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In this paper, the stability of the identity map on a compact generalized Sasakian
space form is studied.
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1. INTRODUCTION

The theory of harmonic maps combines both global and local aspects and
borrows both from Riemannian geometry and analysis. There are a lot of inter-
esting results about harmonic maps on complex manifolds (see [9, 15]). In the
analogy to the complex case, in the last decade harmonic maps on almost con-
tact metric manifolds were studied [1, 3, 5–7]. The identity map of a compact
Riemannian manifold is a trivial example of a harmonic map but in this case,
the theory of the second variation is much more complicated and interesting.
For instance, the stability of the identity map on Einstein manifolds is related
with the first eigenvalue of the Laplacian acting on functions [13]. In [14] and
[11] the authors find classifications of compact simply connected irreducible
Riemannian symmetric spaces for which the identity map is unstable.

By a well known result, the identity map on the euclidean sphere S2n+1

is unstable [13]. More generally, C. Gherghe, S. Ianus and A.M. Pastore have
studied the stability of the identity map on compact Sasakian manifolds with
constant ϕ-sectional curvature [7].

P. Alegre, D.E. Blair and A. Carriazo introduced the generalized Sasakian
space forms a generalization of Sasakian space forms [1]. So it is natural to
study the stability of the identity map on a compact domain of such a manifold.
The paper is organized as follows: after recalling in Section 2 the necessary facts
about harmonic maps between Riemannian manifolds, we give some definitions
on almost contact manifolds and recall in Section 3 how generalized Sasakian
space forms are defined. Finally in Section 4, we give some results on the
stability of the identity map on a compact generalized Sasakian space form.
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2. HARMONIC MAPS ON RIEMANNIAN MANIFOLDS

In this section, we recall some well known facts concerning harmonic maps
(see [4] for more details). Let φ : (M, g) −→ (N,h) be a smooth map between
two Riemannian manifolds of dimensions m and n respectively.

The energy density of φ is a smooth function e(φ) :M−→ [0,∞) given by

e(φ)p =
1

2
Trg(φ

∗h)(p) =
1

2

m∑
i=1

h(φ∗pui, φ∗pui),

for p ∈M and any orthonormal basis {u1, . . . , um} of TpM . If M is a compact
Riemannian manifold, the energy E(φ) of φ is the integral of its energy density:

E(φ) =

∫
M
e(φ)υg ,

where υg is the volume measure associated with the metric g on M. A map
φ ∈ C∞(M,N) is said to be harmonic if it is a critical point of E in the set
of all smooth maps between (M, g) and (N, h) i.e. for any smooth variation
φt ∈ C∞(M,N) of φ (t ∈ (−ε, ε)) with φ0 = φ, we have

d

dt
E(φt)

∣∣
t=0

= 0.

Now, let (M, g) be a compact Riemannian manifold and φ : (M, g) −→
(N,h) be a harmonic map. We take a smooth variation φs,t with parameters
s, t ∈ (−ε, ε) such that φ0,0 = φ. The corresponding variation vector fields are
denoted by V and W. The Hessian Hφ of a harmonic map φ is defined by

Hφ(V,W ) =
∂2

∂s∂t
(E(φs,t))

∣∣
(s,t)=(0,0)

.

The second variation formula of E is [10, 13]:

Hφ(V,W ) =

∫
M
h(Jφ(V ),W )υg,

where Jφ is a second order self-adjoint elliptic operator acting on the space of
variation vector fields along φ (which can be identified with Γ(φ−1(TN))) and
is defined by

Jφ(V ) = −
m∑
i=1

(∇̃ui∇̃ui − ∇̃∇uiui
)V −

m∑
i=1

RN (V,dφ(ui))dφ(ui),

for any V ∈ Γ(φ−1(TN)) and any local orthonormal frame {u1, . . . , um} on M.
Here RN is the curvature tensor of (N, h) and 5̃ is the pull-back connection
by φ of the Levi-Civita connection of N.
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The index of a harmonic map φ : (M, g) −→ (N,h) is defined as the
dimension of the largest subspace of Γ(φ−1(TN)) on which the Hessian Hφ is
negative definite. A harmonic map φ is said to be weakly stable if the index of
φ is zero and otherwise is said to be unstable.

