ON THE CHARACTERIZATION OF SIMPLE K_{4}-GROUP $L_{2}\left(3^{m}\right)$ IN THE CLASS OF FINITE CENTERLESS GROUPS

S. HEYDARI, N. AHANJIDEH and B. ASADIAN

Communicated by Ştefan Papadima

In this paper, we show that the simple K_{4}-group $L_{2}\left(3^{m}\right)$ is characterizable by the number of its Sylow subgroups in the class of finite centerless groups.

AMS 2010 Subject Classification: 20D06, 20D15.
Key words: Sylow subgroups of a finite group, simple K_{n}-groups.

1. INTRODUCTION

A finite group G is said to be characterizable by the number of its Sylow subgroups, if G is uniquely (up to isomorphism) determined by the number of its Sylow subgroups. In 1992 , Bi showed that $L_{2}(q)$ uniquely (up to isomorphism) determined by the orders of its Sylow normalizers (see [1]). In [5], the authors concentrated on the number of Sylow subgroups of finite groups in the class of the finite centerless groups and they showed that some finite simple groups can be determined uniquely (up to isomorphism) by number of their Sylow subgroups in the class of the finite centerless groups.

For a finite group G, let $\pi(G)$ be the set of prime divisors of $|G|$. For the natural number n, a finite group S is named a simple K_{n}-group, when S is a simple group with $|\pi(S)|=n$. In this paper, we prove that:

Theorem 1.1. The finite simple K_{4}-group $L_{2}\left(3^{m}\right)$ is characterizable by the number of its Sylow subgroups in the class of finite centerless groups.

2. MAIN RESULTS

Throughout this paper, we use the following notation: Let a and n be integers greater than 1. A primitive prime divisor of $a^{n}-1$ is a prime l such that $l \mid\left(a^{n}-1\right)$ but $l \nmid\left(a^{i}-1\right)$ for $1 \leq i<n$. If q is odd, we put $\exp _{2}(q)=1$ if $q \equiv 1(\bmod 4)$, and $\exp _{2}(q)=2$ otherwise. Put $Z_{n}(a)=\{l:$ l is a primitive prime divisor of $\left.a^{n}-1\right\}$. For a finite group G and the prime number p, let $n_{p}(G)$ denote the number of p-Sylow subgroups of G. Also, the
set of all p-Sylow subgroups of G is denoted by $\operatorname{Syl}_{p}(G)$, and the p-part of G, denoted by $|G|_{p}$, is the order of any $P \in \operatorname{Syl}_{p}(G)$. In the following lemmas, we will quote some useful facts which will be used during the proof of the main theorem.

Lemma 2.1 ([4]). Let $a, n>1$ be natural numbers. Then $Z_{n}(a) \neq\{ \}$, unless $a=2, n=6$ or $n=2$ and $a=2^{w}-1$ for some natural number w.

The following lemma is a known fact that we will use it without reference during the proof of the main theorem. The number of Sylow subgroups of other finite simple groups can be obtained using [6]:

Lemma 2.2. Let $r \in \pi\left(L_{2}(q)\right)$. Then:
(i) if $r \mid q$, then $n_{r}\left(L_{2}(q)\right)=(q+1)$;
(ii) if $r \in Z_{2}(q)-\{2\}$, then $n_{r}\left(L_{2}(q)\right)=q(q-1) / 2$;
(iii) if $r \in Z_{1}(q)-\{2\}$, then $n_{r}\left(L_{2}(q)\right)=q(q+1) / 2$.

Lemma 2.3. (i) [8] If G is a simple K_{3}-group, then G is isomorphic to one of the following groups: $A_{5}, A_{6}, L_{2}(7), L_{2}(8), L_{2}(17), L_{3}(3)$, $\mathrm{PSU}_{3}(3)$ or $\mathrm{PSU}_{4}(2)$;
(ii) [9] let G be a simple K_{4}-group. Then G is isomorphic to one of the following groups:
(1) $A_{7}, A_{8}, A_{9}, A_{10}, M_{11}, M_{12}, J_{2}, L_{2}(16), L_{2}(25), L_{2}(49), L_{2}(81)$, $L_{3}(4), L_{3}(5), L_{3}(7), L_{3}(8), L_{3}(17), L_{4}(3), S_{4}(4), S_{4}(5), S_{4}(7), S_{4}(9)$, $S_{6}(2), O_{8}^{+}(2), G_{2}(3), U_{3}(4), U_{3}(5), U_{3}(7), U_{3}(8), U_{3}(9), U_{4}(3), U_{5}(2)$, $S z(8), S z(32),{ }^{3} D_{4}(2),{ }^{2} F_{4}(2)^{\prime}$;
(2) $L_{2}(r)$, where r is a prime and satisfies $r^{2}-1=2^{a} .3^{b} . v^{c}$ with $a, b, c \geq 1$ and a prime $v>3$;
(3) $L_{2}\left(2^{m}\right)$, where $m \geq 5$ satisfies $2^{m}-1=u$ and $2^{m}+1=3 t^{b}$, where u and t are primes, $t>3$ and $b \geq 1$;
(4) $L_{2}\left(3^{m}\right)$, where $m \geq 2$ satisfies $3^{m}+1=4 t, 3^{m}-1=2 u^{c}$ or $3^{m}+1=$ $4 t^{b}, 3^{m}-1=2 u$, where u and t are odd primes, and $b, c \geq 1$.

