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Consider a two-dimensional backward heat conduction problem for a simple do-
main such as a rectangle or a square. Based on the fundamental solution to the
heat equation, we propose to solve this problem by a Fourier truncated method,
through which we obtain a well-posed solution. The well-posedness of the pro-
posed regularized problem and convergence property of the regularizing solution
to the exact one are also be to proven. Some error estimates are given to show
the efficiency of our method. The numerical example is presented to show the
validity of the proposed methods.
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1. INTRODUCTION

Let T > 0 and Ω = (0, π)×(0, π). We consider the problem of determining
u(x, y, 0) from the following system

(1)


ut − uxx − uyy = f(x, y, t),

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0,

u(x, y, T ) = g(x, y),

where (x, y, t) ∈ Ω× (0, T ). The functions f ∈ L2(0, T ;L2(Ω)) and g ∈ L2(Ω)
may be given inexactly. The problem is called the backward heat problem
(BHP) or the final value problem.

It is known in general that the backward problem is ill-posed, i.e., a so-
lution does not always exist, and in the case of existence, it does not depend
continuously on the given datum. In fact, from a small noise contaminated
physical measurement, the corresponding solutions may have a large error.
This makes the numerical computation difficult. Hence, a regularization is
needed. In the mathematical literatures, various methods have been proposed
for solving backward Cauchy problems. We can notably mention the method of
quasi-solution (QS method) of Tikhonov [25], the method of quasi-reversibility
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(QR method) of Lattes and Lions [13, 17, 19], the method of logarithmic con-
vexity [4, 3, 10, 15, 16, 20], the quasi boundary value method (Q.B.V. method)
[6, 23, 27]. Physically, this problem arises from the requirement of recovering
heat temperature at some earlier time using the knowledge of the final tem-
perature. The problem is also involved in the situation of a particle moving
in an environment with constant diffusion coefficient (see [7]) when one asks
to determine the particle position history from its current place. The interest
of backward heat equations also comes from financial mathematics, where the
celebrated BlackScholes model [2] for call option can be transformed into a
backward parabolic equation whose form is related closely to backward heat
equations.

Although there are many papers on the linear homogeneous case of the
backward problem, we only find a few papers on the nonhomogeneous case.
Particularly, the two dimensional case of this one is rarely studied. For the
nonhomogeneous and nonlinear cases, we refer the reader to some recent papers
of Feng Xiao-Li [8], D.D. Trong and his group [26, 27, 29, 30, 31, 32]. Let
us mention here some approaches of many earlier works and their technical
difficulties. Physically, g can only be measured, there will be measurement
errors, and we would actually have some data function gε, for which

‖gε − g‖L2 ≤ ε

where the constant ε > 0 represents a bound on the measurement error. Let
u and vε be the exact solution and the approximate solution of the given
backward heat problem respectively. In [29, 30], the errors are of order 1

1+ln T
ε

.

The error estimates in [27] are ε
t
T for t > 0 and

(
ln 1

ε

)−1
4 for t = 0. Feng

Xiao-Li and coauthors [8] gave the error estimates of order
(

4T
ln 1

ε

) p
2

for p > 0.

Very recently, in [30], Trong and Tuan improve the previous stability results

with the order ε
t
T

(
T

1+ln(T
ε

)

)1− t
T

. From the discussed errors, we see that the

error estimates of most regularization methods in the literatures are Hölder
type, i.e.,

‖u(., ., t)− vε(., ., t)‖L2(Ω) ≤ Cεq,(2)

where C is the constant depending on u, 0 < q < 1 is a real number which
does not depend on t, u and ε is the noise level of final data u(x, y, T ). The
major object of this paper is to provide a truncation regularization method to
established the Hölder estimates such as (2). By Theorem 1, the solution of
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Problem (1) is given by the form
(3)

u(x, y, t) =
∞∑

m,n=1

e(T−t)(m2+n2)gmn −
T∫

0

e(s−t)(m2+n2)fmn(s)ds

sin(mx)sin(ny)

where

g(x, y) =

∞∑
m,n=1

gmn sin(mx) sin(ny),

f(x, y, t) =
∞∑

n,m=1

fmn(t) sin(mx) sin(ny)

are the expansions of g and f respectively.
Since t < T , we know from (3) that, when m2 + n2 become large,

exp{(T−t)(m2 +n2)} increases very quickly. Therefore, the term e(T−t)(m2+n2)

is the unstability’s cause. So, we hope to recover the stability of Problem (3)
by filtering the high frequencies with a suitable method. The essence of our
regularization method is just to eliminate all high frequencies from the solution,
and instead consider (3) only for m2 + n2 ≤ Mε, where Mε is an appropriate
positive constant satisfying lim

ε→0
Mε = ∞. The technique involved in the trun-

cation method is applied for the heat problem in an arbitrary open, bounded
domain Ω with smooth boundary in R2. In fact, we state a few properties of
the eigenvalues of the operator −∆ on an open, bounded domain with zero
Dirichlet boundary condition. One can also refer to chapter 6.5 in [7].