The operator 4φ defined by

4φV = −
m∑
i=1

(∇̃ui∇̃ui − ∇̃∇uiui
)V, V ∈ Γ(φ−1(TN))

is called the rough Laplacian.

Due to the Hodge de Rham Kodaira theory, the spectrum of Jφ consists
of a discrete set of an infinite number of eigenvalues with finite muiltiplicities
and without accumulation points.

3. GENERALIZED SASAKIAN SPACE FORMS

In this section, we recall some definitions and basic formulas on almost
contact metric manifolds and generalized Sasakian space forms (see [2] for more
details).

An odd dimensional Riemannian manifold M2n+1 is said to be an almost
contact manifold if there exist on M a (1, 1)-tensor field ϕ, a vector field ξ and
a 1-form η such that

ϕ2 = −I + η ⊗ ξ and η(ξ) = 1.

In an almost contact manifold we also have ϕ(ξ)=0 and ηoϕ = 0.

On any almost contact manifold, we can define a compatible metric that
is a metric g such that

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X, Y on M. In this case, the manifold will be called almost
contact metric manifold. An almost contact metric manifold is said to be a
contact metric manifold if dη=Ω, where Ω is the fundamental 2 form defined
by Ω(X, Y)=g(X, ϕY) for X, Y ∈ Γ(TM). In analogy with the integrability
condition on almost complex manifolds, the almost contact metric structure of
M is said to be normal if

[ϕ,ϕ] + 2dη ⊗ ξ = 0,

where [ϕ, ϕ] denotes the Nijenhuis torsion of ϕ, given by

[ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ].
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A normal contact metric manifold is called a Sasakian manifold. A normal
almost contact metric manifold is called a Kenmostsu manifold if dη=0 and

dΩ(X,Y, Z) =
2

3
σ(X,Y,Z){η(X)Ω(Y,Z)}, X, Y, Z ∈ Γ(φ−1(TN)),

where σ denotes the cyclic sum (see [8]). A simply connected Riemannian
manifold with constant sectional curvature c is called a real space form and its
curvature tensor satisfies the equation

R(X,Y )Z = c{g(Y, Z)X − g(X,Z)Y }.

An almost contact metric manifold M(ϕ, ξ, η, g) is called a generalized
Sasakian space form if there exist three functions f1, f2, f3 on M such that the
curvature tensor on M satisfies the identity:

R(X,Y )Z = f1{g(Y, Z)X − g(X,Z)Y }+

+f2{g(X,φZ)φY − g(Y, φZ)φX + +2g(X,φY )φZ}+

+f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ},

for any vector fields X, Y, Z on M. (See [1]).

In particular:
If f1 = (c+ 3)/4 and f2 = f3 = (c− 1)/4, then M is a Sasakian space form.
If f1 = (c− 3)/4 and f2 = f3 = (c+ 1)/4, then M is a Kenmostsu-space form
(see [1, 12]).

Example 1. Classical examples of generalized Sasakian space forms are
warped products between the real line and a complex space form. For instance
the warped products R×f Cn, R×f CPn(4) and R×f CHn(−4) are generalized
Sasakian space forms with the functions

f1 = −f ′2

f2
, f2 = 0, f3 = −f ′2

f2
+f ′′

f ,

f1 = 1−f ′2
f2

, f2 = 1
f2

, f3 = 1−f ′2
f2

+f ′′

f ,

f1 = −1−f ′2
f2

, f2 = −1
f2

, f3 = −1−f ′2
f2

+f ′′

f ,

respectively, where f is a positive smooth function (see [1]).