Lemma 2.4 ([10]). Let G be a finite group and M be a normal subgroup of G. Then for every prime $p, n_{p}(M) n_{p}(G / M)$ divides $n_{p}(G)$.

Lemma 2.5 ([7]). Let G be a finite solvable group and $|G|=m . n$, where $m=p_{1}^{\alpha_{1}} \ldots p_{r}^{\alpha_{r}}$ and $(m, n)=1$. Let $\pi=\left\{p_{1}, \ldots, p_{r}\right\}$ and h_{m} be the number of π-Hall subgroups of G. Then $h_{m}=q_{1}^{\beta_{1}} \ldots q_{s}^{\beta_{s}}$ and for all $i \in\{1, . ., s\}: q_{i}^{\beta_{i}} \equiv$ $1\left(\bmod p_{j}\right)$, for some p_{j}.

Proof of Theorem 1.1. Let G be a finite centerless group such that for every prime number $p, n_{p}(G)=n_{p}\left(L_{2}\left(3^{m}\right)\right)$. Since $L_{2}\left(3^{m}\right)$ is a simple $K_{4^{-}}$ group, $m \geq 3$ and m satisfies either $3^{m}-1=2 u^{c}$ and $3^{m}+1=4 t$ or $3^{m}-1=2 u$ and $3^{m}+1=4 t^{b}$, where u and t are odd primes and $b, c \geq 1$. We show that $\pi(G)=\pi\left(L_{2}\left(3^{m}\right)\right)$. If not, then there exists $p \in \pi(G) \backslash \pi\left(L_{2}\left(3^{m}\right)\right)$, so $n_{p}(G)=n_{p}\left(L_{2}\left(3^{m}\right)\right)=1$ and for every $q \in \pi(G), p \nmid n_{q}(G)$. This shows that $p \in \pi(Z(G))$, which is a contradiction. Thus, $\pi(G)=\pi\left(L_{2}\left(3^{m}\right)\right)$. Let $1=N_{0} \unlhd N_{1} \unlhd \ldots \unlhd N_{n-1} \unlhd N_{n}=G$ be a chief series of G. We claim that G is not solvable. If not, then since $n_{t}(G)=n_{t}\left(L_{2}\left(3^{m}\right)\right)=3^{m} . u^{c}$, where $u^{c}=\left(3^{m}-1\right) / 2$, we deduce that by Lemma $2.5, t \mid 3^{m}-1$ or $t \mid u^{c}-1$, which shows that $t \mid u^{c}-1=3\left(3^{m-1}-1\right) / 2$. This forces t to divide $3^{m-1}-1$, which is impossible. This shows that G is not solvable and hence, there exists $1 \leq i \leq n$ such that N_{i} / N_{i-1} is not solvable. Put $N:=N_{i-1}$ and $H:=N_{i}$. Since H / N is a normal minimal subgroup of $G / N, H / N \cong P_{1} \times \ldots \times P_{w}$, where for every $1 \leq i \leq w, P_{i}$ is a simple group and $P_{i} \cong P_{j}$, for every $1 \leq i, j \leq w$. Fix j such that $1 \leq j \leq w$. As stated before, $|\pi(G)|=4$ and it is evident that P_{j} is neither a K_{1}-group nor a K_{2}-group. Therefore, P_{j} is a simple K_{3}-group or a simple K_{4}-group. Let P_{j} be a simple K_{3}-group. Then P_{j} is isomorphic to one of the groups mentioned in Lemma 2.3(i) and also, since $\pi\left(P_{j}\right) \subset \pi(G)=\{2,3, t, u\}$ and $\left|\pi\left(P_{j}\right)\right|=3$, we deduce that either $t \in \pi\left(P_{j}\right)$ or $u \in \pi\left(P_{j}\right)$. Thus, comparing the maximal prime divisor of the orders of the groups mentioned in Lemma 2.3(i) with t and u leads us to conclude that t or $u \in\{5,7,13,17\}$. In the following, we consider these cases:
I. Let $t \in \pi(H / N)$. Then we have the following possibilities for t :
a. $t=5$. Then $5 \mid 3^{2}+1$ and $5 \mid 3^{m}+1$. So, $5 \mid \operatorname{gcd}\left(3^{2}+1,3^{m}+1\right)$, which implies that $2 \mid m$. Thus, $m=2$, because m is prime. Obviously, this is a contradiction with our assumption.
b. $t=7$. Then since $7 \mid 3^{3}+1$ and $7 \mid 3^{m}+1$, by the same argument as that of in (a), we can see that $m=3$. On the other hand, among the groups mentioned in Lemma 2.3(i), the only groups which their orders are divisible by 7 are $L_{2}(7)$ and $P S U_{3}(3)$ and hence, either $P_{j} \cong L_{2}(7)$ or $P_{j} \cong P S U_{3}(3)$. It follows from Lemma 2.4 and [3] that either $8=n_{7}\left(L_{2}(7)\right)=n_{7}\left(P_{j}\right)$ divides $n_{7}(G)=n_{7}\left(L_{2}(27)\right)=3^{3} .13$ or $2^{5} .3^{2}=n_{7}\left(P_{j}\right)$ divides $n_{7}(G)=n_{7}\left(L_{2}(27)\right)=$ $3^{3} .13$, which is impossible.
c. $t=13$. Then since $13 \mid 3^{3}-1$ and $13\left|3^{m}+1,13\right| \operatorname{gcd}\left(3^{3}-1,3^{m}+1\right)=2$, which is impossible. The same reasoning rules out the case when $P_{j} \cong L_{2}(8)$. d. $t=17$. Then since $17 \mid 3^{16}-1$ and $17 \mid 3^{m}+1$, we obtain $8 \mid m$, which is a contradiction with the fact that m is prime.
II. Let $u \in \pi(H / N)$. Then we have the following possibilities for u :
a. $u=5$. Then since $5 \mid 3^{m}-1$ and $5 \in Z_{4}(3)$, we obtain $4 \mid m$, which is a
contradiction.
b. $u=7$. Then since $7 \mid 3^{m}-1$ and $7 \in Z_{6}(3)$, we obtain $6 \mid m$, which is a contradiction.
c. $u=13$. Then since $13 \mid 3^{m}-1$ and $13 \in Z_{3}(3)$, we get $m=3$. Now, since $13 \in \pi\left(P_{j}\right)$ and P_{j} is a simple K_{3}-group, we deduce that by Lemma 2.3(i), $P_{j} \cong L_{3}(3)$. Thus, by Lemma 2.4, $2^{4} .3^{2}=n_{13}\left(P_{j}\right)$ divides $n_{13}\left(L_{2}(27)\right)=$ $2.3^{3} .7$, which is impossible.
d. $u=17$. Then since $17 \mid 3^{m}-1$ and $17 \in Z_{16}(3)$, we deduce that $16 \mid m$, which is a contradiction.

