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Let G be a finite group. The prime graph of G is denoted by Γ(G). In this
paper as the main result, we show that if G is a finite group such that Γ(G) =
Γ(Ln(2α)), where n = 4m+3, 3 - α and α is odd, then G has a unique nonabelian
composition factor isomorphic to Ln(2α). We also show that if G is a finite
group satisfying |G| = |Ln(2α)| and Γ(G) = Γ(Ln(2α)), then G ∼= Ln(2α). As a
consequence of our result we give a new proof for a conjecture of W. J. Shi and
J. X. Bi for Ln(2α). Application of this result to the problem of recognition of
finite simple groups by the set of element orders are also considered. Specially it
is proved that by the above conditions, Ln(2α) is quasirecognizable by spectrum.

AMS 2010 Subject Classification: 20D05, 20D60, 20D08.

Key words: rime graph, simple group, recognition, quasirecognition.

1. INTRODUCTION

If n is an integer, then we denote by π(n) the set of all prime divisors of n.
If G is a finite group, then π(|G|) is denoted by π(G). The spectrum of a finite
group G which is denoted by ω(G) is the set of its element orders. We construct
the prime graph of G which is denoted by Γ(G) as follows: the vertex set is π(G)
and two distinct primes p and q are joined by an edge (we write p ∼ q) if and
only if G contains an element of order pq. Let s(G) be the number of connected
components of Γ(G) and let πi(G), i = 1, ..., s(G), be the connected components
of Γ(G). If 2 ∈ π(G) we always suppose that 2 ∈ π1(G). In graph theory a
subset of vertices of a graph is called an independent set if its vertices are
pairwise non-adjacent. Denote by t(G) the maximal number of primes in π(G)
pairwise non-adjacent in Γ(G). In other words, if ρ(G) is some independent set
with the maximal number of vertices in Γ(G), then t(G) = |ρ(G)|. Similarly if
p ∈ π(G), then let ρ(p,G) be some independent set with the maximal number
of vertices in Γ(G) containing p and t(p,G) = |ρ(p,G)|.

A finite group G is called recognizable by prime graph if Γ(H) = Γ(G)
implies that H ∼= G. A nonabelian simple group P is called quasirecognizable
by prime graph if every finite group whose prime graph is Γ(P ) has a unique
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nonabelian composition factor isomorphic to P (see [11]). Obviously recogni-
tion (quasirecognition) by prime graph implies recognition (quasirecognition)
by spectrum, but the converse is not true in general. Also some method of
recognition by spectrum cannot be used for recognition by prime graph.

Hagie in [8], determined finite groups G satisfying Γ(G) = Γ(S), where
S is a sporadic simple group. It is proved that if q = 32n+1 (n > 0), then
the simple group 2G2(q) is uniquely determined by its prime graph [11, 31]. A
group G is called a CIT group if G is of even order and the centralizer in G of
any involution is a 2-group. In [14], finite groups with the same prime graph as
a CIT simple group are determined. It is proved that the simple group F4(q),
where q = 2n > 2, (see [12]), and 2F4(q), (see [1]), are quasirecognizable by
prime graph. Also in [10], it is proved that if p is a prime number which is
not a Mersenne or Fermat prime and p 6= 11, 13, 19 and Γ(G) = Γ(PGL(2, p)),
then G has a unique nonabelian composition factor which is isomorphic to
PSL(2, p) and if p = 13, then G has a unique nonabelian composition factor
which is isomorphic to PSL(2, 13) or PSL(2, 27). Then it is proved that if p
and k > 1 are odd and q = pk is a prime power, then PGL(2, q) is uniquely
determined by its prime graph [2].

In [3], it is proved that if p = 2n + 1 ≥ 5 is a prime number, then 2Dp(3)
is quasirecognizable by prime graph. Then in [5], the authors proved that
2D2m+1(3) is recognizable by prime graph.

In [13, 19], finite groups with the same prime graph as PSL(2, q), where q
is not prime, are determined. Also in [15], it is proved that if p > 11 is a prime
number and p 6≡ 1 (mod 12), then PSL(2, p) is uniquely determined by its
prime graph. In [16–18, 20] finite groups with the same prime graph as Ln(2)
are obtained. Let G = Ln(2k). In [7, 22, 28], it is proved that the recognizablity
problem by spectrum is solved for n = 4, n = 16 and for n = 2m ≥ 32. Also
recognizability by spectrum for simple groups PSL(2, q), was proved in [5].

In this paper as the main result, we show that if G is a finite group such
that Γ(G) = Γ(Ln(2α)), where n = 4m + 3 ≥ 27, 3 - α and α is odd, then
G has a unique nonabelian composition factor isomorphic to Ln(2α), i.e. the
simple group Ln(2α) is quasirecognizable by prime graph. As a consequence of
our result it is proved that Ln(2α) is quasirecognizable by spectrum.

