (a)nr € J1 = Ja.
This shows that a € Iy and hence, Iy C I5. Similarly, we have Is C I;. Thus,
I, = I and @ is injective.

We prove now that @ preserves the ordering. Indeed, if I; C I, then we
have

{(a)p € Sla € 1} C{(a)y € S|a € L1},
that is, @(I1) C @(I2). So, we proved that @ is an order-preserving bijection
from Z into J. O

The following theorem gives us some necessary and sufficient conditions
for the induced ordered I'-semigroup S = M /N by N to be a chain extending
the analogue result for ordered semigroups ([26], Theorem 2.2).

THEOREM 2.24. Let M be an ordered T'-semigroup and S = M/N the
induced ordered T'-semigroup by N'. Then, the following conditions are equiva-
lent:

1. S is a chain;
. the set of prime ideals of M is a chain under inclusion;

2
3. every non-empty intersection of prime ideals of M is a prime ideal of M ;
4. Ya,b € M,{a,b} N N(a) NN (b) # 0.

Proof. (1) = (2). Let I,J be prime ideals of M. If there exist a,b € M
such that a € I\J and b € J\I, then aI'b C I N J because I and J are ideals of
M. By (1) we assume that (a)n = (b)n, that is, (a)n = (ayb)n,Vy € T'. By
al'b C J and Corollary 2.4, we have (ayb)x C J. Consequently, we have a €
(a)y = (ayb)pr C J,Vy € T, which is impossible because a € I\J. Therefore,
ICJorJCI

(2) = (3). Let we suppose that I = () I, # 0, where I, are prime ideals
acA
of M and A is an index set. Let a € I,b € M. Then a € [,,YVa € A, and

al’'b,bl’'a C I. Let ¢ € M such that ¢ < d. Since d € I, and I, is an ideal of
M for all @ € A, we have ¢ € I,,Va € A and hence, ¢ € I. Therefore, I is an
ideal of M.

Let us show now that I is prime. First, we show that each M\I, is
either a sub-T-semigroup of M or is empty. Suppose that M\, # (). Then,
let a,b € M\I,. If al'b € M\I,, then al'b C I,. Since I, is prime, we have
a € I, or b € I,, which is impossible. Thus, al'6 C M\I,, that is, M\, is a
sub-I"-semigroup of M.
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Now, we show that M\ is a sub-I'-semigroup of M or is empty. By (2)
it follows that {I,}aeca is a chain under inclusion. Suppose that M\I # (). Let
x,y € M\I. Since

M= () 1= o)
acA acA

we have x € M\Iz for some 3 € A and y € M\I, for some v € A. Since

{Io}aca is a chain, then we may suppose that Ig C I,. Then M\I, C M\Ig,

and so, y € M\Ig. Since M\Ig is a sub-I'-semigroup of M, we have zI'y C

MN\Ig. Hence, 2T'y C |J (M\1,) = M\I, that is, M\I is a sub-I'-semigroup

acA
of M.

Let us show now that I is prime. If M\I = (), then I = M, and so [ is
prime. Let us assume that M\I # () and let s,t € M such that syt € I,Vy € T.
If s¢ Iandt ¢ I, then s,t € M\I. Thus, since M\I is a sub-I-semigroup of
M, we have sI't € M\I which is impossible. Therefore, s € I or ¢t € I, and
hence, I is a prime ideal.

(3) = (4). If there exist a,b € M such that {a,b} N N(a) N N(b) = 0,
then a ¢ N(b) and b ¢ N(a). Since N(a) and N(b) are filters of M, then we
have al'b € N(a) and al'b € N(b). Hence, we have

al'b C (M\N(a)) N (M\N(b)) and a,b ¢ (M\N(a)) N (M\N(b)).

By Lemma [16], we have that M\ N (a) and M\ N (b) are both prime ideals. So,
we have that the non-empty intersection of prime ideals M\ N (a) and M\ N (b)
is not prime, which contradicts the condition (3).