Theorem on Eigenvalues of the Laplace operator.
1. Each eigenvalues of −∆ is real. The family of eigenvalues {λp}∞p=1

satisfy 0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ ..., and λp →∞ as p→∞.
2. There exists an orthonormal basis {Xp}∞p=1 of L2(Ω), where Xp ∈

H1
0 (Ω) is an eigenfunction corresponding to λ:

(4)

{
∆Xp(x) = −λpXp(x), x ∈ Ω

Xp(x) = 0, x ∈ ∂Ω,

for p = 1, 2, ... In practice, for an arbitrary domain Ω, the eigenvalues λp
defined in (4) could be computed by some numerical methods and it may have
the numerical errors. Hence, the regularized solution in this case is difficult
to compute. In this paper, for simple theory and numerical computations, we
choose the domain Ω is a square in R2 in order to get the exactly eigenvalues,
such as λmn = m2 + n2 .

The paper is organized as follows. In Section 2, we shall construct the
regularized problem and show that it works even with a very weak condition
on the exact solution. In Section 3, the error estimates are derived. Finally,
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in Section 4, we present a numerical example which show the validity of the
proposed methods.

2. THE ILL-POSED BACKWARD HEAT PROBLEM

Let us first make clear what a weak solution of the Problem (1) is. We
call a function u ∈ C

(
[0, T ];H1(Ω)

)
∩ C1((0, T );L2(Ω)) to be a weak solution

for the Problem (1) if

(5)
d

dt
〈u(., ., t),W 〉L2(Ω) − 〈u(., ., t),∆W 〉L2(Ω) = 〈f(., ., t),∆W 〉L2(Ω) ,

and 〈u(., ., T ),W 〉L2(Ω) = 〈g(., .),W 〉L2(Ω)for any function W ∈ H2(Ω)∩H1
0 (Ω).

In fact, it is enough to chooseW in the orthogonal basis {2π sin(mx) sin(ny)}n,m≥1

and the formula (5) reduces to

(6) umn(t) = e(T−t)(n2+m2)gnm −
T∫
t

e(s−t)(n2+m2)fnm(s)ds, ∀m,n ≥ 1

where

umn(t) =
4

π2

∫ π

0

∫ π

0
u(x, y, t) sin(mx) sin(ny)dxdy

fmn(s) =
4

π2

∫ π

0

∫ π

0
f(x, y, s) sin(mx) sin(ny)dxdy

gmn =
4

π2

∫ π

0

∫ π

0
g(x, y) sin(mx) sin(ny)dxdy.

The solution to the Problem (1) may also be written formally as
(7)

u(x, y, t)=

∞∑
n,m=1

e−(t−T )(n2+m2)gmn −
T∫
t

e−(t−s)(n2+m2)fmn(s)ds

sin(mx)sin(ny).

Note that if the exact solution u is smooth then the exact data (f, g) is
smooth also. However, the obtained data, which come from practical measure,
is often discrete and non-smooth. We shall therefore always assume that f ∈
L2((0, T );L2(Ω)) and g ∈ L2(Ω) and the error of the data is given on L2 only.
Note that the expression (7) is the solution of Problem (1) if it exists. In the
following Theorem, we provide a condition of its existence.

Theorem 1. The Problem (1) has a unique solution u if and only if

∞∑
n,m=1

eT (n2+m2)gmn −
T∫

0

es(n
2+m2)fmn(s)ds

2

<∞.(8)
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Proof. Suppose the Problem (1) has a solution u ∈ C([0, T ];H1
0 (Ω)) ∩

C1((0, T );L2(Ω)), then u can be given in (7). This implies that

umn(0) = eT (n2+m2)gmn −
T∫

0

es(n
2+m2)fmn(s)ds.(9)

Then

‖u(., ., 0)‖2L2(Ω) =

∞∑
n,m=1

eT (n2+m2)gmn −
T∫

0

es(n
2+m2)fmn(s)ds

2

<∞.

If (8) holds, then define v(x, y) as the function

v(x, y)=

∞∑
n,m=1

eT (n2+m2)gmn −
T∫

0

es(n
2+m2)fmn(s)ds

sin(mx) sin(ny)∈L2(Ω).

Consider the problem

(10)


ut − uxx − uyy = f(x, y, t),

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0, t ∈ (0, T )

u(x, y, 0) = v(x, y), (x, y) ∈ (0, π)× (0, π).

Problem (10) has a unique solution u (See [7]). We have

u(x, y, t) =
∞∑

n,m=1

(
e−t(n

2+m2)〈v(x, y), sin(mx) sin(ny)〉

+

t∫
0

e(s−t)(n2+m2)fmn(s)ds

 sin(mx) sin(ny).(11)

Let t = T in (11), we have

u(x, y, T ) =

=

∞∑
n,m=1

e−T (n2+m2)

eT (n2+m2)gmn −
T∫

0

es(n
2+m2)fmn(s)ds


+

T∫
0

e(s−T )(n2+m2)fmn(s)ds

 sin(mx) sin(ny)

=
∞∑

n,m=1

gmn sin(mx) sin(ny) = g(x, y).

Hence, u is the unique solution of (1). �
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Theorem 2. Problem (1) has at most one solution in C([0, T ];H1
0 (Ω))∩

C1((0, T );H2(Ω)).

