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In this paper, we introduce a new version of the trial equation method for solv-
ing non-integrable partial differential equations in mathematical physics. The
exact traveling wave solutions including soliton solutions, singular soliton so-
lutions, rational function solutions and elliptic function solutions to the RLW
equation and (1+2)-dimensional nonlinear Schrödinger’s equation in dual-power
law media are obtained by this method.
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1. INTRODUCTION

In recent years, there have been important and far reaching developments
in the study of nonlinear waves and a class of nonlinear wave equations which
arise frequently in applications. The wide interest in this field comes from the
understanding of special waves called solitons and the associated development
of a method of solution to two class of nonlinear wave equations termed the reg-
ularized long-wave (RLW) equation and the nonlinear Schrödinger’s equation
(NLSE). The RLW equation arises in the study of shallow-water waves. The
generalized version of the RLW equation is known as the R(m,n) equation.
The NLSE is an example of a universal nonlinear model that describes many
physical nonlinear systems. The equation can be applied to hydrodynam-
ics, nonlinear optics, nonlinear acoustics, quantum condensates, heat pulses
in solids and various other nonlinear instability phenomena. A soliton phe-
nomenon is an attractive field of present day research in nonlinear physics and
mathematics. Essential ingredients in the soliton theory are the RLW equation
and the NLSE, and their variants appearing in a wide spectrum of problems.
Solitons are identified with a certain class of reflectionless solutions of the inte-
grable equations. Such equations, including the RLW equation and the NLSE,
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are named soliton equations. More exactly, solitons are identified with a certain
class of reflectionless solutions of the integrable equations. At every instant a
soliton is localized in a restricted spatial region with its centroid moving like
a particle. The particle-like properties of solitons are also manifested in their
elastic collisions.

Soliton equations make up a narrow class of nonlinear equations, whereas
a wider set of nonlinear equations, being non-integrable, possess soliton-like
solutions. They are localized in some sense, propagate with small energy losses,
and collide with a varied extent of inelasticity. These solutions are termed
solitary waves, quasisolitons, soliton-like solutions, etc. to differentiate them
from the solitons in the above exact meaning. The stability of the localized form
of solitons and solitary waves and their elastic collisions have led to interesting
physical applications.

Constructing exact solutions to partial differential equations is an impor-
tant problem in nonlinear science. In order to obtain the exact solutions of
nonlinear partial differential equations, various methods have been presented,
such as tanh-coth method [1, 15], Hirota method [9], the exponential function
method [6, 17], (G′/G)-expansion method [7], the trial equation method [4, 5,
8, 10–14, 16] and so on. There are a lot of nonlinear evolution equations that
are integrated using these and other mathematical methods. Soliton solutions,
compactons, peakons, cuspons, stumpons, cnoidal waves, singular solitons and
other solutions have been found. These types of solutions are very important
and appear in various areas of physics, applied mathematics.

In the next section, we give a new version of the trial equation method
for nonlinear differential equations with generalized evolution. We will present
some exact solutions to two nonlinear problems with higher nonlinear terms
such as the RLW equation [2]

(1.1) ut + αux + βumux + γuxxt = 0,

and the (1+2)-dimensional NLSE in dual-power law media [3]

(1.2) iqt +
1

2
(qxx + qyy) +

(
|q|2m + k|q|4m

)
q = 0,

in the framework of a new approximation of the trial equation method for
nonlinear waves and analyze some of their remarkable features. In physics,
a wave is a disturbance (an oscillation) that travels through space and time,
accompanied by the transfer of energy. Travelling wave is a function u of the
form

u(x, t) = f(x− ct),
where f : R→ V is a function defining the wave shape, and c is a real number
defining the propagation speed of the wave.
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2. THE EXTENDED TRIAL EQUATION METHOD

The main steps of the extended trial equation method for the nonlinear
partial differential equation with rank inhomogeneous [12] are outlined as
follows.