In this paper, all groups are finite and by simple groups we mean non-
abelian simple groups. All further unexplained notations are standard and
refer to [6]. Throughout the proof we use the classification of finite simple
groups. In ([25], Tables 2–9), independent sets also independent numbers for
all simple groups are listed and we use these results in the proof of the main
theorem of this paper.
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2. PRELIMINARY RESULTS

Lemma 2.1 ([27], Theorem 1]). Let G be a finite group with t(G) ≥ 3 and
t(2, G) ≥ 2. Then the following hold:

1. there exists a finite nonabelian simple group S such that S ≤ Ḡ = G/K ≤
Aut(S) for the maximal normal soluble subgroup K of G.

2. for every independent subset ρ of π(G) with |ρ| ≥ 3 at most one prime
in ρ divides the product |K||Ḡ/S|. In particular, t(S) ≥ t(G)− 1.

3. one of the following holds:

(a) every prime r ∈ π(G) non-adjacent to 2 in Γ(G) dose not divide the
product |K||Ḡ/S|; in particular, t(2, S) ≥ t(2, G).

(b) there exists a prime r ∈ π(K) non-adjacent to 2 in Γ(G); in which
case t(G) = 3, t(2, G) = 2, and S ∼= Alt7 or L2(q) for some odd q.

Remark 2.2. In Lemma 2.1, for every odd prime p ∈ π(S), we have
t(p, S) ≥ t(p,G)− 1.

Lemma 2.3 (Zsigmondy Theorem, [32]). Let p be a prime and let n be a
positive integer. Then one of the following holds:

(i) there is a primitive prime p′ for pn − 1, that is , p′ | (pn − 1) but
p′ - (pm − 1), for every 1 ≤ m < n, (usually p′ is denoted by rn)

(ii) p = 2, n = 1 or 6,
(iii) p is a Mersenne prime and n = 2.

Remark 2.4 ([23]). Let p be a prime number and (q, p) = 1. Let k ≥ 1
be the smallest positive integer such that qk ≡ 1 (mod p). Then k is called
the order of q with respect to p and we denote it by ordp(q). Obviously by the
Fermat’s little theorem it follows that ordp(q)|(p− 1). Also if qn ≡ 1 (mod p),
then ordp(q)|n. Similarly if m > 1 is an integer and (q,m) = 1, we can define
ordm(q). If a is odd, then orda(q) is denoted by e(a, q), too. If q is odd, let
e(2, q) = 1 if q ≡ 1 (mod 4) and e(2, q) = 2 if q ≡ −1 (mod 4)

Lemma 2.5 ([21]). Let N be a normal subgroup of G. Assume that G/N
is a Frobenius group with Frobenius kernel F and cyclic Frobenius complement
C. If (|N |, |F |) = 1, and F is not contained in NCG(N)/N , then p|C| ∈ πe(G),
where p is a prime divisor of |N |.

Lemma 2.6 ([9]). Let G be a finite simple group An−1(q).

1. If there exists a primitive prime divisor r of qn − 1, then G contains
a Frobenius subgroup with kernel of order r and cyclic complement of
order n.

2. G contains a Frobenius subgroup with kernel of order qn−1 and cyclic
complement of order (qn−1 − 1)/(n, q − 1).
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Lemma 2.7 ([9]). Let G be a finite simple group.

1. If G = Cn(q), then G contains a Frobenius subgroup with kernel of order
qn and cyclic complement of order (qn − 1)/(2, q − 1).

2. If G = 2Dn(q), and there exists a primitive prime divisor r of q2n−2− 1,
then G contains a Frobenius subgroup with kernel of order q2n−2 and
cyclic complement of order r.

3. If G = Bn(q) or Dn(q), and there exists a primitive prime divisor rm
of qm − 1 where m = n or n − 1 such that m is odd, then G contains a
Frobenius subgroup with kernel of order qm(m−1)/2 and cyclic complement
of order rm.

Lemma 2.8 ([25], Proposition 2.1]). Let G = An−1(q) be a finite simple
group of Lie type over a field of characteristic p. Let r and s be odd primes
and r, s ∈ π(G) \ {p}. Denote k = e(r, q) and l = e(s, q) and suppose that
2 ≤ k ≤ l. Then r and s are non-adjacent if and only if k + l > n, and k does
not divide l.

3. MAIN RESULTS

We prove a refinement of Lemma 2.5, which is used in the proof of the
main theorem.

Lemma 3.1. Let G be a group satisfying the conditions of Lemma 2.1,
and let the groups K and S be as in the claim of Lemma 2.1. Let there exist
p ∈ π(K) and p′ ∈ π(S) such that p � p′ in Γ(G), and S contains a Frobenius
subgroup with kernel F and cyclic complement C such that (|F |, |K|) = 1.
Then p|C| ∈ ω(G).