Proof. The proof can be found in [7]. �

In spite of the uniqueness, Problem (1) is still ill-posed and a regulariza-
tion is necessary. In the next Section, we establish the approximation for the
problem.

3. REGULARIZATION AND ERROR ESTIMATE

In this section, we introduce a regularized problem and investigate the
error estimate between the regularized solution and the exact one. Assume
that fε and gε are measured data satisfying

‖fε − f‖L2(0,T ;L2(Ω)) ≤ ε, ‖gε − g‖L2(Ω) ≤ ε.

Let us define a regularization solution of problem for noisy data gε as
follows:

uε(x, y, t) =

m2+n2≤Mε∑
m,n≥1

uεmn(t) sin(mx) sin(ny)(12)

where

uεmn(t) = e(T−t)(m2+n2)(gε)mn −
T∫
t

e(s−t)(m2+n2) (fε)mn (s)ds

and

(gε)mn =
4

π2
〈gε(x, y), sin(mx) sin(ny)〉L2(Ω),

(fε)mn =
4

π2
〈fε(x, y, t), sin(mx) sin(ny)〉L2(Ω).

Theorem 3. The solution of Problem (12) depends continuously on
(gε, fε) ∈ L2(Ω)× L2(0, T ;L2(Ω)).

Proof. Let u and v be two solutions of (12) corresponding to the values
(g1
ε , f

1
ε ) and (g2

ε , f
2
ε ). We have

u(x, y, t) =

m2+n2≤Mε∑
m,n≥1

(
e(T−t)(m2+n2)(g1

ε )mn

−
T∫
t

e(s−t)(m2+n2)
(
f1
ε

)
mn

(s)ds
)

sin(mx) sin(ny)
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and

v(x, y, t) =

m2+n2≤Mε∑
m,n≥1

(
e(T−t)(m2+n2)(g2

ε )mn

−
T∫
t

e(s−t)(m2+n2)
(
f2
ε

)
mn

(s)ds
)

sin(mx) sin(ny).

Using the inequality (a− b)2 ≤ 2(a2 + b2), we have

|u(., ., t)− v(., ., t)‖2L2(Ω) =

=
π2

4

∑
m,n≥1,m2+n2≤Mε

∣∣∣e(T−t)(m2+n2)
(

(g1
ε )mn − (g2

ε )mn

)

−
T∫
t

e(s−t)(m2+n2)
(
f1
ε − f2

ε

)
mn

(s)
)

ds

∣∣∣∣∣∣
2

≤ π2

2

∑
m,n≥1,m2+n2≤Mε

∣∣∣e(T−t)Mε

(
(g1
ε )mn − (g2

ε )mn

)∣∣∣2

+

T∫
t

∣∣∣e(s−t)Mε

( (
f1
ε − f2

ε

)
mn

(s)
)∣∣∣2 ds

≤ π2

2
e2(T−t)Mε

∞∑
m,n≥1

( ∣∣(g1
ε )mn − (g2

ε )mn
∣∣2 +

T∫
t

∣∣(f1
ε − f2

ε

)
mn

(s)
∣∣2 ds

)
.

Then, we obtain

‖u(., ., t)−v(., ., t)‖2L2(Ω)≤e
2(T−t)Mε

(
‖g1
ε−g2

ε ‖2L2(Ω)+
∥∥f1

ε −f2
ε

∥∥2

L2(0,T ;L2(Ω))

)
. �

Remark 1. If Mε = 1
T ln

(
T

ε+ε ln(T
ε

)

)
then the stability magnitude of the

method is of order

U1(ε) = eTMε = ε−1

(
1 + ln(Tε )

T

)−1

.

Note that the stability magnitude of methods given in [4, 27] is

U2(ε) = Dε−1

and in [6, 28], it is

U3(ε) =
T

ε+ ε ln(Tε )
.
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We note that U1(ε) < U2(ε) and U1(ε) < U3(ε) for all t ∈ [0, T ]. Hence,
the stability magnitude of our well-posed problem is much better, especially
when t = 0, than the stability magnitudes given by quasi-reversibility method
and quasi-boundary value method.

Theorem 4. For each h ∈ L2(Ω), we put

hmn =
4

π2

∫
Ω

h(x, y) sin(mx) sin(ny)dxdy,

ΓM (h)(x, y) =

m2+n2≤M∑
m,n≥1

hmn sin(mx) sin(ny).

Then, we have:

(i) If h ∈ L2(Ω) then lim
M→+∞

‖ΓM (h)− h‖2L2(Ω) = 0.

(ii) If h ∈ H1
0 (Ω) then lim

M→+∞
‖ΓM (h)− h‖2H1

0 (Ω) = 0 and

‖ΓM (h)− h‖L2(Ω) ≤
4

π2
√
M
‖h‖H1

0 (Ω) .

(iii) If h ∈ H1
0 (Ω) and ∆h∈L2(Ω) then lim

M→+∞
‖∆ΓM (h)−∆h‖2L2(Ω) = 0

and

‖ΓM (h)− h‖L2(Ω) ≤
4

π2M
‖∆h‖L2(Ω) ,

‖ΓM (h)− h‖H1
0 (Ω) ≤

4

π2
√
M
‖∆h‖L2(Ω) .

