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Let A : Rm×n → Rm×n be a symmetric positive definite linear operator. In this
paper, we propose an iterative algorithm to solve the general matrix equation
A(X) = C which includes the Lyapunov matrix equation and Sylvester matrix
equation as special cases. It is proved that the sequence of the approximate
solutions, obtained by the presented algorithm, satisfies an optimality condition.
More precisely, the application of the proposed method is investigated for solving
the Sylvester matrix equation S(X) = C, where S is the well-known Sylvester
operator S(X) = AX + XB. In order to illustrate the effectiveness of the
algorithm, two numerical examples are given.
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1. INTRODUCTION

Linear matrix equations play a fundamental role in many areas, such as
control theory, system theory, stability theory and some other fields of pure
and applied mathematics (see [5, 6, 18, 19]). For instance, the solution of the
Sylvester matrix equation AX +XB = C can be utilized to parameterize the
feedback gains in pole assignment problem for linear system (for more details
see [1]). The Lyapunov matrix equation AX + XAT = −C has important
applications in stability analysis of linear systems [20].

In the literature, the problem of finding a solution to several linear matrix
equations has been investigated widely, for more details see [2, 4, 7, 8, 10, 12,
17] and the references therein. For example, Xie et al. [14] have developed
a gradient based and a least squares based iterative algorithms for solving
matrix equation AXB + CXTD = F . In [4], an iterative projection method
onto matrix Krylov subspace has been presented for solving the linear matrix
equation

(1)

q∑
i=1

AiXBi = C,
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where Ai ∈ Rn×n, Bi ∈ Rp×p, i = 1, 2, . . . , p, and C,X ∈ Rn×p. Li and Wang
[13] have proposed a gradient based iterative method for finding the minimal
norm least squares solution to the linear matrix equation (1).

More recently, Li et al. [12] have presented a new iterative method to
solve matrix equation AX = B, where A is a symmetric positive definite
(SPD) matrix. As shown, the sequence of approximate solutions produced by
the proposed method satisfies an optimality property. This fact inspires us to
extend the method to a new iterative method for solving more general linear
matrix equations. To do so, we consider the linear operator A : Rm×n → Rp×q,
and focus on the linear matrix equations of the following form:

(2) A(X) = C,

where C ∈ Rp×q is given and X ∈ Rm×n is an unknown matrix. Evidently,
many investigated linear matrix equations in the literature are included in
Eq. (2).

The rest of this paper is organized as follows. In Section 2, we define
a new inner product and recall some principles and definitions which are uti-
lized throughout this work. In Section 3, an iterative algorithm is presented
for solving Eq. (2). Moreover, it is proved that the sequence of approximate
solutions computed by the algorithm satisfy an optimality property. In Sec-
tion 4, we demonstrate how the algorithm can be used for solving the Sylvester
matrix equation AX +XB = C. Furthermore, it is shown that the algorithm
is convergent for solving Sylvester matrix equation. Section 5 is devoted for
reviewing two well-known iterative algorithms which will be numerically com-
pared with our method in the section of numerical experiments. In Section 6,
some numerical examples are presented to investigate the validity of the theo-
retical results, established in this work, and show that the proposed method is
effective and feasible for computing the solution of the Sylvester matrix equa-
tion AX + XB = C. Finally, the paper is ended with a brief conclusion in
Section 7.

2. PRELIMINARIES

In this section, we review some concepts which are used in the next sec-
tions. Furthermore, we introduce a new inner product which is utilized for
presenting an iterative method for solving (2).

The notation AT is used to denote the transpose of a matrix A. For two
matrices X and Y in Rm×n, we define the inner product 〈X,Y 〉 = trace(Y TX)
where trace(Y TX) stands for the trace of the matrix Y TX. The induced matrix
norm is the well-known Frobenius norm, i.e., ‖X‖2F = 〈X,X〉. For the matrix
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Z = (z1, z2, . . . , zn) ∈ Rm×n, the vector vec(Z) ∈ Rmn is obtained by stacking
the columns of the matrix Z, i.e., vec(Z) = (zT1 , z

T
2 , . . . , z

T
m)T . If z = vec(Z),

then we denote Z = unvec(z). In this paper, the following relations will be
used

vec(AXB) = (BT ⊗A)vec(X),
(vec(A))T vec(B) = trace(ATB),

where ⊗ denotes the Kronecker product operator (see [3, 11]).