Proof. We claim that F � KCG(K)/K. Since KCG(K)/K E G/K, so
S∩KCG(K)/KES. Let S∩KCG(K)/K = S. Then S ≤ KCG(K)/K. So for
every t′ ∈ π(S) and t ∈ π(K) we have t′ ∼ t, which is a contradiction. Conse-
quently S ∩KCG(K)/K = 1, since S is a simple group. So F � KCG(K)/K,
since F ≤ S. Therefore p|C| ∈ ω(G), by Lemma 2.5. �

Remark 3.2. In the sequel of this paper, let M = Ln(q), where n =
4m + 3 ≥ 27, q = 2α, 3 - α, and α is odd. Also we denote a primitive
prime divisor of qi − 1 by ri. We note that π(M) = π(qn(n−1)/2

∏n
i=2(q

i − 1)).
Also we know that ρ(2,M) = {2, rn−1, rn}, t(M) = [(n + 1)/2] ≥ 14 and
ρ(M) = {ri | [n/2] < i ≤ n}.

Lemma 3.3. By the above assumptions, we have ρ(5,M) = {5, rn−2, rn−1, rn}
also we have t(13,M) = 12.
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Proof. We know that e(5, 2α) = 4, since α is odd. If ri ∈ π(M), then
ri � 5 in Γ(M), if and only if i+ 4 > n and 4 - i, by Lemma 2.8. Therefore 5
is not adjacent to rn, rn−1 and rn−2. Also by ρ(M) in Remark 3.2, rn, rn−1
and rn−2 are pairwise nonadjacent in Γ(M), so ρ(5,M) = {5, rn−2, rn−1, rn}.

On the other hand, we know that e(13, 2α) = 12, since (12, α) = 1. If
ri ∈ π(M), then ri � 13 in Γ(M), if and only if i + 12 > n and 12 - i, by
Lemma 2.8. Therefore t(13,M) = 12 and the proof is completed. �

Lemma 3.4. Let G = Dε
n(q′), where 4 | (n− 1) and e(5, q′) = 4.

1. If ε = +, then ρ(5, S) = {5, r′n, r′n−2, r′2(n−1)}.
2. If ε = −, then ρ(5, S) = {5, r′2n, r′2(n−1), r

′
2(n−2)}.

Proof. If r′i ∈ π(G), such that r′i � 5 in Γ(G), then by ([26], Proposi-
tion 2.5), we have:

2η(i) + 4 > 2n− (1− ε(−1)i+4) and i/4 is not odd.

Let ε = +. Therefore 5 is not adjacent to r′n, r′n−2 and r′2(n−1). Also

by [25, Table 8], r′n, r′n−2 and r′2(n−1) are pairwise nonadjacent in Γ(G), so

ρ(5, G) = {5, r′n, r′n−2, r′2(n−1)}.
Similarly, if ε = −, then ρ(5, S) = {5, r′2n, r′2(n−1), r

′
2(n−2)}. �

Lemma 3.5. In the prime graph of M , either rn � 7 � rn−1 or 7 � rn−2.

Proof. we know that e(7, 2α) = 3, since 3 - α. If ri ∈ π(M), then ri � 7 in
Γ(M), if and only if i+ 3 > n and 3 - i, by Lemma 2.8. Therefore if 3 | (n− 2),
then rn � 7 � rn−1, otherwise 7 � rn−2 in Γ(M). �

Theorem 3.6. The simple group M = Ln(q), where n = 4m + 3 ≥ 27,
q = 2α, 3 - α, and α is odd, is quasirecognizable by prime graph, i.e. if G
is a finite group such that Γ(G) = Γ(M), then G has a unique nonabelian
composition factor isomorphic to M .

Proof. We know that t(M) ≥ 14, and t(2,M) = 3. By Lemma 2.1, there
exists a nonabelian simple group S, such that S ≤ Ḡ = G/K ≤Aut(S), where
K is the maximal normal soluble subgroup of G.

We know that {rn, rn−1} ⊆ ρ(2, G). Therefore {rn, rn−1} ⊆ π(S) and
rn � 2 � rn−1 in Γ(S). By Lemma 2.1, we know that t(S) ≥ 13 and t(2, S) ≥ 3.
In the sequel we consider each possibility for S by ([29], Tables 1a–1c):

Step 1. The simple group S cannot be isomorphic to an alternating
group An′ , where n′ ≥ 5.

Since t(S) ≥ 13, it follows that n′ ≥ 17. If x ∈ π(An′) such that x � 13,
then n′ − 13 < x ≤ n′, by [25, Proposition 1.1]. On the other hand, there
exist at least [13/2] + [13/3] − [13/6] = 8 elements of [n′ − 12, n′], which are
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divisible by 2 or 3. Therefore at most 5 elements of [n′ − 12, n′] are prime
numbers. Hence, t(13, S) ≤ 6. Therefore by Remark 2.2, t(13, G) ≤ 7, which
is a contradiction, by Lemma 3.3.

Step 2. If S is a classical Lie type group, then we will prove that S ∼= M .
We prove the result in the following cases.