Proof. (i) By Parseval equality we get∑
m,n≥1

|hmn|2 =
4

π2
‖h‖2L2(Ω) .

We have

‖ΓM (h)− h‖2L2(Ω) =

∥∥∥∥∥∥
∑

m,n≥1;m2+n2>M

hmn sin(mx) sin(ny)

∥∥∥∥∥∥
2

L2(Ω)

=
π2

4

∑
m,n≥1;m2+n2>M

|hmn|2,

and it implies that lim
M→+∞

‖hM − h‖2L2(Ω) = 0.

(ii) Assume that h ∈ H1
0 (Ω). Using integration by parts, we have
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Ω

h(x, y) sin(mx) sin(ny)dxdy = − 1

m
h(x, y) sin(ny) cos(mx)|∂Ω

+
1

m

∫
Ω

hx(x, y) cos(mx) sin(ny)dxdy =
1

m

∫
Ω

hx(x, y) cos(mx) sin(ny)dxdy

and∫
Ω

h(x, y) sin(mx) sin(ny)dxdy = − 1

n
h(x, y) sin(mx) cos(ny)|∂Ω

+
1

n

∫
Ω

hy(x, y) sin(mx) cos(ny)dxdy =
1

n

∫
Ω

hy(x, y) sin(mx) cos(ny)dxdy.

Therefore, we get

hmn =
4

π2m

∫
Ω

hx(x, y) cos(mx) sin(ny)dxdy

=
4

π2n

∫
Ω

hy(x, y) sin(mx) cos(ny)dxdy.

It follows that

(m2 + n2) |hmn|2 =
16

π4

∫
Ω

hx(x, y) cos(mx) sin(ny)dxdy

2

+
16

π4

∫
Ω

hy(x, y) sin(mx) cos(ny)dxdy

2

,

and then∑
m,n≥1

(m2 + n2) |hmn|2 ≤
64

π6
‖hx‖2L2(Ω) +

64

π6
‖hy‖2L2(Ω) =

64

π6
‖h‖2H1

0 (Ω) .

We see that

‖ΓM (h)− h‖2H1
0 (Ω) =

∥∥∥∥∂hM∂x − ∂h

∂x

∥∥∥∥2

L2(Ω)

+

∥∥∥∥∂hM∂y − ∂h

∂y

∥∥∥∥2

L2(Ω)

=

∥∥∥∥∥∥
∑

m,n≥1;m2+n2≥M

mhmn cos(mx) sin(ny)

∥∥∥∥∥∥
2

L2(Ω)

+

∥∥∥∥∥∥
∑

m,n≥1;m2+n2≥M

nhmn sin(mx) cos(ny)

∥∥∥∥∥∥
2

L2(Ω)
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=
π2

4

∑
m,n≥1;m2+n2≥M

(m2 + n2)|hmn|2,

and it implies that lim
M→+∞

‖hM − h‖H1
0 (Ω) = 0.

Moreover,

‖ΓM (h)− h‖2L2(Ω) =
π2

4

∑
m,n≥1;m2+n2≥M

|hmn|2

≤ π2

4M

∑
m,n≥1;m2+n2≥M

(m2 + n2)|hmn|2 ≤
16

π4M
‖h‖2H1

0 (Ω) .

(iii) Assume that h ∈ H1
0 (Ω) and ∆h ∈ L2(Ω). By a similar way, we get

hmn =
4

π2m2

∫
Ω

hxx(x, y) sin(mx) sin(ny)dxdy

=
4

π2n2

∫
Ω

hyy(x, y) sin(mx) sin(ny)dxdy.

It follows that

(m2 + n2)hmn =
4

π2
(∆h)mn

and then ∑
m,n≥1

|(m2 + n2)hmn|2 =
64

π6
‖∆h‖2L2(Ω) .

We have

‖∆ΓM (h)−∆h‖2L2(Ω) =

∥∥∥∥∥∥
∑

m,n≥1;m2+n2≥M

(m2 + n2)hmn sin(mx)sin(ny)

∥∥∥∥∥∥
2

L2(Ω)

=
π2

4

∑
m,n≥1;m2+n2≥M

|(m2 + n2)hmn|2

and it implies that lim
M→+∞

‖∆hM −∆h‖2L2(Ω) = 0.

In addition, we have

‖ΓM (h)− h‖2L2(Ω) =
π2

4

∑
m,n≥1;m2+n2≥M

|hmn|2

≤ π2

4M2

∑
m,n≥1;m2+n2≥M

|(m2 + n2)hmn|2 ≤
16

π2M2
‖∆h‖2L2(Ω) ,
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and

‖ΓM (h)− h‖2H1
0 (Ω) =

π2

4

∑
m,n≥1;m2+n2≥M

(m2 + n2)|hmn|2

≤ π2

4M

∑
m,n≥1;m2+n2≥M

|(m2 + n2)hmn|2 ≤
16

π4M
‖∆h‖2L2(Ω) .

Hence, the proof is completed. �

Theorem 5. Let f ∈ L2(0, T ;L2(Ω)) and g ∈ L2(Ω) such that system (1)
has a (unique) solution

u ∈ C
(
[0, T ];H1

0 (Ω)
)
∩ C1((0, T );L2(Ω)).