(4) = (1). Let us suppose that the ordered I'-semigroup S = M /N is
not a chain. Then for some a,b € M, we have (b)x 2 (a)n and (b)y # (a)n,
that is, (avb)n # (a)n and (avb)ar # (b)ar,Vy € T'. However, these imply
that (ayb,a) € N and (ayb,b) € N. So, by the definition of N, we have
N(ayb) # N(a) and N(ayb) # N(b). Consequently, b ¢ N(a), for if otherwise,
b € N(a), then we have ayb € N(a),Vy € I'. It implies N(ayb) = N(a) which
is a contradiction. Similarly, we have a ¢ N (b). This shows that {a,b} NN (a)N
N (b) = () which contradicts the condition (4). Thus, S is a chain. O

3. ON PRIME RADICALS FOR ORDERED I'-SEMIGROUPS

In 1994, Dutta and Adhikari introduced the concept of m-system in I'-
semigroups [1]. We introduce here the concepts of m-systems and n-systems in
ordered I'-semigroups as an extending form of the analogue concepts in ordered
semigroups defined by Wu and Xie [27] and Kehayopulu [15]. In this section, we
characterize the weakly prime and semiprime ideals of ordered I'-semigroups by
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m-system and n-system. We also introduce the notion of radical of an ideal on
po—I'-semigroups and we give the prime radical theorems of po—I'-semigroups
analogue to that of ordered semigroups [28].

Definition 3.25. Let T be a nonempty subset of an ordered I'-semigroup
M. T is called an m — system if

Va,b € T,3x € M, (aTzTb) NT # (.
T is called n — system of M if
Va € T,3x € M, (al'zTa] N'T # 0.

LEMMA 3.26 ([15]). Let M be an ordered T'-semigroup and I an ideal of
M. Then the following statements are true:
1. I is weakly prime if and only if either M\I = () or the set M\I is an
m-system.
2. I is weakly semiprime if and only if either M\I = 0 or the set M\I is
an n-system.

Proof. 1). Let M\I # (). Let us suppose that, there exist a,b € M\I such
that (aT’ MTb]NM\I = (. Then a,b ¢ I and so J(a), J(b) € I. By Lemma 1.4
((5), (7)) [3] (cf.[8]), we have (aT'MTb] C (J(a)L'J(b)] C J(a)T'J(b) C I. It is
impossible, since I is weakly prime. Therefore, M\ is a m-system.

Conversely, let M\ is a m-system. Let U,V ¢ I where U,V are two
ideals of M. Then there exist ¢ € U,d € V such that ¢ ¢ I,d ¢ I. Since ¢,d €
MN\I and M\ is an m-system, there exists z € M such that (c['xzI'd]NM\I #
(). Since ¢ € U, then ¢ € J(U) so, ¢ € M'TUT M?; similarly, d € MTVI M*.
If UT'V C I, then we have (cI'zI'd] C (M'TUT(M'T2I’ MY)TVIM!] C I
since I is an ideal and hence, (cI'aI'd] C I N M\I. This is impossible. By
contraposition we conclude that I is weakly prime.

2). The proof is similar to 1). O

We prove now the following results on ordered I'-semigroups which extend
the analogue results on ordered semigroups [28].

LEMMA 3.27. Let M be an ordered I'-semigroup, I an ideal of M and T
a m-system such that IN'T = (. Then there exists an m-system T* mazimal
relative to the properties: INT* =0, T C T*.