We denote by D+
n′(q′) the simple group Dn′(q′), and by D−n′(q′) the simple

group 2Dn′(q′).

Case 1. Let S ∼= Dε
n′(q′), where q′ = pf .

(a) Let p 6= 2.

We know that t(2, S) ≥ 3, which implies that n′ ≡ 1 (mod 2) and if
ε = +, then q′ ≡ 5 (mod 8) and if ε = −, then q′ ≡ 3 (mod 8), by ([25], Table
6). Therefore n′ is odd. In the rest of this case we consider the simple groups
Dn′(q′) and 2Dn′(q′) simultaneously.

• If S ∼= Dn′(q′), then each r′i, where i /∈ {n′, 2(n′ − 1)}, is adjacent to
2 in Γ(S) and ρ(2, S) = {2, r′n′ , r′2(n′−1)}, by [25, Proposition 4.4]. We

know that rn � 2 � rn−1 in Γ(S). Therefore rn and rn−1 are some
primitive prime divisors of q′n

′ − 1 and q′2(n
′−1) − 1, say r′n′ and r′2(n′−1).

In the sequel of this paper for simplicity we use the following notation to
illustrate these relations:

(1) {rn, rn−1} ≈ {r′n′ , r′2(n′−1)}.

On the other hand, using Lemma 3.3 we have rn � 5 � rn−1 in Γ(G),
and so r′n′ � 5 � r′2(n′−1) in Γ(S).

◦ If S ∼= 2Dn′(q′), then ρ(2, S) = {2, r′2n′ , r′2(n′−1)}, by ([25], Proposi-

tion 4.4). Similarly to the above we have

(2) {rn, rn−1} ≈ {r′2n′ , r′2(n′−1)},

and r′2n′ � 5 � r′2(n′−1) in Γ(S).

now we consider two following cases:
I First suppose that p = 13, and so q′ = 13f . We know that e(5, q′) | 4, by
Fermat’s little theorem.

Step 1. In this step, we determine ρ(5, S).

• If S ∼= Dn′(q′), then we claim that e(5, q′) = 4. If e(5, q′) = 1, then
5 ∼ r′n′ in Γ(S), by ([26], Proposition 2.5), since n′ is odd, which is a
contradiction. If e(5, q′) = 2, then 5 ∼ r′2(n′−1), by [26, Proposition 2.5],

which is a contradiction. Therefore e(5, q′) = 4. As we mentioned above
5 � r′2(n′−1) in Γ(S). Therefore by ([26], Proposition 2.5), we have 2(n′−
1) + 4 > 2n′ − (1− (−1)4+2(n′−1)) and 2(n′ − 1)/4 is not an odd integer.
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Since n′ is odd we conclude that 4 | (n′ − 1). Now using Lemma 3.4, we
have ρ(5, S) = {5, r′n′ , r′n′−2, r

′
2(n′−1)}.

◦ If S ∼= 2Dn′(q′), then we claim that e(5, q′) = 4. If e(5, q′) = 1, then
5 ∼ r′2(n′−1) in Γ(S), by ([26], Proposition 2.5), which is a contradiction.

If e(5, q′) = 2, then 5 ∼ r′2n′ , by ([26], Proposition 2.5), which is a
contradiction. Therefore e(5, q′) = 4. We know that 5 � r′2(n′−1) in Γ(S)

and similarly to the previous case, by using ([26], Proposition 2.5), we
have 4 | (n′ − 1) and ρ(5, S) = {5, r′2n′ , r′2(n′−1), r

′
2(n′−2)}, by Lemma 3.4.

Step 2. Now we prove that rn−2 ∈ π(S).

Otherwise rn−2 ∈ π(K) ∪ π(Ḡ/S). If rn−2 ∈ π(Ḡ/S), then rn−2 ∈ π(Out
(S)) = {2} ∪ π(f). We know that rn−2 6= 2 and if rn−2 | f , then rn−2 is
the order of a field automorphism of S. We know that a field automorphism
centralizes the elements of Dε

n′(13) and 5 ∈ π(Dε
n′(13)). So 5 is adjacent to

rn−2, which is a contradiction, by Lemma 3.3. Therefore rn−2 ∈ π(K).

• If S ∼= Dn′(q′), then by Lemma 2.7, Dn′(q′) contains a Frobenius sub-
group of the form q′n

′(n′−1)/2 : r′n′ . Since rn ∈ π(S), rn � rn−2 in Γ(G)
and (rn−2, q

′) = 1, then by Lemma 3.1, rn−2 ∼ r′n′ . Therefore using (1),
rn−2 ∼ rn or rn−2 ∼ rn−1, which is a contradiction, by Lemma 3.3.

◦ If S ∼= 2Dn′(q′), then by Lemma 2.7, 2Dn′(q′) contains a Frobenius sub-
group of the form q′2(n

′−1) : r′2(n′−1). Since rn ∈ π(S), rn � rn−2 in

Γ(G) and (rn−2, q
′) = 1, then by Lemma 3.1, rn−2 ∼ r′2(n′−1), which is a

contradiction, by (2) and Lemma 3.3.