If we select

Mε =
ln(ε−1)

2T
,

then lim
ε→0+

‖uε(., ., 0)− u(., ., 0)‖H1
0 (Ω) = 0 and

‖uε(., ., 0)− u(., ., 0)‖L2(Ω) ≤
4
√

2

πT
4
√
ε+

4
√

2T

π2
‖u(., ., 0)‖H1

0 (Ω) .
1√

ln(ε−1)

Moreover, if ∆u(., ., 0)∈L2(Ω) then lim
ε→0+

‖∆uε(., ., 0)−∆u(., ., 0)‖L2(Ω) =0

and

‖uε(., ., 0)− u(., ., 0)‖L2(Ω) ≤
4

π
√
T

4
√
ε+

8T

π2
‖∆u(., ., 0)‖L2(Ω) .

1

ln(ε−1)
,

‖uε(., ., 0)− u(., ., 0)‖H1
0 (Ω) ≤

4
√

2

πT
4
√
ε+

4
√

2T

π2
‖u(., ., 0)‖H1

0 (Ω) .
1√

ln(ε−1)
.

Proof. Denote uε = uε(x, y, 0) and recall (uε)mn = 〈uε(x, y, 0), sin(mx)
sin(ny)〉. By Theorem 4, we can approximate u(., ., 0) by ΓMε(u(., ., 0)). There-
fore, now we just need to estimate the error between uε and ΓMε(u(., ., 0)).

Step 1. Estimate |(uε)mn − (ΓMε(u(., ., 0)))mn|.
The error vanishes when m2+n2>Mε. In the case m2 +n2 ≤Mε one has

|(uε)mn − (ΓMε(u(., ., 0)))mn| = |uε,m,n − (u(x, y, 0))mn| =

=

∣∣∣∣∣∣e(m2+n2)T (gε − g)mn −
T∫

0

e(m2+n2)t (fε(x, y, t)− f(x, y, t))mn dt

∣∣∣∣∣∣
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≤ e(m2+n2)T |(gε − g)mn|+
T∫

0

e(m2+n2)t |(fε(x, y, t)− f(x, y, t))mn| dt

≤ 4

π2
e(m2+n2)T ‖gε − g‖L1(Ω) +

4

π2
e(m2+n2)T

T∫
0

‖fε(., ., t)− f(., ., t)‖L1(Ω) dt

≤ 8

π2
e(m2+n2)T ε ≤ 8

π2
eMεT ε =

8

π2

√
ε.

Step 2. Estimate errors between uε and ΓMε(u(., ., 0)).
Notice that ε−1/2 = eMεT > (MεT )k/k! for k = 2, 3, 4. We have

‖uε − ΓMε(u(., ., 0))‖2L2(Ω) =

=

∥∥∥∥∥∥
∑

m,n≥1;m2+n2≤Mε

((uε)mn − (u(., ., 0))mn) sin(mx) sin(ny)

∥∥∥∥∥∥
2

L2(Ω)

=
π2

4

∑
m,n≥1;m2+n2≤Mε

|(uε)mn − (u(., ., 0))mn|2.(13)

Moreover, since Step 1, if (m,n) satisfy m2 + n2 ≤Mε then we have

|(uε)mn − (u(., ., 0))mn|2 ≤ (
8

π2

√
ε)2 =

64

π4
ε.

Hence,∑
m,n≥1;m2+n2≤Mε

|(uε)mn − (u(., ., 0))mn|2 ≤ (m2 + n2)
64

π4
ε ≤Mε

64

π4
ε.(14)

Combining (13) and (14) and MεT ≤ eMεT = ε−1/2 we obtain

‖uε − ΓMε(u(., ., 0))‖2L2(Ω) ≤
π2

4
Mε

64

π4
ε =

16

π2
Mεε ≤

16

π2T

√
ε.

By a similar way and using (14), we get

‖uε − ΓMε(u(., ., 0))‖2H1
0 (Ω) =

=

∥∥∥∥∂uε∂x
− ∂

∂x
ΓMε(u(., ., 0))

∥∥∥∥2

L2(Ω)

+

∥∥∥∥∂uε∂y
− ∂

∂y
ΓMε(u(., ., 0))

∥∥∥∥2

L2(Ω)

=

∥∥∥∥∥∥
∑

m,n≥1;m2+n2≤Mε

m((uε)mn − (u(., ., 0))mn) cos(mx) sin(ny)

∥∥∥∥∥∥
2

L2(Ω)
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+

∥∥∥∥∥∥
∑

m,n≥1;m2+n2≤Mε

n((uε)mn − (u(., ., 0))mn) sin(mx) cos(ny)

∥∥∥∥∥∥
2

L2(Ω)

=
π2

4

∑
m,n≥1;m2+n2≤Mε

(m2 + n2)|(uε)mn − (u(., ., 0))mn|2

≤ π2

4
Mε

∑
m,n≥1;m2+n2≤Mε

|(uε)mn − (u(., ., 0))mn|2 ≤
π2

4
MεMε

64

π4
ε =

16

π2
M2
ε ε.