Proof. Let T be the partially ordered set of m-system N such that T'C N
and INN = (. Then T # () since T € T. Let C be a chain in 7 and let
D = Upgee €. If a,b € D, then there exists C' € C such that a,b € C, so
(aT'zTb] N C # O for some x € M. Hence, (al'xI'b) N D # (), that is, D is a
m-system satisfying that TC D and I N D = (). Hence, D € T and by Zorn’s
Lemma, 7 contains a maximal element T%. [



264 Kostaq Hila 12

LEMMA 3.28. Let M be an ordered I'-semigroup, I an ideal of M, T a m-
system such that INT = () and let T* be any m-system of M mazximal relative
to the properties: INT* =0, T C T*. Then M\T* is a minimal weakly prime
ideal of M containing I.

Proof. Let P be the partially ordered set of all ideals P of M such that
I C Pand T*N P = (. Similarly, as mentioned above (see Lemma 3.3), by
Zorn’s Lemma, P contains a maximal element Q).

Let U,V & @Q where U,V are two ideals of M. Let A= J(U)UQ,B =
J(V)U Q. We see that A and B are ideals with property Q@ C A,Q C B.
Hence, I C A,I C B, and by maximality of @}, we must have A,B ¢ P.
Thus, T*NA # 0, T*NB # 0. Let c€ T*N A,d € T* N B. Consequently,
since T* is an m-system, there exists x € M such that (cI'zI'd] NT* # 0.
Since c € T* N (J(U) U Q) and T* N Q = B, we must have ¢ € J(U) so that
c € M'TUTM?; similarly d € M'TVTM!. If UTV C Q, then (cI'zI'd] C
(M'TUT(M'T2TMY)TVI MY C Q, since Q is an ideal, and hence, (c['zI'd] C
T*NQ, contradicting the fact that 7*N@Q = (). By contraposition we conclude
that @ is a weakly prime ideal of M and thus, Q" = M\Q is an m-system if
it is nonempty. Since Q D I and Q NT™* = (), it follows that Q' NI = () and
T* C Q'. By maximality of T*, we must have Q' = T* so that M\T* = Q.

Let J be a weakly prime ideal of M such that @ D J D I. Then M\J D
M\Q = T* contradicting maximality of T* relative to the properties of T' C
T*,T*NI =10, since M\J is a m-system such that (M\J) D M and (M\J)N
I = (. Therefore, @ = M\T* is a minimal weakly prime ideal of M containing
I. O

The following lemma characterizes the semiprime ideals.

LEMMA 3.29. Let M be an ordered I'-semigroup and I be a semiprime
ideal of M. Then
1. If al'b C I, then al'zl'b C I,Vz € M.
2. If al'd™ C I, then al'b C I,n € N.
3. Ifailaol'..T'a,, C I, then a1lao I"..T'ap: C I for any permutation © of
{1,2,...,n}.

Proof. 1) If aI'b C I, then (bl'a)? = bI'(al'b)T'a C I and thus, bl'a C 1.
Let x € M. Then (al'2Tbh)? = al'z'(bT'a)T'2T'b C I and thus, al'xTb C I.

2) Let us prove the statement for n = 2, that is, let al't> C I. Then
(aI'b)I'b C I. Applying 1) for x = a, we have (al'0)['(al'b) C I, that is,
(al'b)? C I. Then we have al'b C I since I is semiprime. By induction we can
prove that if aI'0™ C I, then al'6 C I,n € N.

3) If aI'b C I, then (bI'a)? = bI'(al'b)l’a C I and thus, bl'a C I.
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Let us assume that aI'bI'c C I. Then we see successively that each of the
following sets is a subset of I: bI'cla, (bI'c)I'(al'c), (al'c)T'(bI'c), (bT'al'cl'd)Tc,
(cI'b)T(al'cl'd), (al'cl'b)?, al'clb, bl'al'c, cl'bla. Furthermore, the assumption
implies c['al'd C I. Hence, the assertion of the lemma is valid for n = 2, 3.