Thus, rn−2 ∈ π(S). On the other hand, we note that e(7, 13) = 2, and so
e(7, q′) | 2.

Step 3. Finally we prove that rn−2 � 7 in Γ(G) and we get a contradiction.

• Let S ∼= Dn′(q′), so rn−2 = r′n′−2, by Lemma 3.4. If e(7, q′) = 1, then
r′n′ ∼ 7 in Γ(S), by ([26], Proposition 2.5), and if e(7, q′) = 2, then
r′2(n′−1) ∼ 7 in Γ(S), by ([26], Proposition 2.5). Therefore by (1) and

Lemma 3.5, rn−2 � 7 in Γ(G) and so r′n′−2 � 7 in Γ(S). Using ([26],
Proposition 2.5), we see that r′n′−2 ∼ 7 in Γ(S) either e(7, q′) = 1 or 2,
which is a contradiction.

◦ Let S ∼= 2Dn′(q′), so rn−2 = r′2(n′−2), by Lemma 3.4. Similarly to the

above case, we have r′2(n′−2) � 7 in Γ(S), which is a contradiction, by

([26], Proposition 2.5).

I Therefore p 6= 13. We know that t(13, G) = 12, by Lemma 3.3, so t(13, S) ≥
11. On the other hand, e(13, q′) | 12. Let e(13, q′) = t. If r′i ∈ π(S), such
that r′i � 13 in Γ(S), then by ([26], Proposition 2.5), we have 12 + 2η(i) ≥
2η(t) + 2η(i) > 2n′ − (1− ε(−1)t+i).
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• Let S ∼= Dn′(q′). We consider two following cases:
(i) Let t be an even number. If i is an even number, then i ∈ {2(n′ −
5), 2(n′ − 4), 2(n′ − 3), 2(n′ − 2), 2(n′ − 1)}, and if i is an odd number,
then i ∈ {n′ − 6, n′ − 4, n′ − 2, n′}. Therefore t(13, S) ≤ 10, which is a
contradiction.
(ii) Let t be an odd number. If i is an even number, then i ∈ {2(n′ −
6), 2(n′ − 5), 2(n′ − 4), 2(n′ − 3), 2(n′ − 2), 2(n′ − 1)}, and if i is an odd
number, then i ∈ {n′ − 4, n′ − 2, n′}. Therefore t(13, S) ≤ 10, which is a
contradiction, again.

◦ Let S ∼= 2Dn′(q′). We consider two following cases:
(i) Let t be an even number. If i is an even number, then i ∈ {2(n′ −
6), 2(n′ − 5), 2(n′ − 4), 2(n′ − 3), 2(n′ − 2), 2(n′ − 1), 2n′}, and if i is an
odd number, then i ∈ {n′ − 4, n′ − 2}. Therefore t(13, S) ≤ 10, which is
a contradiction.
(ii) Let t be an odd number. If i is an even number, then i ∈ {2(n′ −
5), 2(n′−4), 2(n′−3), 2(n′−2), 2(n′−1), 2n′}, and if i is an odd number,
then i ∈ {n′ − 6, n′ − 4, n′ − 2}. Therefore t(13, S) ≤ 10, which is a
contradiction.

(b) By the above discussions p = 2 and so q′ = 2f .

If n′ ≡ 1 (mod 2), then since ρ(2, S) is similar to the 2-independence
set in (a), similarly to the proof of (a) we get a contradiction. So let n′ ≡ 0
(mod 2).

• If S ∼= Dn′(q′), then similarly to the above {rn, rn−1} ≈ {r′n′−1, r
′
2(n′−1)}.

We know that π(S) ⊆ π(G), so 2(n′ − 1)f ≤ nα. Now we consider the
following cases:
I Let rn = r′n′−1.
Let p0 be a primitive prime divisor of 2nα−1. Then p0 is a primitive prime
divisor of (2α)n − 1. Since rn = r′n′−1, it follows that p0 | (2(n

′−1)f − 1).
Therefore nα ≤ (n′ − 1)f , which is a contradiction.
I Let rn = r′2(n′−1).
Let p0 be a primitive prime divisor of 2nα − 1. Similarly to the above
nα ≤ 2(n′ − 1)f , since rn = r′2(n′−1). Consequently nα = 2(n′ − 1)f . By
the assumptions, we know that n and α are odd, which is a contradiction.

◦ If S ∼= 2Dn′(q′), similarly to the above {rn, rn−1} ≈ {r′2n′ , r′2(n′−1), r
′
n′−1}.

We know that π(S) ⊆ π(G), so 2n′f ≤ nα. We consider the following
cases:
I Let rn = r′n′−1.
Let p0 be a primitive prime divisor of 2nα−1. Then p0 is a primitive prime
divisor of (2α)n − 1. Since rn = r′n′−1, it follows that p0 | (2(n

′−1)f − 1).
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Therefore nα ≤ (n′ − 1)f , which is a contradiction.
I Let rn = r′2(n′−1). Similarly to the above we get a contradiction.