4. MAIN RESULTS

Let M be a compact generalized Sasakian space form M(ϕ, ξ, η, g). We
consider the identity map on such a manifold (φ = 1M ). In this case, see [15],
the second variation formula is

H1M (V, V ) =

∫
M
h(4V, V )υg −

2n+1∑
i=1

∫
M
h(R(V, ui)ui, V )υg,
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where V ∈ Γ(TM) and {u1, ..., u2n+1} is a local orthonormal frame on TM.
Let {ei, ϕei, ξ } be an orthonormal local ϕ-adapted frame. Then we have

(1) R(ei, V )ei = f1{g(V, ei)ei − V }+ f2{−3g(V, ϕei)ϕei}+ f3{g(V, ξ)ξ}.

(2) R(ϕei, V )ϕei = f1{g(V, ϕei)ϕei − V }+ f2{−3g(V, ei)ei}+ f3{g(V, ξ)ξ}.

(3) R(ξ, V )ξ = f1{g(V, ξ)ξ − V }+ f3{V − g(V, ξ)ξ}.
From the above three relations, we get

2n+1∑
i=1

g(R(ui, V )ui, V ) = (f1 − 3f2)

n∑
i=1

{g(V, ei)
2 + g(V, ϕei)

2} −

−[(2n+ 1)f1 − f3]g(V, V ) + [(2n− 1)f3 + f1]g(V, ξ)2,

and thus,

2n+1∑
i=1

g(R(ui, V )ui, V ) = −[3f2 + 2nf1 − f3]g(V, V ) +

+[3f2 + (2n− 1)f3]g(V, ξ)2.

Theorem 1. Let M be a compact generalized Sasakian space form. If
(3f2 + (2n− 1)f3) ≥ 0 and (3f2 + 2nf1 − f3) ≤ 0, then the identity map 1M is
weakly stable.

Proof. It is not very difficult to prove that∫
M
h(4V, V )υg =

∫
M
h(∇̃V, ∇̃V )υg, V ∈ Γ(TM).

Now the second varition formula becomes

H1M (V, V ) =

∫
M
h(∇̃V, ∇̃V )−

∫
M

(3f2 + 2nf1 − f3)g(V, V )υg +

+

∫
M

(3f2 + (2n− 1)f3)g(V, ξ)2υg,

and thus, the identity map 1M is weakly stable if (3f2 + 2nf1 − f3) ≤ 0 and
(3f2 + (2n− 1)f3) ≥ 0. �

Corollary 1. Let Ω be a compact domain of a Kenmotsu space form M
of constant ϕ-sectional curvature c. If c ∈ (−1, 3n−1n+1 ) then the identity map
1M is weakly stable.

Proof. For a Kenmotsu space form M, we have f1 = (c−3)
4 , f2 = f3 = c+1

4
(see [1]). And thus, 2(3f2+2nf1−f3) = c(n+1)−3n+1 and 2(3f2+(2n−1)f3) =
(c+ 1)(n+ 1) for c ∈ (−1, 3n−1n+1 ). Then by Theorem 1, the identity 1M map is

weakly stable for c ∈ (−1, 3n−1n+1 ). �
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Example 2. Using Example 1, it is not difficult to see that for f(t) =
exp(t) and f(t) = 1

tp (t > 0, p > 0), the inequalities in Theorem 1 are
satisfied and thus, the identity map of any compact domain of the warped
product R×f Cn is weakly stable.

Similarly, for f(t) = et, t ∈ [12 ln(n+1
n ),∞), the identity map of any com-

pact domain of the warped product R×f CPn is weakly stable.

We recall now the Weitzenbock formula: Let E be a vector bundle over
an m-dimensional Riemannian manifold M. Then for any 1-form ω ∈ A1(E)
we have

41ω = 4ω − ρ(ω),

where

ρ(ω)(X) =

m∑
i=1

R(X,ui)(ω(ui))−
m∑
i=1

ω(R(X,ui)ui),

for any Γ(TM). Here 41 is the Laplacian of E-valued 1-forms and 4 is rough
Laplacian on A1(E). Then, using the Weitzenbock formula for E = M × R,
we have

41(V ) = 4V +

2n+1∑
i=1

R(V, ui)ui.

