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1. INTRODUCTION

A finite group G is said to be characterizable by the number of its Sylow
subgroups, if G is uniquely (up to isomorphism) determined by the number of
its Sylow subgroups. In 1992, Bi showed that L2(q) uniquely (up to isomor-
phism) determined by the orders of its Sylow normalizers (see [1]). In [5], the
authors concentrated on the number of Sylow subgroups of finite groups in the
class of the finite centerless groups and they showed that some finite simple
groups can be determined uniquely (up to isomorphism) by number of their
Sylow subgroups in the class of the finite centerless groups.

For a finite group G, let π(G) be the set of prime divisors of |G|. For the
natural number n, a finite group S is named a simple Kn-group, when S is a
simple group with |π(S)| = n. In this paper, we prove that:

Theorem 1.1. The finite simple K4-group L2(3m) is characterizable by
the number of its Sylow subgroups in the class of finite centerless groups.

2. MAIN RESULTS

Throughout this paper, we use the following notation: Let a and n be
integers greater than 1. A primitive prime divisor of an − 1 is a prime l
such that l | (an − 1) but l - (ai − 1) for 1 ≤ i < n. If q is odd, we put
exp2(q) = 1 if q ≡ 1 (mod 4), and exp2(q) = 2 otherwise. Put Zn(a) = {l :
l is a primitive prime divisor of an − 1}. For a finite group G and the prime
number p, let np(G) denote the number of p-Sylow subgroups of G. Also, the
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set of all p-Sylow subgroups of G is denoted by Sylp(G), and the p-part of G,
denoted by |G|p, is the order of any P ∈ Sylp(G). In the following lemmas, we
will quote some useful facts which will be used during the proof of the main
theorem.

Lemma 2.1 ([4]). Let a, n > 1 be natural numbers. Then Zn(a) 6= {},
unless a = 2, n = 6 or n = 2 and a = 2w − 1 for some natural number w.

The following lemma is a known fact that we will use it without reference
during the proof of the main theorem. The number of Sylow subgroups of
other finite simple groups can be obtained using [6]:

Lemma 2.2. Let r ∈ π(L2(q)). Then:

(i) if r | q, then nr(L2(q)) = (q + 1);

(ii) if r ∈ Z2(q)− {2}, then nr(L2(q)) = q(q − 1)/2;

(iii) if r ∈ Z1(q)− {2}, then nr(L2(q)) = q(q + 1)/2.

Lemma 2.3. (i) [8] If G is a simple K3-group, then G is isomorphic
to one of the following groups: A5, A6, L2(7), L2(8), L2(17), L3(3),
PSU3(3) or PSU4(2);

(ii) [9] let G be a simple K4-group. Then G is isomorphic to one of the
following groups:

(1) A7, A8, A9, A10, M11, M12, J2, L2(16), L2(25), L2(49), L2(81),
L3(4), L3(5), L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9),
S6(2), O+

8 (2), G2(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3), U5(2),
Sz(8), Sz(32), 3D4(2), 2F4(2)′;

(2) L2(r), where r is a prime and satisfies r2−1 = 2a.3b.vc with a, b, c ≥ 1
and a prime v > 3;

(3) L2(2m), where m ≥ 5 satisfies 2m− 1 = u and 2m + 1 = 3tb, where u
and t are primes, t > 3 and b ≥ 1;

(4) L2(3m), where m ≥ 2 satisfies 3m+ 1 = 4t, 3m−1 = 2uc or 3m+ 1 =
4tb, 3m − 1 = 2u, where u and t are odd primes, and b, c ≥ 1.

Lemma 2.4 ([10]). Let G be a finite group and M be a normal subgroup
of G. Then for every prime p, np(M)np(G/M) divides np(G).