I Let rn = r′2n′ .
Similarly to the above we have nα ≤ 2n′f . Therefore nα = 2n′f . We
know that n and α are odd, which is a contradiction.

Case 2. Let S ∼= Cn′(q′) or Bn′(q′), where q′ = pf .

We know that t(2, S) ≥ 3. Then p = 2 and n′ > 1 is odd, by ([25], Table
4). In this case, we have ρ(2, S) = {2, r′n′ , r′2n′}, by ([25], Proposition 4.3).
Similarly to the above {rn, rn−1} ≈ {r′n′ , r′2n′}. On the other hand, we know
that π(S) ⊆ π(G), so 2n′f ≤ nα. We consider the following cases:

I Let rn = r′n′ .

Let p0 be a primitive prime divisor of 2nα − 1. Then p0 is a primitive
prime divisor of (2α)n − 1. Since rn = r′n′ , it follows that p0 | (2n

′f − 1).
Therefore nα ≤ n′f , which is a contradiction.

I Let rn = r′2n′ .

Similarly to the above we have nα ≤ 2n′f . Therefore nα = 2n′f . We
know that n and α are odd, which is a contradiction.

We denote by A+
n′(q′) the simple group An′(q′), and by A−n′(q′) the simple

group 2An′(q′).

Case 3. Let S ∼= Aεn′−1(q
′), where q′ = pf and ε ∈ {+,−}.

We know that t(S) ≥ t(G)−1 ≥ 13. Therefore [(n′+1)/2] ≥ [(n+1)/2]−1
which implies that n′ > n− 4.

(a) Let p 6= 2.

We know that t(2, S) ≥ 3, and so by ([25], Table 6), 2 < n′2 = (q′ − ε1)2.
In the sequel, for convenience we state the proof for An′−1(q) and 2An′−1(q),
simultaneously.

• If S ∼= An′−1(q
′), then each r′i, where i /∈ {n′ − 1, n′}, is adjacent to 2 in

Γ(S) and ρ(2, S) = {2, r′n′−1, r
′
n′}, by ([25], Table 6) and ([25], Proposi-

tion 4.1). We know that rn � 2 � rn−1 in Γ(S). Therefore similarly to
the above

(3) {rn, rn−1} ≈ {r′n′ , r′n′−1},

On the other hand, rn � 5 � rn−1 in Γ(G), by Lemma 3.3. Therefore
r′n′ � 5 � r′n′−1 in Γ(S).

◦ If S ∼= 2An′−1(q
′), then each r′i, where i /∈ {n′, 2(n′ − 1)}, is adjacent

to 2 in Γ(S) and ρ(2, S) = {2, r′n′ , r′2(n′−1)}, by ([25], Table 6) and ([25],

Proposition 4.1). Similarly to the above we have

(4) {rn, rn−1} ≈ {r′n′ , r′2(n′−1)}.
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Also we know that rn � 5 � rn−1 in Γ(G). Hence, r′n′ � 5 � r′2(n′−1) in

Γ(S).

Let p 6= 5. We know that e(5, q′) | 4.

• If S ∼= An′−1(q
′) and 2 | e(5, q′), then 5 ∼ r′n′ , by ([25], Proposition 2.1),

since n′2 > 2, which is a contradiction. Therefore e(5, q′) = 1 and so
5 | (q′ − 1).

◦ If S ∼= 2An′−1(q
′) and e(5, q′) = 4 or e(5, q′) = 1, then 5 ∼ r′n′ , by ([25],

Proposition 2.2), which is a contradiction. Therefore e(5, q′) = 2 and so
5 | (q′ + 1).

Now we prove that rn−2 ∈ π(S).

Otherwise, rn−2 ∈ π(K)∪π(Ḡ/S). If rn−2 ∈ π(Ḡ/S), then rn−2 ∈ π(Out
(S)) ⊆ {2}∪π(f(n′, q′− ε1)). We know that rn−2 6= 2. If rn−2 | (q′− ε1), then
rn−2 ∈ π(S), since (q′−ε1) | |S|, which is a contradiction. If rn−2 | f , then rn−2
is the order of a field automorphism of S. We know that a field automorphism
centralizes the elements of Aεn′−1(p) and 5 ∈ π(Aεn′−1(p)). So 5 is adjacent to
rn−2, which is a contradiction, by Lemma 3.3. Therefore rn−2 ∈ π(K).

• If S ∼= An′−1(q
′), then it is proved that 5 | (q′ − 1). By Lemma 2.6,

An′−1(q
′) contains a Frobenius subgroup of the form q′n

′−1 : (q′n
′−1 −

1)/(n′, q′ − 1). Since rn ∈ π(S), rn � rn−2 in Γ(G) and (rn−2, q
′) = 1,

then by Lemma 3.1, rn−2 ∼ π((q′n
′−1 − 1)/(n′, q′ − 1)). So rn−2 ∼ r′n′−1,

which is a contradiction, by (3) and Lemma 3.3.