In order to complete the proof, we only need to show that al'zI'yl'b C I
implies al'yl'xl'b C I. Let us assume that al'zI'yI’'b C I. Then we see succes-
sively that each of the following sets is a subset of I: (xI'yI'b)T'a, bI'(aT'yl'bl'a),
(bla)T(yI'aTy), (bla)T(yI'z)?, (yTz)T(bLa)T (yI'z), (blal'ylz)?, bl (al'ylx),
al'ylzl'b. 0O

LEMMA 3.30. Let M be an ordered I'-semigroup, S be a m-system and I
a semiprime ideal of M, INS = (). Then there exists a maximal semiprime
ideal P with respect to the properties of I C P,P NS = (. Furthermore, the
following statements are true:
1. If a ¢ P, we denote P, = {b € Ml|ayb € P,Vy € '}, then P, = P.
2. P is a prime ideal of M.

Proof. The existence of such semiprime ideal P of M is easily seen by
Zorn’s Lemma.

(1) It is clear that P C P,. We have also P, C P. Indeed:

(A)If b e P,y € M,y < b, then ayy < ayb € P,¥y € I'. Thus,
ayy C P,Vy €T, that is, y € P,.

(B) Let € P.,y € M. Then al'z C P. It implies al'zT'y C P, that is,
zI'y C P). By Lemma 3.5(3), we have al'yI'z C P, that is, yI'z C P,.

(C) Let zyx € P.,Vy € T, for any x € M. Then aczyx € P,Va,vy € T,
by Lemma 3.5(2), we have acx € P,Va € T, that is, x € P,. Therefore, we
have that P, is a semiprime ideal of M. On the other hand,

(D) If a € S, then P, NS = (. Indeed: if b € SN P, then al'b C P and
there exists x € M such that (al'zI'b] NS # (. Furthermore, by Lemma 3.5(1),
we have al'2I'b C P, impossible. By hypothesis, P! = P.

(E) If a ¢ S, then also P, NS = 0. Indeed: if c € P, NS, then al'c C P,
thus, cl'a C P by Lemma 3.5(3). Therefore a € P.. Since P NS = (), we have
¢ ¢ P. By (D), P, = P, thus, a € P, which is impossible. By hypothesis,
P =P.

(2) By (1), if al'b C P,a ¢ P, then b € P, = P, that is, P is prime. [

It is easy to see that the nonempty intersection of weakly prime ideals of

an ordered I'-semigroup M is a weakly semiprime ideal. The following theorem
gives the converse [28].

THEOREM 3.31. FEvery weakly semiprime ideal I of an ordered I'-semigroup
M is the intersection of weakly prime ideals containing I.
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Proof. Let {Iy}aca are all weakly prime ideals of M containing I. Then
I € Npeala If do € M\I, we denote D = [dp), then there exists zo €
M such that (doI'zoI'do] N (M\I) # 0 since I is weakly semiprime (Lemma
3.2). Thus, there exists d € (dpI'zoI'dp] such that d € M\I, that is, d ¢ I.
Therefore dol'zgl'dg € I. Tt follows that (doT'zol'dg] N T # (). Let we denote
Dy = [doTzol'dy), di = doBozoyodo ¢ I, Bo,v € I'. Then, by induction we

oo

denote S = |J Dy, where D,, = [dy,),dn = dn—108n—1Zn—1Yn—-1dn—1,d; ¢ 1(i =

n=0

1,2,3,...), Bn—1,n—1 € . Tt is easily seen that SN T = (. We have that S
is a m-system of M. Indeed: Let a,b € S. Then there exist D;, D; such that
a € D;,b e Dj, thus,

a>d;=di 1817 1vi-1d;i—1,b > dj = dj 18175 17j-1dj 1
where 3;_1,8;-1,%i-1,7j-1 € L.

1) Ifi = j, then aﬁixzfyib Z dlﬂzl‘z’yzdz = di+1. Thus, [afmirb) ng-i,-l g S.
2) If j > 4, then

dj = dj1Bj-17j17j-1dj1
— dj_25j_2(l’j_Q’Yj_de_Qﬁj—lxj—lPyj—ldj—2ﬁj—2$j—2>7j_2dj_2
= ...= dlﬁzk%dz

for some k € M, 3;,~v; € I'. Thus,
aBi(kvidiBjx;)v;b = difikvidi Bjzjv;dj = djBjxvd; = djt.