Definition 2.1. Let A : Rm×n → Rp×q be a linear operator. The linear
operator A∗ : Rp×q → Rm×n is said to be the transpose of A if

〈A(X), Y 〉 = 〈X,A∗(Y )〉, for all X ∈ Rm×n, Y ∈ Rp×q.

A is said to be symmetric if A = A∗.

Definition 2.2. The linear operator A : Rm×n → Rm×n is said to be
symmetric positive definite (SPD), if

1) A = A∗,
2) 〈A(X), X〉 > 0, ∀X ∈ Rm×n.

Now, we introduce a new inner product denoted by 〈., .〉A. Assume that
A : Rm×n → Rm×n is a SPD linear operator. For two matrices X and Y in
Rm×n, the inner product < X,Y >A is defined such that

〈X,Y 〉A = 〈A(X), Y 〉, ∀X,Y ∈ Rm×n.

The corresponding induced norm is represented by ‖.‖A and defined such
that ‖X‖2A = 〈A(X), X〉, for X ∈ Rm×n. It is not difficult to see that < ., . >A
is an inner product.

Definition 2.3. Let the linear operator A : Rm×n → Rm×n be SPD. The
set of matrices {M1,M2, . . . ,Mp}, where Mi ∈ Rm×n, i = 1, . . . , p, is called
A-orthonormal if

〈Mi,Mj〉A =

{
1, i = j,
0, i 6= j.

3. THE PROPOSED ALGORITHM

This section is devoted to presenting an iterative algorithm to compute
the solution of (2) when A is SPD.

Assume that {M1,M2, . . . ,Mp} is a set of A-orthonormal matrices in
Rm×n. Let Mp = span{M1,M2, . . . ,Mp} and assume that Xk is the kth
approximate solution to (2). For computing the next approximate solution
Xk+1, we solve the following minimization problem

(3) min
X∈Xk+Mp

‖E(X)‖A ,
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where E(X) = X∗−X and X∗ is the exact solution of (2). As Xk+1 ∈ Xk+Mp,
we have:

(4) Xk+1 = Xk +

p∑
j=1

α
(k)
j Mj ,

where the scalars α
(k)
j ∈ R, j = 1, . . . , p, are to be determined.

Now, we establish the following useful proposition.

Proposition 3.1. Suppose that Xk+1 is computed by (4). Then,

α
(k)
j = 〈Rk,Mj〉, j = 1, . . . , p,

if and only if
〈Rk+1,Mi〉 = 0, i = 1, 2, . . . , p.

Proof. It is not difficult to see that

Rk+1 = Rk −
p∑

j=1

α
(k)
j A(Mj),

where Rk = C −A(Xk). Hence,

〈Rk+1,Mi〉 = 〈Rk,Mi〉 −
p∑

j=1

α
(k)
j 〈A(Mj),Mi〉

= 〈Rk,Mi〉 −
p∑

j=1

α
(k)
j 〈Mj ,Mi〉A

= 〈Rk,Mi〉 − α(k)
i ,

which completes the proof. �

Theorem 3.1. Assume that Xk+1 is computed by (4). Then, ‖Ek+1‖2A
is minimized if and only if α

(k)
j = 〈Rk,Mj〉, j = 1, . . . , p. In this case, the

following statement holds

(5) ‖Ek+1‖2A = ‖Ek‖2A −
p∑

j=1

(α
(k)
j )2,

where Ek = E(Xk).

Proof. Suppose that Xk+1, computed by (4), is the solution of (3). Let
X ∈ Xk +Mp, hence there exists αj ∈ R, (j = 1, 2, . . . , p) such that

X = Xk +

p∑
j=1

αjMj .
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It is not difficult to see that

E(X) = Ek −
p∑

j=1

αjMj , and A(E(X)) = A(Ek)−
p∑

j=1

αjA(Mj).