Step 1. Consider a nonlinear partial differential equation

(2.3) P (u, ut, ux, uxx, . . . ) = 0,

where P is a polynomial. Take a wave transformation as

(2.4) u(x1, . . . , xN , t) = u(η), η = λ

 N∑
j=1

xj − ct

 ,

where λ 6= 0 and c 6= 0. Substituting Eq. (2.4) into Eq. (2.3) yields a nonlinear
ordinary differential equation,

(2.5) N(u, u′, u′′, ...) = 0.

Step 2. Take transformation and trial equation as follows:

(2.6) u =

δ∑
i=0

τiΓ
i,

in which

(2.7) (Γ′)2 = Λ(Γ) =
Φ(Γ)

Ψ(Γ)
=
ξθΓ

θ + ...+ ξ1Γ + ξ0
ζεΓε + ...+ ζ1Γ + ζ0

,

where τi (i = 0, ..., δ), ξi (i = 0, ..., θ) and ζi (i = 0, ..., ε) are constants. Using
the relations (2.6) and (2.7), we can find

(2.8) (u′)2 =
Φ(Γ)

Ψ(Γ)

(
δ∑
i=0

iτiΓ
i−1

)2

,

(2.9)

u′′ =
Φ′(Γ)Ψ(Γ)− Φ(Γ)Ψ′(Γ)

2Ψ2(Γ)

(
δ∑
i=0

iτiΓ
i−1

)
+

Φ(Γ)

Ψ(Γ)

(
δ∑
i=0

i(i− 1)τiΓ
i−2

)
,

where Φ(Γ) and Ψ(Γ) are polynomials. Substituting these terms into Eq. (2.5)
yields an equation of polynomial Ω(Γ) of Γ :

(2.10) Ω(Γ) = %sΓ
s + ...+ %1Γ + %0 = 0.

According to the balance principle we can determine a relation of θ, ε,
and δ. We can take some values of θ, ε, and δ.
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Step 3. Let the coefficients of Ω(Γ) all be zero will yield an algebraic
equations system:

(2.11) %i = 0, i = 0, ..., s.

Solving this equations system (2.11), we will determine the values of
ξ0, ..., ξθ; ζ0, ..., ζε and τ0, ..., τδ.

Step 4. Reduce Eq. (2.7) to the elementary integral form,

(2.12) ±(η − η0) =

∫
dΓ√
Λ(Γ)

=

∫ √
Ψ(Γ)

Φ(Γ)
dΓ.

Using a complete discrimination system for polynomial to classify the
roots of Φ(Γ), we solve the infinite integral (2.12) and obtain the exact solutions
to Eq. (2.5). Furthermore, we can write the exact traveling wave solutions to
Eq. (2.3) respectively.

3. APPLICATIONS

To illustrate the necessity of our new approach concerning the trial equa-
tion method, we introduce two case studies.

Example 3.1 (Application to the RLW equation). In Eq. (1.1), α, β and γ
are free parameters, and the parameter m dictates the power-law nonlinearity.
The first term is the evolution term, and the third term is the nonlinear term,
while the second and fourth terms are the dispersion terms. The solitons are
the result of a delicate balance between dispersion and nonlinearity.

In order to look for travelling wave solutions of Eq. (1.1), we make the
transformation

u(x, t) = u(η), η = x− ct,
where c is an arbitrary constant. Then, integrating this equation and setting
the integration constant to zero, we obtain

(3.13) (α− c)u+
β

m+ 1
um+1 − cγu′′ = 0,

where m is a positive integer. Eq. (3.13), with the transformation

(3.14) u = v1/m,

reduces to

(3.15) cMvv′′ + cN(v′)2 + (c− α)v2 − Pv3 = 0,
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whereM = γ/m, N = γ(1−m)/m2, P = β/(m+1). Substituting Eqs. (2.8)
and (2.9) into Eq. (3.15) and using balance principle yields θ = ε + δ + 2. If
we take θ = 3, ε = 0 and δ = 1, then

(v′)2 =
τ21 (ξ3Γ

3 + ξ2Γ
2 + ξ1Γ + ξ0)