◦ If S ∼= 2An′−1(q
′), then 5 | (q′ + 1). By [24], we have Cn′/2(q

′) ≤
2An′−1(q

′). By Lemma 2.7, Cn′/2(q
′) contains a Frobenius subgroup of

the form q′n
′/2 : (q′n

′/2 − 1)/2. Since rn ∈ π(S), rn � rn−2 in Γ(G)
and (rn−2, q

′) = 1, then by Lemma 3.1, rn−2 ∼ π((q′n
′/2 − 1)/2). Since

n′2 > 2, then (q′2 − 1) | (q′n′/2 − 1) so rn−2 ∼ 5, which is a contradiction,
by Lemma 3.3.

Thus, rn−2 ∈ π(S) and so t(5, S) ≥ 4. As we mentioned above 5 | (q−ε1)
and 5 � rn−2, by Lemma 3.3.

• If S ∼= An′−1(q
′), then by [25, Proposition 4.1], each r′i, where i /∈ {n′ −

1, n′}, is adjacent to 5 in Γ(S). Therefore t(5, S) ≤ 3 and we get a
contradiction.

◦ If S ∼= 2An′−1(q
′), then by [25, Proposition 4.2], each r′i, where i /∈

{2(n′ − 1), n′}, is adjacent to 5 in Γ(S) and so t(5, S) ≤ 3, which is a
contradiction.

Therefore p = 5 and so q′ = 5f .

• Let S ∼= An′−1(q
′). We know that e(19, 5f ) | 9. Let r′i ∈ π(S), such

that r′i � 19 in Γ(S). If e(19, 5f ) = 1, then i ∈ {n′ − 1, n′}, by ([25],
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Proposition 4.1), so t(19, S) ≤ 3. Otherwise i ∈ {n′, ..., n′−8}, by Lemma
2.8 so t(19, S) ≤ 9. Therefore by Lemma 2.2, t(19, G) ≤ 10. On the other
hand, we know that e(19, 2) = 18. Then e(19, 2α) = 18, since (18, α) = 1.
If ri ∈ π(G), such that ri � 19 in Γ(G), then by Lemma 2.8, i+ 18 > n,
18 - i and i - 18. Therefore t(19, G) ≥ 12, which is a contradiction.

◦ Let S ∼= 2An′−1(q
′). Since q′ = 5f , then (q′ + 1)2 = 2, which is a

contradiction.

(b) Therefore p = 2 and so q′ = 2f .

• If S ∼= An′−1(q
′), then each r′i, where i /∈ {n′ − 1, n′}, is adjacent to 2 in

Γ(S) and ρ(2, S) = {2, r′n′ , r′n′−1}, by ([25], Proposition 3.1). Therefore
similarly to the above {rn, rn−1} ≈ {r′n′ , r′n′−1}. We know that π(S) ⊆
π(G), so n′f ≤ nα. Now we consider the following cases:
I Let rn = r′n′−1 and rn−1 = r′n′ .
Let p0 be a primitive prime divisor of nα−1. Then p0 is a primitive prime
divisor of (2α)n − 1. Since rn = r′n′−1, it follows that p0 | (2(n

′−1)f − 1).
Therefore nα ≤ (n′ − 1)f , which is a contradiction.
I Let rn = r′n′ and rn−1 = r′n′−1.
Similarly to the above nα ≤ n′f , since rn = r′n′ . Therefore nα = n′f .
On the other hand, let p′0 be a primitive prime divisor of 2(n−1)α − 1, so
p′0 | (2(n

′−1)f − 1). Consequently, (n − 1)α | (n′ − 1)f , and so α | f . If
α 6= f , then α ≤ f/2 and so n ≥ 2n′. Therefore n ≤ 8, since n− 4 < n′,
which is a contradiction. Consequently, α = f and n = n′. Hence,
S ∼= M .

◦ Let S ∼= 2An′−1(q
′). We consider the following cases:

(i) Let n′ ≡ 0 (mod 4). Then ρ(2, S) = {2, r′n′ , r′2(n′−1)}, by ([25], Propo-

sition 3.2). Therefore similarly to the above {rn, rn−1} ≈ {r′n′ , r′2(n′−1)}.
We know that π(S) ⊆ π(G), so 2(n′ − 1)f ≤ nα. Let rn = r′n′ . If p0 be
a primitive prime divisor of 2nα − 1, then p0 is a primitive prime divisor
of (2α)n − 1. Therefore p0 | (2n

′f − 1), it follows that nα ≤ n′f , which is
a contradiction. Therefore rn = r′2(n′−1). Similarly, nα ≤ 2(n′ − 1)f and

so nα = 2(n′ − 1)f , which is a contradiction, since n and α are odd.