Using the fact that

〈A(Mj), Ek〉 = 〈Mj ,A(Ek)〉 = 〈A(Ek),Mj〉,

we derive:

‖E(X)‖2A = 〈A(E(X)), E(X)〉

= 〈A(Ek)−
p∑

j=1

αjA(Mj), Ek −
p∑

i=1

αiMi〉

= 〈A(Ek), Ek〉 − 2

p∑
j=1

αj〈Rk,Mj〉+

p∑
j=1

p∑
i=1

αjαi〈A(Mj),Mi〉

= ‖Ek‖2A − 2

p∑
j=1

αj〈Rk,Mj〉+

p∑
j=1

α2
j ,(6)

where Rk = A(Ek) = C − A(Xk). For Xk+1 to be a solution of (3), it is
necessary that

0 = (
∂

∂αj

‖E(X)‖2A) |X=Xk
= −2〈Rk,Mj〉+ 2α

(k)
j ,

or equivalently,

(7) α
(k)
j = 〈Rk,Mj〉 = trace(MT

j Rk), j = 1, . . . , p.

Conversely, suppose that Xk+1 is computed by (4) with α
(k)
j = 〈Rk,Mj〉,

j = 1, 2, . . . , p. For an arbitrary X ∈ Xk +Mp, straightforward computations
show that

‖E(X)‖2A = ‖X∗ −X‖2A = ‖X∗ −Xk+1 − (X −Xk+1)‖2A

= ‖Ek+1 −X‖2A = 〈A(Ek+1 −X), Ek+1 −X〉

= 〈A(Ek+1), Ek+1〉 − 2〈A(Ek+1), X〉+ 〈A(X), X〉

= ‖Ek+1‖2A − 2〈Rk+1, X〉+ ‖X‖2A,

where X = X − Xk+1 ∈ Mp. Since X ∈ Mp, Proposition 3.1 implies that
〈Rk+1, X〉 = 0. Therefore, we get:

‖E(X)‖2A = ‖Ek+1‖2A + ‖X‖2A,
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which shows that

‖E(X)‖2A ≥ ‖Ek+1‖2A.
The second part of theorem follows immediately from Eq. (6) by setting

X = Xk+1 = Xk +

p∑
j=1

α
(k)
j Mj ,

where the values α
(k)
j , for i = 1, 2, . . . , p, is determined by (7) . �

It is noted that Theorem 3.1 does not guarantee the convergence of the
method. However, in the next section, we will show that by providing some
mild conditions the convergence of the method is guaranteed for solving the
Sylvester matrix equation AX +XB = C.

Remark 3.1. Eq. (5) shows that ‖Ek+1‖2A ≤ ‖Ek‖2A. Therefore, ‖Ek‖2A →
α as k → ∞ for some α ∈ R. This shows that α

(k)
j → 0, as k → ∞ for

j = 1, . . . , p.

Using the above results, we can propose the following algorithm for solving
Eq. (2).

Algorithm 1. Prototype for the proposed method

1. Choose an initial guess X0 ∈ Rm×n and set R0 = C −A(X0).
2. For k = 0, 1, . . . , until convergence, Do
3. Choose a A-orthonormal set of matrices {M1, . . . ,Mp}.
4. α

(k)
j := trace(MT

j Rk), j = 1, . . . , p.

5. Xk+1 := Xk +
∑p

j=1 α
(k)
j Mj .

6. Compute Rk+1 = C −A(Xk+1).
7. EndDo

In general, one can use the Gram-Schmidt method to construct an A-
orthonormal set of matrices. Unfortunately, in general, it is difficult to con-
struct a simple A-orthonormal set of matrices similar to the one presented in
[12]. In the next section, we will propose two strategies for constructing such
a set for the Sylvester operator which are easy to employ.

4. APPLICATION TO THE SYLVESTER EQUATION

Consider the Sylvester matrix equation

(8) AX +XB = C,
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where A ∈ Rm×m, B ∈ Rn×n, C ∈ Rm×n are given matrices, and X ∈ Rm×n is
unknown. Using the following linear operator,

S : Rm×n → Rm×n

S(X) = AX +XB,

Eq. (8) can be reformulated as follows:

S(X) = C.

Theorem 4.1. The Sylvester operator S is SPD if and only if A = AT ,
B = BT and the matrix T = In×n ⊗A+BT ⊗ Im×m is SPD, where In×n and
Im×m are identity matrices of order m and n, respectively.