ζ0
,

where ξ3 6= 0, ζ0 6= 0. Respectively, solving the algebraic equation system (2.11)
yields

ξ0 =
τ20 (−4ζ0τ0P + 2ξ2τ0P (M +N) + αξ2(3M + 2N))

τ21 (6τ0P (M +N) + α(3M + 2N))
,

ξ1 =
2τ0(−3ζ0τ0P + 3ξ2τ0P (M +N) + αξ2(3M + 2N))

τ1(6τ0P (M +N) + α(3M + 2N))
,

ξ3 =
2τ1P (ζ0 + ξ2(M +N))

6τ0P (M +N) + α(3M + 2N)
,

c =
ζ0(6τ0P (M +N) + α(3M + 2N))

(3M + 2N)(ζ0 + ξ2(M +N))
,

ξ2 = ξ2, ζ0 = ζ0, τ0 = τ0, τ1 = τ1.

Substituting these results into Eq. (2.7) and Eq. (2.12), we can write
(3.16)

±(η − η0) =

√
ζ0(6τ0P (M +N) + α(3M + 2N))

2τ1P (ζ0 + ξ2(M +N))
×
∫

dΓ√
Γ3 + `2Γ2 + `1Γ + `0

,

where

`2 =
ξ2(6τ0P (M +N) + α(3M + 2N))

2τ1P (ζ0 + ξ2(M +N))
,

`1 =
τ0(−3ζ0τ0P + 3ξ2τ0P (M +N) + αξ2(3M + 2N))

τ21P (ζ0 + ξ2(M +N))
,

`0 =
τ20 (−4ζ0τ0P + 2ξ2τ0P (M +N) + αξ2(3M + 2N))

2τ31P (ζ0 + ξ2(M +N))
.

Integrating Eq. (3.16), we obtain the solutions to the Eq. (1.1) as follows:

(3.17) ±(η − η0) = −2
√
A

1√
Γ− α1

,

(3.18) ±(η − η0) = 2

√
A

α2 − α1
arctan

√
Γ− α2

α2 − α1
, α2 > α1,

(3.19) ±(η − η0) =

√
A

α1 − α2
ln

∣∣∣∣√Γ− α2 −
√
α1 − α2√

Γ− α2 +
√
α1 − α2

∣∣∣∣ , α1 > α2,
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(3.20) ±(η − η0) = 2

√
A

α1 − α3
F (ϕ, l), α1 > α2 > α3,

where

A =
ζ0(6τ0P (M +N) + α(3M + 2N))

2τ1P (ζ0 + ξ2(M +N))
, F (ϕ, l) =

∫ ϕ

0

dψ√
1− l2 sin2 ψ

,

and

ϕ = arcsin

√
Γ− α3

α2 − α3
, l2 =

α2 − α3

α1 − α3
.

Also α1, α2 and α3 are the roots of the polynomial equation

Γ3 +
ξ2
ξ3

Γ2 +
ξ1
ξ3

Γ +
ξ0
ξ3

= 0.

Substituting the solutions (3.17)–(3.19) into (2.6) and (3.14), denoting
τ̄ = τ0 + τ1α1, and setting

v =
ζ0(6τ0P (M +N) + α(3M + 2N))

(3M + 2N)(ζ0 + ξ2(M +N))
,

we get

(3.21) u(x, t) =

[
τ̄ +

4τ1A

(x− vt− η0)2

] 1
m

,

(3.22)

u(x, t) =

{
τ̄ + τ1(α2 − α1)

[
1− tanh2

(
∓1

2

√
α1 − α2

A

(
x− vt− η0

))]} 1
m

,

(3.23) u(x, t) =

{
τ̄ + τ1(α1 − α2)cosech2

(
1

2

√
α1 − α2

A

(
x− vt

))} 1
m

.