Lemma 2.5 ([7]). Let G be a finite solvable group and |G| = m.n, where
m = pα1

1 ...pαr
r and (m,n) = 1. Let π = {p1, ..., pr} and hm be the number of

π-Hall subgroups of G. Then hm = qβ11 ...qβss and for all i ∈ {1, .., s}: qβii ≡
1 (mod pj), for some pj.
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Proof of Theorem 1.1. Let G be a finite centerless group such that for
every prime number p, np(G) = np(L2(3m)). Since L2(3m) is a simple K4-
group, m ≥ 3 and m satisfies either 3m−1 = 2uc and 3m+1 = 4t or 3m−1 = 2u
and 3m + 1 = 4tb, where u and t are odd primes and b, c ≥ 1. We show
that π(G) = π(L2(3m)). If not, then there exists p ∈ π(G) r π(L2(3m)), so
np(G) = np(L2(3m)) = 1 and for every q ∈ π(G), p - nq(G). This shows
that p ∈ π(Z(G)), which is a contradiction. Thus, π(G) = π(L2(3m)). Let
1 = N0 E N1 E ... E Nn−1 E Nn = G be a chief series of G. We claim
that G is not solvable. If not, then since nt(G) = nt(L2(3m)) = 3m.uc, where
uc = (3m − 1)/2, we deduce that by Lemma 2.5, t | 3m − 1 or t | uc − 1,
which shows that t | uc − 1 = 3(3m−1 − 1)/2. This forces t to divide 3m−1 − 1,
which is impossible. This shows that G is not solvable and hence, there exists
1 ≤ i ≤ n such that Ni/Ni−1 is not solvable. Put N := Ni−1 and H := Ni.
Since H/N is a normal minimal subgroup of G/N , H/N ∼= P1 × ... × Pw,
where for every 1 ≤ i ≤ w, Pi is a simple group and Pi ∼= Pj , for every
1 ≤ i, j ≤ w. Fix j such that 1 ≤ j ≤ w. As stated before, |π(G)| = 4 and
it is evident that Pj is neither a K1-group nor a K2-group. Therefore, Pj is a
simple K3-group or a simple K4-group. Let Pj be a simple K3-group. Then Pj
is isomorphic to one of the groups mentioned in Lemma 2.3(i) and also, since
π(Pj) ⊂ π(G) = {2, 3, t, u} and |π(Pj)| = 3, we deduce that either t ∈ π(Pj)
or u ∈ π(Pj). Thus, comparing the maximal prime divisor of the orders of the
groups mentioned in Lemma 2.3(i) with t and u leads us to conclude that t or
u ∈ {5, 7, 13, 17}. In the following, we consider these cases:

I. Let t ∈ π(H/N). Then we have the following possibilities for t:
a. t = 5. Then 5|32 + 1 and 5|3m + 1. So, 5|gcd(32 + 1, 3m + 1), which implies
that 2|m. Thus, m = 2, because m is prime. Obviously, this is a contradiction
with our assumption.

b. t = 7. Then since 7|33 + 1 and 7|3m + 1, by the same argument as
that of in (a), we can see that m = 3. On the other hand, among the groups
mentioned in Lemma 2.3(i), the only groups which their orders are divisible
by 7 are L2(7) and PSU3(3) and hence, either Pj ∼= L2(7) or Pj ∼= PSU3(3).
It follows from Lemma 2.4 and [3] that either 8 = n7(L2(7)) = n7(Pj) divides
n7(G) = n7(L2(27)) = 33.13 or 25.32 = n7(Pj) divides n7(G) = n7(L2(27)) =
33.13, which is impossible.

c. t = 13. Then since 13|33−1 and 13|3m+ 1, 13|gcd(33−1, 3m+ 1) = 2,
which is impossible. The same reasoning rules out the case when Pj ∼= L2(8).
d. t = 17. Then since 17|316 − 1 and 17|3m + 1, we obtain 8|m, which is a
contradiction with the fact that m is prime.

II. Let u ∈ π(H/N). Then we have the following possibilities for u:

a. u = 5. Then since 5|3m − 1 and 5 ∈ Z4(3), we obtain 4|m, which is a
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contradiction.

b. u = 7. Then since 7|3m − 1 and 7 ∈ Z6(3), we obtain 6|m, which is a
contradiction.

c. u = 13. Then since 13|3m − 1 and 13 ∈ Z3(3), we get m = 3.
Now, since 13 ∈ π(Pj) and Pj is a simple K3-group, we deduce that by Lemma
2.3(i), Pj ∼= L3(3). Thus, by Lemma 2.4, 24.32 = n13(Pj) divides n13(L2(27)) =
2.33.7, which is impossible.

d. u = 17. Then since 17|3m − 1 and 17 ∈ Z16(3), we deduce that 16|m,
which is a contradiction.