Using the inequality ε−1/2 = eMεT > (MεT )2/2 , we get

‖uε − ΓMε(u(., ., 0))‖2H1
0 (Ω) ≤

32

π2T 2

√
ε(15)

and

‖∆uε −∆ΓMε(u(., ., 0))‖2L2(Ω) =

=

∥∥∥∥∥∥
∑

m,n≥1;m2+n2≤Mε

(m2 + n2)((uε)mn − (u(., ., 0))mn) sin(mx) sin(ny)

∥∥∥∥∥∥
2

L2(Ω)

=
π2

4

∑
m,n≥1;m2+n2≤Mε

(m2 + n2)2|(uε)mn − (u(., ., 0))mn|2 ≤
16

π2
M3
ε ε ≤

96

π2T 3

√
ε.

Step 3. Estimate errors between uε and u.
Using Lemma 1, we have

‖uε − u(., ., 0)‖H1
0 (Ω) =

≤ ‖uε − ΓMε(u(., ., 0))‖H1
0 (Ω) + ‖ΓMε(u(., ., 0))− u(., ., 0)‖H1

0 (Ω)

≤ 4
√

2

πT
4
√
ε+ ‖ΓMε(u(., ., 0))− u(., ., 0)‖H1

0 (Ω) → 0,

and

‖uε − u(., ., 0)‖L2(Ω) =

≤ ‖uε − ΓMε(u(., ., 0))‖L2(Ω) + ‖ΓMε(u(., ., 0))− u(., ., 0)‖L2(Ω)

≤ 4

π
√
T

4
√
ε+

4

π2
√
Mε
‖u(., ., 0)‖H1

0 (Ω) .

Now, we assume that ∆u(., ., 0) ∈ L2(Ω). Then

‖∆uε −∆u(., ., 0)‖L2(Ω) =

≤ ‖∆uε −∆ΓMε(u(., ., 0))‖L2(Ω) + ‖∆ΓMε(u(., ., 0))−∆u(., ., 0)‖L2(Ω)

≤ 4
√

6

πT
√
T

4
√
ε+ ‖∆ΓMε(u(., ., 0))−∆u(., ., 0)‖L2(Ω) → 0.
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Moreover,

‖uε − u(., ., 0)‖L2(Ω) =

≤ ‖uε − ΓMε(u(., ., 0))‖L2(Ω) + ‖ΓMε(u(., ., 0))− u(., ., 0)‖L2(Ω)

≤ 4

π
√
T

4
√
ε+

4

π2Mε
‖∆u(., ., 0)‖L2(Ω)

and

‖uε − u(., ., 0)‖H1
0 (Ω) =

≤ ‖uε − ΓMε(u(., ., 0))‖H1
0 (Ω) + ‖ΓMε(u(., ., 0))− u(., ., 0)‖H1

0 (Ω)

≤ 4
√

2

πT
4
√
ε+

4

π2
√
Mε
‖∆u(., ., 0)‖L2(Ω) .

The proof is completed. �

Remark 2. In [27], the error ‖uε(., ., 0)− u(., ., 0)‖L2(Ω) is not given. In
[4, 6, 10, 19, 26–28], the error ‖uε(., ., 0)− u(., ., 0)‖H1

0 (Ω) is not given. In this

case, the error ‖uε(., ., 0)− u(., ., 0)‖H1
0 (Ω) is established. This is a strong point

of our method.

Theorem 6. Let Problem (1) have a (unique) solution

u ∈ C
(
[0, T ];H1

0 (Ω)
)
∩ C1((0, T );L2(Ω)).

satisfying the condition

π2

4

∞∑
n,m=1

(n2 +m2)ku2
mn < A2

1

for k > 0 is a positive number. If we select

Mε =
1

T
ln

(
T (ln T

ε )r

ε+ ε ln(Tε )

)
, (r > 0)

then the following estimate holds

‖uε(., ., t)− u(., ., t)‖L2(Ω) ≤

≤

√√√√6ε
2t
T

(
1 + ln(Tε−1

T
)

) 2t
T
−2

+(ln
T

ε
)2r( t

T
−1)
[
T ln

(
ε+ ε ln(Tε )

T (ln T
ε )r

)]k
A2

1.

Proof. We have

u(x, y, t) =
∞∑

m,n=1

umn(t) sin(mx) sin(ny)(16)
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uε(x, y, t) =

m2+n2≤Mε∑
m,n≥1

uεmn(t) sin(mx) sin(ny)(17)

where

uεmn(t) = e(T−t)(m2+n2)(gε)mn −
T∫
t

e(s−t)(m2+n2) (fε(x, y, s))mn ds

umn(t) = e(T−t)(m2+n2)gmn −
T∫
t

e(s−t)(m2+n2)fmn(s)ds.

By direct transform, we get

‖uε(., ., t)− u(., ., t)‖2L2(Ω) ≤ 3
π2

4

m,n≥1∑
m2+n2≤Mε

e2(T−t)(n2+m2)((gε)mn − gmn)2

+ 3
π2

4

m,n≥1∑
m2+n2≤Mε

( T∫
t

e(s−t)(m2+n2)((fε(x, y, s))mn − fnm(s)ds
)2

+ 3
π2

4

m,n≥1∑
m2+n2≥Mε

u2
mn(t).