If we take τ0 = −τ1α1, that is τ̄ = 0, and η0 = 0, then the solutions
(3.21)–(3.23) can reduce to rational function solution

(3.24) u(x, t) =

[
2
√
τ1A

x− vt

] 2
m

,

1-soliton solution (see Figure 1)

(3.25) u(x, t) =
A1

cosh
2
m [∓B(x− vt)]

,

and singular soliton solution (see Figure 2)

(3.26) u(x, t) =
A2

sinh
2
m [B(x− vt)]

,
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where

A1 = [τ1(α2 − α1)]
1
m , A2 = [τ1(α1 − α2)]

1
m , B =

1

2

√
α1 − α2

A
.

Fig. 1 – Profile of the solution (3.25) corresponding to the values

A1 = 2, B = 1, m = 1 and v = 1.

Fig. 2 – Profile of the solution (3.26) corresponding to the values

A2 = 2, B = 1, m = 2 and v = 1.
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Here, A1 and A2 are the amplitudes of the solitons, while v is the velocity
and B is the inverse width of the solitons. Thus, we can say that the solitons
exist for τ1 > 0.

Remark 3.2. If we let the corresponding values for some parameters, so-
lution (3.25) is respectively in full agree with the solution (13) and the solution
(33) mentioned in Refs. [2, 4].

Remark 3.3. The solutions (3.24)–(3.26) obtained by using the extended
trial equation method for Eq. (1.1) have been checked using one of the symbolic
computation programming in Mathematica. To our knowledge, the rational
function solution, 1-soliton solution and the singular soliton solution, that we
find in this paper, are not shown in the previous literature. These results are
new exact solutions of Eq. (1.1).

Example 3.4 (Application to (1+2)-dimensional nonlinear Schrödinger’s
equation in dual-power law media). In Eq. (1.2), the first term represents the
evolution term, the second and third terms, in parenthesis, represent the dis-
persion in x and y directions while the fourth and fifth terms in parenthesis
together represents nonlinearity, where k is a constant. Solitons are the result
of a delicate balance between dispersion and nonlinearity.

In order to look for travelling wave solutions of Eq. (1.2), we make the
transformation

(3.27) q(x, y, t) = u(η)eiφ,

(3.28) η = B1x+B2y − ct, φ = −κ1x− κ2y + ωt+ ς,

where B1, B2, c, κ1, κ2, ω and ς are real constants. Then, substituting relations
(3.27) and (3.28) into (1.2) and decomposing into real and imaginary parts,
respectively, yields

(3.29) −(2ω + κ21 + κ22)u+ 2u2m+1 + 2ku4m+1 + (B2
1 +B2

2)u′′ = 0,

and

(3.30) −2(c+ κ1B1 + κ2B2)u
′ = 0,

where m is a positive integer. Eq. (3.29), with the transformation

(3.31) u = v1/2m,

reduces to

(3.32) Mvv′′ +N(v′)2 − Pv2 + 2v3 + 2kv4 = 0,
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where M =
(
B2

1 +B2
2

)
/2m, N = (1− 2m)

(
B2

1 +B2
2

)
/4m2, P = 2ω+κ21+

κ22. Substituting Eqs. (2.8) and (2.9) into Eq. (3.32) and using balance principle
yields θ = ε+ 2δ + 2. If we take θ = 4, ε = 0 and δ = 1, then

(v′)2 =
τ21 (ξ4Γ

4 + ξ3Γ
3 + ξ2Γ

2 + ξ1Γ + ξ0)

ζ0
,

where ξ4 6= 0, ζ0 6= 0. Respectively, solving the algebraic equation system (2.11)
yields

ξ0 =
ξ3τ

2
0 (2τ0(M +N)(M(4 + 3kτ0) + 2N(1 + kτ0))−Q)

4τ31 (M +N)(2M(1 + 3kτ0) +N + 4kτ0N)
,

ξ1 =
ξ3τ0(2τ0(M +N)(6M(1 + kτ0) +N(3 + 4kτ0))−Q)