Proof. It is not difficult to verify that the Sylvester operator S is sym-
metric if and only if A = AT and B = BT . We show that S is positive definite
if and only if T is positive definite. To do so, let w ∈ Rmn and W = unvec(w).
In this case, we have w = vec(W ) and

wTT w = vec(W )T (In×n ⊗A+BT ⊗ Im×m)vec(W )

= vec(W )T vec(AW +WB)

= vec(W )T vec(S(W ))

= trace(W TS(W ))

= 〈S(W ),W 〉.

Let w 6= 0, hence W 6= 0. From the above relation, we have:

wTT w > 0⇔ 〈S(W ),W 〉 > 0,

which completes the proof. �

Remark 4.1. The eigenvalues of T are of the form λi + µj where λi’s and
µj ’s are the eigenvalues of A and B, respectively (see [11]). Therefore, S is
SPD if and only if T is symmetric and λi + µj > 0 for all i, j.

In continuation, we propose two strategies to construct a S-orthonormal
basis.

4.1. FIRST STRATEGY FOR CONSTRUCTING
A S-ORTHONORMAL BASIS

In this subsection, we propose a way to construct a S-orthonormal set

{M1, . . . ,Mp} where p ≤ min{m,n}. Let Rk = (r
(k)
ij ) ∈ Rm×n and set q = 1.

Let ri1j1 be the largest entry of Rk in absolute value. We set

M1 =
1

‖Ei1j1‖S
Ei1j1 ,
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where Ei1j1 is an m × n matrix whose (i1, j1) entry is equal to 1 and others
are equal to zero. In the qth step, q = 2, . . . , p, we ignore rows i1, . . . , iq−1 and
columns j1, . . . , jq−1 of Rk and find the largest entry (iq, jq) in the remaining
matrix. Next, we compute

Mq =
1

‖Eiqjq‖S
Eiqjq ,

where Eiqjq is an m×n matrix whose (iq, jq) entry is equal to 1 and others are
equal to zero. It is not difficult to verify that the set of matrices {M1, . . . ,Mp}
is S-orthonormal.

Evidently,

‖Eiqjq‖S =
√
〈S(Eiqjq), Eiqjq〉 =

√
Aiqiq +Bjqjq ,

and therefore,

α(k)
q = trace(MT

q Rk) =
riqjq√

Aiqiq +Bjqjq

.

As observed in the previous section, α
(k)
q → 0 as k → ∞. Therefore, we

conclude that Rk → 0 as k →∞ which shows that Xk → X∗.
According to the above results, we see that the Steps 4 and 5 of Algorithm

1 can be written pointwisely as follows:
• Xk+1 := Xk

• For k = 1, . . . , p, Do

• (Xk+1)ikjk := (Xk+1)ikjk +
rikjk

Aikik +Bjkjk
• End.

This shows that in each iteration of the method only p entries of the
current approximate solution of the system are modified.

4.2. SECOND STRATEGY FOR CONSTRUCTING
A S-ORTHONORMAL BASIS

When the method applied in this manner, we assume that the relation
p = min{m,n} holds. Without loss of generality, we may assume that p = n.
For k = 1 (at first iteration), let

(iq, jq) = (q, q), q = 1, . . . , n.

Then, in each iteration of the method, we set iq := iq + 1, q = 1, . . . , n. If
in > m, then we set in = 1. In this way, we have i` 6= it and j` 6= jt for ` 6= t.
Next, we use the method described in Subsection 4.1 to construct Mk’s. After
m iterations, all of the entries of the approximate solution X0 are updated
one time. This procedure would be repeated in the next iterations and this
guarantees the convergence of the method.
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5. REVIEW OF TWO WELL KNOWN METHODS

In the section of the numerical examples, we will compare the numerical
results of the proposed method with those of the gradient-based method [13]
and the global conjugate gradient (CG) method [9, 16] to solve the sylvester
matrix equation. Hence, in this section we briefly review these two methods.

It is not difficult to see that the gradient-based algorithm to solve the
SPD Sylvester matrix equation S(X) = C can be written as

Xk+1 = Xk + µ(C − S(Xk)), k = 0, 1, 2, . . . ,

where µ ∈ R and X0 is a given initial guess. The optimum value of µ is given
by

µopt =
2

λmax + λmin
,

where λmax and λmin, respectively, are the largest and smallest eigenvalues of
T which is defined in Theorem 2.

It is well-known that the global CG method is a generalization of the CG
algorithm to solve linear matrix equations. This method can be described in
the following (for more details see [9, 16]).