Whence,

[aBi(kvidiBjx;)7;b) € Djy1 € 5.

3) If j < i, similar to 2), we can also prove that there exists h € M such
that [aT'hT'b) C D;y1 C S.

By 1), 2) and 3), we conclude that for any a,b € S, there exists z € M
such that (aI'zT'b] NS # (. By Defenition 3.1, we have S is a m-system of
M. By Lemmas 3.3, 3.4, there exists a maximal m-system S* relative to the
properties: I NS* =, S C S* and M\S* is a minimal weakly prime ideal
of M containing I. Since dy € S*, we have dy ¢ M\S*. Thus, do ¢ (e la-
Consequently, (yeala € 1. O

THEOREM 3.32. The following conditions on an ideal I of an ordered I'-
semigroup M are equivalent:
1. I is the intersection of prime ideals containing it.
2. 1 is the intersection of minimal prime ideals containing it.
3. I is the union of N -classes.

4. I is semiprime.
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Proof. 1) = 2). Let I = (),c4 la where each I, is a prime ideal. Let
fix a € A and let & be the partially ordered set of all prime ideals J of M for
which I € J C I,. Then S # () since I, € S. Let C be a chain in § and let
A=NoeeC. Then I € A C I, and A is an ideal of M. Since the partially
ordered set {M\C|C € C} forms a chain, it follows that M\A = Jqcc(M\C)
is an ordered sub-T-semigroup of M or is empty, which shows that A is a
prime ideal. Hence, A € & and the Minimal Principle assures the existence of
a minimal element, say J, in &. But then, J, is also minimal relative to the
property of being a prime ideal containing I. In addition

IC(NJaC () Ia=1

a€A acA

sol = Ja.
acA
2) = 3). This follows by Corollary 2.4.

3) = 4). Let I = |{(z)n]zr € I} and al'a C I. Then a € (a)y =
(aya)nr € 1,Vy €I so that a € I.

4) = 1). Let {Io}aca is the set of all prime ideals containing I. Then
I € Nyeala- If a ¢ I, by the proof of Theorem 3.5, we can construct a m-
system S such that a € S,S NI = (). By Lemma 3.6, there exists a prime
ideal P such that a ¢ P and I C P. Therefore, a ¢ () c4 lo.- Consequently,
Nucala 1. Thus, I =Npep Lo O

Definition 3.33. Let M be an ordered I'-semigroup and [ an ideal of M.
Then the subset of M
{x € M|(zy)" tx € I, for all v € T and for some n € N}

is called the radical of I and is denoted by VI
The following theorem is an immediate consequence of Definition 3.8.

THEOREM 3.34. Let M be an commutative ordered I'-semigroup, I an
ideal of M. Then VI is an ideal in M and I C /1.

It is clear that (\/.7] =+/I.

LEMMA 3.35. Let M be an commutative ordered I'-semigroup. Let I be a
semiprime ideal of M. Then I = VI.

Proof. Theorem 3.10 implies I C v/I. Let z € V/I, that is, there exists
an n € N such that (zy)" "'z € I,Vy € . Theorem 3.8 implies that I is the
intersection of prime ideals containing it. Let {P;};ca be the collection of all
prime ideals in M that contain I. We have I = N{P;};ca. Since (zv)"~! € I,
then for every i € A, ()" 'z € P;. Since P;, i € A are prime ideals, it follows
that x € P;, for all i € A. Thus, z € "{P,}iea=1. O
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COROLLARY 3.36. Let M be an commutative ordered I'-semigroup and I
be proper ideal in M. Then /T is semiprime.