It follows that

‖uε(., ., t)− u(., ., t)‖2L2(Ω) ≤ 3e2(T−t)Mε‖gε − g‖2L2(Ω)

+ 3e2(T−t)Mε‖fε − f‖2L2(0,T ;L2(Ω))

+ 3
π2

4

m,n≥1∑
m2+n2≥Mε

(n2 +m2)−k(m2 + n2)ku2
mn(t).

Hence, we get

‖uε(., ., t)− u(., ., t)‖2L2(Ω) ≤ 6e2(T−t)Mεε2 +
1

Mk
ε

∞∑
n,m=1

(m2 + n2)ku2
mn

≤ 6ε
2t
T

(
1 + ln(Tε−1

T
)

) 2t
T
−2

(ln
T

ε
)2r( t

T
−1)

+
[
T ln

(
ε+ ε ln(Tε )

T (ln T
ε )r

)]k π2

4

∞∑
n,m=1

(m2 + n2)ku2
mn(t). �
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Theorem 7. Assume that there exists the positive numbers β,A2 such
that

π2

4

∞∑
m,n=1

e2β(m2+n2)u2
mn(t) < A2

2.(18)

Let us choose

Mε =

√
1

T + β
ln(

1

ε
)

then the following convergence estimate holds

‖uε(., ., t)− u(., ., t)‖L2(Ω) ≤
(
A2 + 2ε

t
T+β

)
ε

β
T+β(19)

for every t ∈ [0, T ].

Proof. Let vε be the function defined by

vε(x, y, t) =

m2+n2≤Mε∑
m,n≥1

vεmn(t) sin(mx) sin(ny)(20)

where

vεnm(t) = e(T−t)(n2+m2)gmn −
T∫
t

e(s−t)(n2+m2) (fε(x, y, s))mn ds.

Since (20), we have

u(x, y, t)− vε(x, y, t) =

=

∞∑
m2+n2>Mε

e−(t−T )(m2+n2)gmn −
T∫
t

e−(t−s)(m2+n2)fmn(s)ds

sin(mx) sin(ny)

=

∞∑
m2+n2>Mε

< u(x, y, t), sin(mx) sin(ny) > sin(mx) sin(ny).

Therefore, we have

‖u(., ., t)− vε(., ., t)‖2L2(Ω) =
π2

4

∞∑
m2+n2>Mε

e−2β(m2+n2)e2β(m2+n2)u2
mn(t)

≤ π2

4
e−2βMε

∞∑
m2+n2>Mε

e2β(m2+n2)u2
mn(t)

≤ e−2βMε
π2

4

∞∑
m,n=1

e2β(m2+n2)u2
mn(t)(21)

≤ e−2βMεA2
2.(22)
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On the other hand, we have

‖uε(., ., t)− vε(., ., t)‖2L2(Ω) =

=
∞∑

m,n=1

∣∣∣∣∣∣e(m2+n2)(T−t)(gε − g)mn−
T∫
t

e(m2+n2)(s−t) (fε(x, y, s)− f(x, y, s))mn ds

∣∣∣∣∣∣
≤ 2e2(T−t)Mε

(
‖u‖gε − g2

L1(Ω) + ‖fε(., ., t)− f(., ., t)‖2L1(0,T ;L1(Ω))

)
≤ 4e2(T−t)Mεε2.(23)

Combining (22) and (23), we get

‖uε(., ., t)−u(., ., t)‖L2(Ω) ≤ ‖uε(., ., t)−vε(., ., t)‖L2(Ω)+vε(., ., t)−u(., ., t)‖L2(Ω)

≤ e−βM2
εA2 + 2e(T−t)Mεε.

From

Mε =
1

T + β
ln(

1

ε
)

the following convergence estimate holds

‖uε(., ., t)− u(., ., t)‖L2(Ω) ≤ ε
β

T+βA2 + 2ε
t+β
T+β = ε

β
T+β

(
A2 + 2ε

t
T+β

)
. �

Remark 3. 1. Condition (18) is not verifiable. We can check it by replacing
the conditions of f and g. We have

∞∑
m,n=1

e2β(m2+n2)u2
mn(t)

=
∞∑

m,n=1

e2β(m2+n2)

e−(t−T )(m2+n2)gmn −
T∫
t

e−(t−s)(m2+n2)fmn(s)ds

2

.

Hence, we can replace (18) by the different conditions

∞∑
m,n=1

e2(T+β)(m2+n2)gmn <∞,
∞∑

m,n=1

∫ T

0
e2(s+β)(m2+n2)f2

mn(s)ds <∞.

2. We notice that the error estimate (19) (β > 0) is of Hölder type for
all t ∈ [0, T ]. It is easy to see that the convergence rate of εp, (0 < p) is more

quickly than the logarithmic order
(
ln(1

ε )
)−q

(q > 0) when ε → 0. Comparing
error (19) with the results in [4, 6, 10, 19, 26–31], we can see that our method
is very effective.
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4. NUMERICAL EXAMPLE

In this section, we show the validity of the proposed methods by a simple
numerical example. We consider the problem:
(24)
ut −

(
uxx + uyy

)
= f(x, y, t), (x, y, t) ∈ (0, π)2 × (0, 1),

u(0, y, t) = u(π, y, t) = u(x, 0, t) = u(x, π, t) = 0, (x, y, t) ∈ (0, π)2 × (0, 1),

u(x, y, 1) = g(x, y), (x, y) ∈ (0, π)2,

where

g(x, y) =
15∑
k=1

e−1

k2
sin(2kx) sin(ky),

f(x, y, t) = e−t
15∑
k=1

(
5− 1

k2

)
sin(2kx) sin(ky).