2τ21 (M +N)(2M(1 + 3kτ0) +N + 4kτ0N)
,

ξ2 =
12ξ3τ0(M +N)(M(2 + 3kτ0) +N + 2kτ0N)− ξ3Q

4τ1(M +N)(2M(1 + 3kτ0) +N + 4kτ0N)
,

ξ3 = ξ3, ξ4 =
kξ3τ1(3M + 2N)

2(2M(1 + 3kτ0) +N + 4kτ0N)
,

ζ0 = − ξ3Q

4τ1P (2M(1 + 3kτ0) +N + 4kτ0N)
,

τ0 = τ0, τ1 = τ1,

where Q = P (2M +N)(3M + 2N). Also from Eq. (3.30), it can be seen that
c = −(κ1B1 + κ2B2). Substituting these results into Eq. (2.7) and Eq. (2.12),
we can write

(3.33) ±(η − η0) =

√
−2M +N

2kτ21
×
∫

dΓ√
Γ4 + `3Γ3 + `2Γ2 + `1Γ + `0

,

where

`3 =
4M(1 + 3kτ0) + 2N(1 + 4kτ0)

kτ1(3M + 2N)
,

`2 =
1

2kτ21

[
6τ0

(
1 + 2kτ0 +

M

3M + 2N

)
− P (2M +N)

M +N

]
,

`1 =
τ0
kτ31

[
τ0

(
3 + 4kτ0 +

3M

3M + 2N

)
− P (2M +N)

M +N

]
,

`0 =
τ20

2kτ41

[
2τ0

(
1 + kτ0 +

M

3M + 2N

)
− P (2M +N)

M +N

]
.

Integrating Eq. (3.33), we obtain the solutions to the Eq. (1.2) as follows:

(3.34) ±(η − η0) = − B

Γ− α1
,



52 Ali Filiz, Abdullah Sonmezoglu, Mehmet Ekici and Durgun Duran 10

(3.35) ±(η − η0) =
2B

α1 − α2

√
Γ− α2

Γ− α1
, α2 > α1,

(3.36) ±(η − η0) =
B

α1 − α2
ln

∣∣∣∣Γ− α1

Γ− α2

∣∣∣∣ ,
±(η − η0) =

B√
(α1 − α2)(α1 − α3)

× ln

∣∣∣∣∣
√

(Γ− α2)(α1 − α3)−
√

(Γ− α3)(α1 − α2)√
(Γ− α2)(α1 − α3) +

√
(Γ− α3)(α1 − α2)

∣∣∣∣∣ ,(3.37)

α1 > α2 > α3,

(3.38) ±(η − η0) = 2

√
B

(α1 − α3)(α2 − α4)
F (ϕ, l), α1 > α2 > α3 > α4,

where

B =

√
−2M +N

2kτ21
, F (ϕ, l) =

∫ ϕ

0

dψ√
1− l2 sin2 ψ

,

and

ϕ = arcsin

√
(Γ− α1)(α2 − α4)

(Γ− α2)(α1 − α4)
, l2 =

(α2 − α3)(α1 − α4)

(α1 − α3)(α2 − α4)
.

Also α1, α2, α3 and α4 are the roots of the polynomial equation

Γ4 +
ξ3
ξ4

Γ3 +
ξ2
ξ4

Γ2 +
ξ1
ξ4

Γ +
ξ0
ξ4

= 0.

Substituting the solutions (3.34)–(3.37) into (2.6) and (3.31), and setting
v = −(κ1B1 + κ2B2), we obtain

(3.39) q(x, y, t) =

{
τ0 + τ1α1 ∓

τ1B

B1x+B2y − vt− η0

} 1
2m

eiφ,

(3.40)

q(x, y, t) =

{
τ0 + τ1α1 +

4B2(α2 − α1)τ1

4B2 − [(α1 − α2) (B1x+B2y − vt− η0)]2

} 1
2m

eiφ,

(3.41)

q(x, y, t) =

τ0 + τ1α2 +
(α2 − α1)τ1

exp

(
α1 − α2

B
(B1x+B2y − vt− η0)