Then the second variational formula becomes now

H1M (V, V ) =

∫
M
h(41V, V )υg − 2

2n+1∑
i=1

∫
M
h(R(V, ui)ui, V )υg.

Theorem 2. Let M be a compact domain of a generalized Sasakian space
form such that (3f2+(2n−1)f3) ≤ 0. If the first eigenvalue λ1 of the Laplacian
4g acting on C∞(M) satisfies λ1 < 2(3f2 + 2nf1 − f3), then the identity map
1M is unstable.

Proof. Let λ1 be the first eigenvalue of the Laplacian4g acting on C∞(M)
and f be a non constant eigenfunction of 4g such that 4gf = λ1f . Let
f ∈ C∞(M) be taken as 4gf = λ1(g)f and let V = gradf 6= 0. Then∫

M
h(41V, V )υg =

∫
M
< (dδ + δd)df, df > υg =

∫
M
< dδdf,df > υg

= λ1(g)

∫
M
< df, df > υg (since δdf = 4gf)

= λ1(g)

∫
M
< df, df > υg.
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Then the second variational formula becomes

H1M (V, V ) =

∫
M

(λ1 − 2(3f2 + 2nf1 − f3)g(V, V )υg +

+

∫
M

2(3f2 + (2n− 1)f3)g(V, ξ)2υg.

If the first eigenvalue λ1 of the Laplacian satisfies λ1 < 2(3f2 +2nf1−f3)
then 1M is unstable. �

Using Theorem 2, we have the folowing corollary (see [7]).

Corollary 2. Let M be a compact Sasakian space form of constant ϕ-
sectional curvature c such that c ≤ 1. If the first eigenvalue λ1 of the Laplacian
satisfies λ1 < c(n+ 1) + 3n− 1 then the identity map is unstable.

Proof. Indeed for a Sasakian space form, f1 = (c+3)
4 , f2 = f3 = (c−1)

4 , and
thus, (3f2 +2nf1−f3) = (n+1)c+3n−1 and 3f2 +(2n−1)f3 = (n+1)(c−1).
Then if c ≤ 1 and λ1 < c(n + 1) + 3n − 1, from Theorem 2 we have that 1M
map is unstable. �

Remark 1. If M is a Sasakian space form with c = 1, then M becomes a
space with constant curvature 1, hence, isometric to the unit sphere. As we
know the first eigenvalue of the Laplacian 4g for the euclidean (2n+1)-sphere
is λ1 = (2n + 1) and therefore, from Corollary 2 the identity 1S(2n+1) is an
unstable map.

Example 3. We can apply Theorem 2 also for a compact domain of a gen-
eralized Sasakian space form which is not Sasakian. First of all, such examples
do exist. For example, if N(c) is a complex space form of real dimension 2n,
we consider a compact domain of M = (−π

2 ,
π
2 ) ×f N(c) with the function

f(t) = cos t. Then M is a generalized Sasakian space form (which is not
Sasakian space form) with the functions (see Theorem 4.8. in [1]):

f1 =
c− 4 sin2 t

4 cos2 t
, f2 =

c

4 cos2 t
, f3 =

c− 4 sin2 t

4 cos2 t
− 1.

It easy to see that

3f2 + (2n− 1)f3 ==
1

2
[c+ 2 + n(c− 4)] sec2 t

and thus, if we chose c such that c ≤ 2(2n−1)
n+1 , then the first condition of

Theorem 2 is satisfied. On the other hand it is not difficult to see that if
2(2n−1)
n+2 < c then, if the first eigenvalue λ1 satisfies the condition λ1 < 4n, then

the second condition of Theorem 2 is also satisfied and thus, the identity map
is unstable.
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