The problem has an exact solution:

u(x, y, t) = e−t
15∑
k=1

1

k2
sin(2kx) sin(ky).

For the measured noised data gε such that ‖g − gε‖ ≤ ε, we have

gε(x, y) = g(x, y) +
ε

π
· rand(), rand() ∈ (−1, 1)

In this example, we choose the computation grid (I, J) = (128, 128),
xi = iπ/I, yj = jπ/J (i, j = 0...128). Table 1 shows the value of Mε =
M i
ε , ε = 10−k, k = 3, 5, 7 as chosen in Remark 1 (i = 1) and Theorems 5, 6,

7 (i = 2, 3, 4), respectively. Note that for M4
ε from Theorem 7, the value of β

was set to 1/2.

Table 1
The value of M i

ε as chosen in Remark 1 (i = 1)
and Theorem 5,6,7 (i = 2, 3, 4), respectively

ε = 10−3 ε = 10−5 ε = 10−7

M1
ε 4.840 8.986 13.28

M2
ε 3.454 5.756 8.059

M3
ε 8.705 13.87 18.84

M4
ε 2.146 2.770 3.278

With the error magnitude of the measured data ε = 10−k, k = 3, 5, 7;
t = j/10, j = 0..9, Table 2 shows the error estimations of regularized solutions
comparing to the exact solution in L2

(
(0, π)2

)
with different values of Mε.
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Table 2
Error estimations between exact solution and regularized solutions in L2

(
(0, π)2

)
by different values Mε = M i

ε ,

i = 1, 2, 3, 4 and ε = 10−k, k = 3, 5, 7

ε = 10−3 ε = 10−5 ε = 10−7

t M1
ε M2

ε M3
ε M4

ε M1
ε M2

ε M3
ε M4

ε M1
ε M2

ε M3
ε M4

ε

0.0 5.161E-01 5.161E-01 1.423E-01 5.161E-01 1.423E-01 1.423E-01 1.424E-01 5.161E-01 1.423E-01 1.423E-01 1.424E-01 5.161E-01

0.1 4.670E-01 4.670E-01 1.288E-01 4.670E-01 1.287E-01 1.287E-01 1.287E-02 4.670E-01 1.287E-01 1.287E-01 1.288E-01 4.670E-01

0.2 4.226E-01 4.226E-01 1.165E-01 4.226E-01 1.165E-01 1.165E-01 1.165E-01 4.226E-01 1.165E-01 1.165E-01 1.165E-01 4.226E-01

0.3 3.824E-01 3.824E-01 1.054E-01 3.824E-01 1.054E-01 1.054E-01 1.054E-01 3.824E-01 1.054E-01 1.054E-01 1.054E-01 3.824E-01

0.4 3.460E-01 3.460E-01 9.537E-02 3.460E-01 9.537E-02 9.537E-02 9.537E-02 3.460E-01 9.537E-02 9.537E-02 9.537E-02 3.460E-01

0.5 3.130E-01 3.130E-01 8.629E-02 3.130E-01 8.629E-02 8.629E-02 8.629E-02 3.130E-01 8.629E-02 8.629E-02 8.629E-02 3.130E-01

0.6 2.833E-01 2.833E-01 7.808E-02 2.833E-01 7.808E-02 7.808E-02 7.808E-02 2.833E-01 7.808E-02 7.808E-02 7.808E-02 2.833E-01

0.7 2.563E-01 2.563E-01 7.065E-02 2.563E-01 7.065E-02 7.065E-02 7.065E-02 2.563E-01 7.065E-02 7.065E-02 7.065E-02 2.563E-01

0.8 2.319E-01 2.319E-01 6.393E-02 2.319E-01 6.393E-02 6.393E-02 6.393E-02 2.319E-01 6.393E-02 6.393E-02 6.393E-02 2.319E-01

0.9 2.098E-01 2.098E-01 5.784E-02 2.098E-01 5.784E-02 5.784E-02 5.784E-02 2.098E-01 5.784E-02 5.784E-02 5.784E-02 2.098E-01
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From the table, we see that the bigger the value Mε, the better regularized
solutions we obtain. Because the function u(x, y, t) has a finite series of Fourier
coefficients, we can easily verify that it satisfies all the conditions when choosing
value M i

ε , i = 1..4.

For better illustration, we present some 3D-graphs of the exact solution
and regularized solutions by the proposed method in Figure 1 with chosen
Mε = M1

ε and Mε = M3
ε . Furthermore, in Figure 2, we show the section cut

graphs of them at y = 51
128π, y = 1

2π and y = 51
64π when t = 0 and ε = 10−5.

Fig. 1 – Exact solution and regularized solutions when t = 0.
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Fig. 2 – Section cut graphs of exact solution u and regularized solutions uε

at y = 51
128

π, 1
2
π, 51

64
π when t = 0.
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