Algorithm 2. Global CG

1. Compute R0 = C − S(X0), P0 := R0.
2. For j := 0, 1, . . . , until convergence, Do
3. αj := 〈Rj , Rj〉/〈S(Pj), Pj〉
4. Xj+1 := Xj + αjPj

5. Rj+1 := Rj − αjS(Pj)
6. βj := 〈Rj+1, Rj+1〉/〈Rj , Rj〉
7. Pj+1 := Rj+1 + βjPj

8. EndDo

6. NUMERICAL EXPERIMENTS

In this section, we present two numerical examples to demonstrate the
efficiency and feasibly of the proposed algorithm. All the numerical exper-
iments given in this section were computed in double precision with some
Matlab codes. In all of the examples, we have utilized the initial guess

X0 = [X
(0)
ij ] ∈ Rm×n such that

X
(0)
ij =

{
1, i = j,
0, i 6= j.
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The following stopping criterion

δk =
‖R(k)‖F
‖R(0)‖F

<
1

2
× 10−7,

was used in both of the examples where R(k) = C − S(Xk). In what follows,
“NMS1”, “NMS2”, “GB” and “GLCG” stand for the new method with the
first strategy presented in Subsections 4.1, the new method with the second
strategy presented in Subsections 4.2, the gradient-based method with the
optimal parameter µopt and the global CG, respectively.

Example 6.1. In this example, we consider the Sylvester matrix equation
with

A =


1 1 −2 2 1
1 2 0 −2 3
−2 0 9 −10 5

2 −2 −10 40 0
1 3 5 0 30

 , B =


4 −2 2 −2
−2 17 3 5

2 3 18 8
−2 5 8 31

 ,

and the right-hand side

C =


5 26 34 45
6 27 35 46
4 25 33 44

32 53 61 72
41 62 70 81

 .

It is not difficult to check that the corresponding Sylvester operator S is
SPD. The exact solution of the system is an 5× 4 matrix of all ones.

To have a reasonable comparison, the number of iterations of the proposed
method is divided by m, since in each iteration of the method only p entries of
current approximate solution are modified, whereas in the other methods all
of the entries of the solution are modified in each iteration. For this example,
the optimal value of µ in the gradient-based method is µopt = 0.0241. The
NMS1, NMS2, GB and GlCG methods converge in 9, 17, 183 and 19 iterations,
respectively. As encountered, for this example, the NMS1 is the best among
these four methods. For more investigation, the graph of log10 δk are presented
in Figure 1.
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Fig. 1 – log10 δk for Example 6.1.

Example 6.2. Let

A =


4 2 −8
2 4 2

. . .
. . .

. . .

2 4 2
−8 2 4

 , B =


8 1 −0.5
1 8 1

1 8 1
1 8 1

−0.5 1 8

 ,

where A ∈ R10×10, B ∈ R5×5 and

C =


6.5 8 · · · 8 6.5
16.5 18 · · · 18 16.5

...
...

...
...

...
16.5 18 · · · 18 16.5
6.5 8 · · · 8 6.5

 ∈ R10×5.

The exact solution of the corresponding Sylvester matrix equations is a
10× 5 matrix of all ones. All of the assumptions are as the previous example.
It is noted that the optimal value of µ in the gradient-based method for this
example is µopt = 0.0839. For this example, the NMS1, NMS2, GB and GlCG
methods converge in 12, 38, 94 and 21 iterations, respectively. As seen, for this
example, the NMS1 is the best among these four methods. For more details,
the graph of log10 δk are illustrated in Figure 2.
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Fig. 1 – log10 δk for Example 6.2.

7. CONCLUSION

We have proposed a useful iterative method for solving symmetric posi-
tive definite matrix equations. Moreover, it has been established that, in each
iteration, the new approximate solution calculated by the algorithm is the solu-
tions of a minimization problem. The application of the proposed method has
been discussed for solving the symmetric positive definite Sylvester equation
AX + XB = C with more details. Two numerical examples have been given
to illustrate the efficiency of the method. For the presented examples, the new
method in conjunction with the proposed method in Subsection 4.1 were the
best. Future works may focus on the generalization of the method to general
symmetric positive definite matrix equations. One may also focus on making
a preconditioner for Sylvester matrix equations.
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