)
− 1


1

2m

eiφ,
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(3.42)

q(x, y, t) =

τ0 + τ1α1 +
(α1 − α2)τ1

exp

(
α1 − α2

B
(B1x+B2y − vt− η0)

)
− 1


1

2m

eiφ,

(3.43)

q(x, y, t) =

τ0 + τ1α1 −
2Â22τ1

Â11 + (α3 − α2) cosh

(√
Â22

B

(
Â33

))


1
2m

eiφ,

where Â11 = 2α1−α2−α3, Â22 = (α1−α2)(α1−α3) and Â33 = B1x+B2y−vt.
If we take τ0 = −τ1α1 and η0 = 0, then the solutions (3.39)–(3.43) can reduce
to rational function solutions

(3.44) q(x, y, t) =

(
∓ τ1B

B1x+B2y − vt

) 1
2m

ei(−κ1x− κ2y + ωt+ ς),

(3.45)

q(x, y, t)=

{
4B2(α2 − α1)τ1

4B2 − [(α1 − α2) (B1x+B2y − vt)]2

} 1
2m

ei(−κ1x− κ2y + ωt+ ς),

traveling wave solutions

(3.46)

q(x, y, t) =

{
(α2 − α1)τ1

2

{
1∓ coth

[
α1 − α2

2B
(B1x+B2y − vt)

]}} 1
2m

ei(−κ1x− κ2y + ωt+ ς),

and soliton solution (see Figure 3)
(3.47)

q(x, y, t) =
A3(

D + cosh
[
K(B1x+B2y − vt)

]) 1
2m

ei(−κ1x− κ2y + ωt+ ς),

where

A3=

(
2(α1−α2)(α1−α3)τ1

α3−α2

) 1
2m

, D=
2α1−α2−α3

α3−α2
, K=

√
(α1−α2)(α1−α3)

B
.

Here in (3.47), A3 is the amplitude of the soliton, B1 is the inverse width
of soliton in the x−direction and B2 is the inverse width of soliton in the
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y−direction and v is the velocity of the soliton. Also κ1 and κ2 represents the
soliton frequency in the x and y directions respectively, while ω represents the
solitary wave number and finally ς is the phase constant of the soliton. Thus,
we can say that the solitons exist for τ1 < 0.

Fig. 3 – Profile of the solution (3.47) corresponding to the values

A2
3 = 8/3, B = 1, B1 = 1, B2 = 6, D = 5/3, K = 2, m = 1 while vt = 1.

Remark 3.5. If we let the corresponding values for some parameters, so-
lution (3.47) is in full agree with the solution (16) mentioned in Ref. [3].

Remark 3.6. The solutions (3.44)–(3.47) obtained by using the extended
trial equation method for Eq. (1.2) have been checked again by Mathematica.
To our knowledge, the rational function solutions and the soliton solution ob-
tained using the method described in this paper are not shown in the previous
literature. These are new wave solutions of Eq. (1.2).

4. CONCLUSION

In this brief review we introduced the RLW equation and the NLSE, and
discussed some of their remarkable features. The 1-soliton solution separates
between periodic wave solutions. Basic features of the 1-soliton solution, the
singular soliton solution and the soliton solution were discussed. We proposed
a new trial equation method as an alternative approach to obtain the analytic
solutions of nonlinear partial differential equations with generalized evolution
in mathematical physics. In the quadratic choice of the trial equation, the
function N of (2.5) is a polynomial where only even powers of (u′)2 appear.
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Consequently, the solutions of the extended trial equation method includes the
solutions obtained by the standard approach [12]. One obtains only the exact
traveling wave solutions by the standart method. On the other hand, with the
extended trial equation method, we can get not only the exact traveling wave
solutions, but the soliton solutions, the singular soliton solutions, the rational
function solutions and the elliptic function solutions, as well. We use the
extended trial equation method aided with symbolic computation to construct
the soliton solutions, the elliptic function and rational function solutions for
the RLW equation and (1+2)-dimensional NLSE in dual-power law media. The
elliptic function solutions obtained by the present approach are more general
than those obtained earlier.
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