Proof. Theorem 3.10 implies that the radical of I is a proper ideal in M
and VI C \/ﬁ . Let z € \/\ﬁ . Definition 3.9 implies that there exists an
n € N such that (zy)" 'z € v/I. Moreover, Definition 3.9 now implies that
there exists an m € N such that ((zy)" 'z)y)™ 'z € I. Thus, (xy)"" 1z eI
and Definition 3.0 implies = € VI. O

For any ideal I of an ordered I'-semigroup M, we write
I* = The intersection of all prime ideals containing I.

THEOREM 3.37. Let M be an commutative ordered I'-semigroup and I be
proper ideal in M. Then /I = I*.

Proof. Let & € M such that = € /I, that is, for some positive integer n
it is valid that "™ € I. Let P be a prime ideal in M that contains I. Since P
is prime and z" € P, it follows that x € P. Since P was an arbitrary prime
ideal in M containing I, it follows that € I*. Conversely, let us assume there
exists € I* such that for some v € T, (zy)" "'z ¢ I for all positive integer
n. Choose one such x and let S = {z,xvx, (vv)?z, ..., (xy)"x,...}. Since the
m-system S is a non-empty disjoint from I, that is, S NI = ), by Lemma 3.3
and Lemma 3.4, there exists a prime ideal @ O I such that Q NS = (. This
implies « ¢ Q. Thus, x ¢ I*, a contradiction. [

Another independent proof of the first part of the above proof is given as
follows:

Corollary 3.12 implies that /T is semiprime. By Theorem 3.8, v/T is the
intersection of all prime ideals containing it. Furthermore, if a prime ideal P
contains I, then for any = € VI, (zy)" 'z € I C P. Since P is prime, we have
x € P, that is, P contains v/I. Therefore, /T is the intersection of all prime
ideals containing I.

COROLLARY 3.38. Let M be an commutative ordered I'-semigroup and
A, B be proper ideal in M. Then
1. If AC B, then VA C V/B;
2. If ANB # 0, then VAN B =+vAN+VB.

Proof. (1). If z € /A, then there exists an n € N such that (z7)" 'z €
A C B. Hence, z € VB.

(2). Since AN B # 0, it is clear that A N B is an ideal in M. Let
x € VAN B. Then there exists an n € N such that (zy)" 'z € AN B.
Therefore, (zy)" 'z € A and (zy)" 'z € B and it follows that = € v/A and
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r € VB. Hence, x € VAN VB. Consequently, x € VANVB implies that
there exist n,m € N such that (z7)" 'z € A and (7)™ 'z € B. Clearly,
(zy)"™ 1z € ANB. Thus, x € VANB. O

COROLLARY 3.39. If I is a prime ideal in a commutative ordered I'-
semigroup M, then I is semiprime.

Proof. Theorem 3.10 implies I C v/I. Let {P;};c4 be the collection of all
prime ideals in M that contain I. Clearly, I € {P,;};,c4 and VI = NieaP; C 1.
Thus, I = v/I. Lemma 3.11 implies I is semiprime. [

When the ordered I'-semigroup M is not commmutative, the radical \/(I)
of the ideal I, in general, is not an ideal of M and therefore, it is not intersection
of all prime ideals containing I. The following example shows this.

Ezample 3.40. Let M = {a,b,c,d,e} and I' = {«, 5,7}. Then it can be
easily verified that M is a non-commutative ['-semigroup with the I'-multipli-
cation defined by

ala b ¢ d e Bla b ¢ d e yla b ¢ d e
alb b a b d a|lb b b b b ala b b d b
b|b b b b b b|b b b b b b|b b b b b
c|lb b ¢c b e c|b b b b b clc b b e b
dlb b b b b dla b b d b d|b b b b b
e|lb b b b b elc b b e b elb b b b b

It is easy verified that I = {b} is an ideal of M. Obviously, the radical
VI = {b,e} is not an ideal of M.
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