It follows that Pj is not a simple K3-group and hence, Pj is a simple K4-
group. Recall that every simple K4-group is isomorphic to one of the groups
mentioned in Lemma 2.3(ii). Thus, we have the following cases:

Case 1. Pj is isomorphic to one of the groups mentioned in Lemma
2.3(ii)(1). Then comparing the prime divisors of the order of the groups men-
tioned in Lemma 2.3(ii)(1) and the prime divisors of the order of L2(3m) leads
us to see that Pj ∈ {G2(3), 3D4(2)} (up to isomorphism). Then:

• if Pj ∼= G2(3) and t is the maximal prime divisor of |L2(3m)|, then,
since |Pj | = 26.36.7.13 and π(Pj) = π(L2(3m)), we have t = 13. We claim that
3m + 1 = 4t. If not, then Lemma 2.3(ii) forces 3m + 1 = 4tb and 3m − 1 = 2u,
where b ≥ 2 and hence, u > t, which is a contradiction with our assumption.
Thus, 3m + 1 = 4t and hence, 3m + 1 = 52, which is impossible;

• if Pj ∼= G2(3) and u is the maximal prime divisor of |L2(3m)|, then the
same reasoning as that of in the above forces u = 13, c = 1 and m = 3. Let
x ∈ G2(3) such that O(x) = 13. Then 〈x〉 ∈ Syl13(G2(3)). Also, [3] shows
that |CG2(3)(x)| = 13 and N-C theorem shows that NG2(3)(〈x〉)/CG2(3)(〈x〉) .
Aut(〈x〉) ∼= Z12. Therefore, |NG2(3)(〈x〉)| divides 12.13. This forces 24.35.7 to
divide n13(Pj) = n13(G2(13)). But by Lemma 2.4, n13(Pj) divides n13(G) =
n13(L2(27)) = 2.33.7. This shows that 24.35.7 divides 2.33.7, which is im-
possible.

The same reasoning rules out the case where Pj ∼= 3D4(2).

Case 2. Pj ∼= L2(r), where r is a prime and satisfies r2 − 1 = 2a.3b.vc

with a, b, c ≥ 1 and a prime v > 3. Then since r is the maximal prime divisor
of |L2(r)| and π(H/N) = π(G), we deduce that either t = r or u = r. Thus,
we have the following subcases:

Subcase i. t = r. Then since r = t is the maximal prime divisor of
|L2(3m)|, we deduce that t = (3m + 1)/4 and v = u. Thus, by Lemma 2.4,
t(t − 1)/2 = r(r − 1)/2 = nu(L2(r)) divides nu(L2(3m)) = 3m(3m + 1)/2, so
(3m − 3)t/8 divides 2.t.3m. This implies that m = 3 and hence, r = t = 7.
Thus, π(Pj) = π(L2(7)) = {2, 3, 7}, a contradiction;

Subcase ii. u = r. Then since r = u is the maximal prime divisor of
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|L2(3m)|, we deduce that u = (3m − 1)/2 and v = t. Thus, by Lemma 2.4,
u(u − 1)/2 = r(r − 1)/2 = nt(L2(r)) divides nt(L2(3m)) = 3m(3m − 1)/2, so
u(3m − 3)/4 divides u.3m. This implies that m = 2, which is a contradiction;

Case 3. Pj ∼= L2(2m
′
), where m′ ≥ 5 satisfies 2m

′ − 1 = u′ and 2m
′
+ 1 =

3t′b
′
, where u′ and t′ are primes, t′ > 3 and b′ ≥ 1. Then u′ is the maximal prime

divisor of |Pj | and hence, as stated before, we have the following subcases:

Subcase i. t = u′ and hence, t = (3m + 1)/4 and t′ = u. Thus, by
Lemma 2.4, 2m

′
(2m

′
+1)/2 = nu′(L2(2m

′
)) divides nt(L2(3m)) = 3m(3m−1)/2,

so 3.2m
′
.t′b

′
divides 3m.uc, which is impossible;

Subcase ii. u = u′ and hence, u = (3m − 1)/2 and t′ = t. Thus, by
Lemma 2.4, 2m

′
(2m

′
+1)/2 = nu′(L2(2m

′
)) divides nu(L2(3m)) = 3m(3m+1)/2,

so 3.2m
′
.t′b

′
divides 2.3m.tb. It follows that m′ ≤ 1, a contradiction;