(ii) Let n′ ≡ 1 (mod 4). Then ρ(2, S) = {2, r′2n′ , r′n′−1}, by ([25], Propo-
sition 3.2) and similarly to the above {rn, rn−1} ≈ {r′2n′ , r′n′−1}, and we
get a contradiction.

(iii) Let n′ ≡ 2 (mod 4). Then ρ(2, S) = {2, r′n′/2, r
′
2(n′−1)}, by ([25],

Proposition 3.2). Therefore similarly to the above we get a contradiction.

(iv) Let n′ ≡ 3 (mod 4). Then ρ(2, S) = {2, r′2n′ , r′(n′−1)/2}, by ([25],

Proposition 3.2) and similarly to the above we get a contradiction.
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Therefore, S ∼= Ln(2α), and so the quasirecognition by prime graph is
proved. �

Theorem 3.7. Let q = 2α, where α is odd and 3 - α. If Γ(G) = Γ(Ln(q)),
where n = 4m + 3 ≥ 27, then Ln(q) ≤ G/K ≤ Aut (Ln(q)), where K is a p-
group, where p = 2 or p | (q2 − 1).

Proof. By Lemma 2.1, we know that S ≤ G/K ≤ Aut (S), where K is
the maximal normal soluble subgroup of G. By Theorem 3.6, S ∼= Ln(2α).
Let there exists p such that p | |K|. We claim that without loss of generality
we can consider K as an elementary abelian p-group for p ∈ π(G). Since K
is soluble so there is p ∈ π(G) such that Op(K) 6= K. Then K/Op(K) is a
nontrivial p-group. Let K̂ = K/Op(K) and Ĝ = G/Op(K), since Op(K) is
a characteristic subgroup of K and K C G. If the Frattini subgroup of K̂ is
denoted by Φ(K̂), then K̂/Φ(K̂) is an elementary abelian p-group and we have

G

K
∼=
Ĝ

K̂
∼=
Ĝ/Φ(Ĝ)

K̂/Φ(K̂)
.

Therefore, without loss of generality we can assume that K is an elemen-
tary abelian p-group. Let p 6= 2.

We claim that if t ∈ π(Ln(2α)), then t � rn or t � rn−1. Let a = e(t, 2α).
If a = 1, then t � rn and t � rn−1, by ([25], Proposition 4.1). If a > 1, t ∼ rn
and t ∼ rn−1, then by Lemma 2.8, a | n and a | (n− 1) or (n− 1) + a ≤ n, we
get that a = 1, which is a contradiction.

By Lemma 2.7, Ln(q) contains a Frobenius subgroup with kernel of order
qn−1 and cyclic complement of order (qn−1 − 1)/(n, q − 1). By assumption,
S ≤ G/K, and so G/K contains a Frobenius subgroup T/K of the form qn−1 :
(qn−1 − 1)/(n, q − 1). Since p 6= 2 and we know that p � rn or p � rn−1, by
Lemma 3.1, it follows that p ∼ rn−1. Also we know that Ln−1(q) ↪→ Ln(q),
and so Ln−1(q) ≤ G/K. Similarly G/K contains a Frobenius subgroup of
the form qn−2 : (qn−2 − 1)/(n − 1, q − 1), by Lemma 2.7. Now p 6= 2 and
p � rn or p � rn−1. Therefore using Lemma 3.1, we get that p ∼ rn−2. Let
e(p, q) = l. Since p ∼ rn−1, it follows that (n − 1) + l ≤ n or l | (n − 1), by
Lemma 2.8. Similarly since p ∼ rn−2 it follows that (n−2)+l ≤ n or l | (n−2).
Consequently, l ≤ 2, so p | (q2 − 1). �

Theorem 3.8. Let G be a finite group satisfying |G| = |Ln(2α)|, where
n = 4m+ 3 ≥ 27, 3 - α and α is odd. If Γ(G) = Γ(Ln(2α)), then G ∼= Ln(2α).

Proof. By assumption, Γ(G) = Γ(Ln(2α)). Now by Theorem 3.6, it follows
that G has a normal series S ≤ G/K ≤ Aut (S) such that S ∼= Ln(2α). Also
|G| = |Ln(2α)| and so K = 1. Therefore, G ∼= Ln(2α). �
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Corollary 3.9. Let G be a finite group satisfying |G| = |Ln(2α)|, where
n = 4m+ 3 ≥ 27, 3 - α and α is odd. If ω(G) = ω(Ln(2α)), then G ∼= Ln(2α).

We note that recently this theorem is proved for each finite simple group
(see [30]).

Corollary 3.10. Let n = 4m + 1, 3 - α and α be odd. Then Ln(2α)
is quasirecognizable by spectrum, i.e. if G is a finite group such that Γ(G) =
Γ(Ln(2α)), then G has a unique nonabelian composition factor isomorphic to
Ln(2α).
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