Case 4. Pj ∼= L2(3m
′
), where m′ ≥ 3 satisfies 3m

′
+1 = 4t′, 3m

′−1 = 2u′c
′

or 3m
′
+ 1 = 4t′b

′
, 3m

′ − 1 = 2u′, where u′ and t′ are odd primes, and b′, c′ ≥ 1.
Then comparing the maximal prime divisor of |L2(3m)| with the maximal prime
divisor of |L2(3m

′
)| leads us to see that m = m′ and hence, Pj ∼= L2(3m). It

follows from Lemma 2.4 that nt(H/N) = (3m(3m − 1)/2)w divides nt(G) =
3m(3m − 1)/2, so w = 1 and consequently, H/N ∼= L2(3m). Set G := G/N and
H := H/N , which is isomorphic to L2(3m). Since Z(H̄) = 1, we have

L2(3m) ∼= H ∼=
HCG(H)

CG(H)
≤ G

CG(H)
=
NG(H)

CG(H)
. Aut(H).

Let CḠ(H̄) = K/N . Then K E G and G/K ∼= G/CG(H). Since by
Lemma 2.4, for every p ∈ π(G), np(L2(3m)) divides np(G/K) and np(G/K)
divides np(G) = np(L2(3m)), we deduce that np(G/K) = np(L2(3m)) = np(G)
and hence, Lemma 2.4 leads us to see that np(K) = 1, for every p ∈ π(G).
Thus, K is nilpotent. We claim that K = 1. Let Q be a q-Sylow subgroup of K.
Then since K is nilpotent, Q is normal in G. For p ∈ π(G) and P ∈ Sylp(G),

set P̃ = PK/K and G̃ = G/K. It is easy to check that P̃ ∈ Sylp(G̃) and

N
G̃

(P̃ ) = NG(P )K/K. But as mentioned before, np(G/K) = np(G) and hence,
|NG(P )K| = |NG(P )|. This shows that K ≤ NG(P ). Thus, Q normalizes P
and so, if p 6= q, then P and Q centralizes each other. Let C = CG(Q). Then for
every p ∈ π(G)r{q}, C contains the p-Sylow subgroups of G and hence, |G : C|
is a power of q. Now let S be a q-Sylow subgroup of G. Then G = CS. Also
if Q 6= 1, then ”Q E G” guarantees that CQ(S) 6= 1. But CQ(S) ≤ Z(G) = 1.
This forcesQ to be trivial. Since q is an arbitrary element of π(G), we haveK =
1. Thus, L2(3m) E G ∼= Ḡ/CḠ(H̄) . Aut(L2(3m)) ∼= PGL2(3m).Zm. Thus,
we conclude that either G ∼= PGL2(3m).Zn or G ∼= L2(3m).Zn, where n | m.
If G ∼= PGL2(3m).Zn, then by Lemma 2.4, n2(PGL2(3m)) divides n2(G) =
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n2(L2(3m)) and [2, Lemma 3] shows that |PGL2(3m)|/|PGL2(3m)|2 divides
|L2(3m)|/(3.|L2(3m)|2) = |PGL2(3m)|/(3.|PGL2(3m)|2), which is impossible.
Thus, G ∼= L2(3m).Zn. Then since n | m and m is a prime number, we
get that either n = 1 or n = m. We claim that n = 1. If not, n = m ∈
π(G) = π(L2(3m)) = {2, 3, u, t}. But t ∈ Z2m(3) and u ∈ Zm(3), so Fermat’s
little theorem shows that m | u − 1 and 2m | t − 1 and hence, t, u - m,
consequently, m 6= u and m 6= t. Thus, n = m ∈ {2, 3}. If n = m = 2, then
π(G) = π(L2(9)) = {2, 3, 5}, which is a contradiction. This forces n = m = 3.
Thus, 364 = n3(L2(27).Z3) = n3(G) = n3(L2(27)) = 28, which is impossible.
This shows that n = 1. So G ∼= L2(3m), which implies that the simple K4-
group L2(m) is uniquely (up to isomorphism) determined by the number of its
Sylow subgroups, as desired. �
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