It follows that P_{j} is not a simple K_{3}-group and hence, P_{j} is a simple $K_{4^{-}}$ group. Recall that every simple K_{4}-group is isomorphic to one of the groups mentioned in Lemma 2.3(ii). Thus, we have the following cases:

Case 1. P_{j} is isomorphic to one of the groups mentioned in Lemma 2.3(ii)(1). Then comparing the prime divisors of the order of the groups mentioned in Lemma 2.3(ii)(1) and the prime divisors of the order of $L_{2}\left(3^{m}\right)$ leads us to see that $P_{j} \in\left\{G_{2}(3),{ }^{3} D_{4}(2)\right\}$ (up to isomorphism). Then:

- if $P_{j} \cong G_{2}(3)$ and t is the maximal prime divisor of $\left|L_{2}\left(3^{m}\right)\right|$, then, since $\left|P_{j}\right|=2^{6} .3^{6} .7 .13$ and $\pi\left(P_{j}\right)=\pi\left(L_{2}\left(3^{m}\right)\right)$, we have $t=13$. We claim that $3^{m}+1=4 t$. If not, then Lemma 2.3(ii) forces $3^{m}+1=4 t^{b}$ and $3^{m}-1=2 u$, where $b \geq 2$ and hence, $u>t$, which is a contradiction with our assumption. Thus, $3^{m}+1=4 t$ and hence, $3^{m}+1=52$, which is impossible;
- if $P_{j} \cong G_{2}(3)$ and u is the maximal prime divisor of $\left|L_{2}\left(3^{m}\right)\right|$, then the same reasoning as that of in the above forces $u=13, c=1$ and $m=3$. Let $x \in G_{2}(3)$ such that $O(x)=13$. Then $\langle x\rangle \in \operatorname{Syl}_{13}\left(G_{2}(3)\right)$. Also, [3] shows that $\left|C_{G_{2}(3)}(x)\right|=13$ and N-C theorem shows that $N_{G_{2}(3)}(\langle x\rangle) / C_{G_{2}(3)}(\langle x\rangle) \lesssim$ $\operatorname{Aut}(\langle x\rangle) \cong \mathbb{Z}_{12}$. Therefore, $\left|N_{G_{2}(3)}(\langle x\rangle)\right|$ divides 12.13. This forces $2^{4} .3^{5} .7$ to divide $n_{13}\left(P_{j}\right)=n_{13}\left(G_{2}(13)\right)$. But by Lemma 2.4, $n_{13}\left(P_{j}\right)$ divides $n_{13}(G)=$ $n_{13}\left(L_{2}(27)\right)=2.3^{3} .7$. This shows that $2^{4} .3^{5} .7$ divides $2.3^{3} .7$, which is impossible.

The same reasoning rules out the case where $P_{j} \cong{ }^{3} D_{4}(2)$.
Case 2. $P_{j} \cong L_{2}(r)$, where r is a prime and satisfies $r^{2}-1=2^{a} .3^{b} . v^{c}$ with $a, b, c \geq 1$ and a prime $v>3$. Then since r is the maximal prime divisor of $\left|L_{2}(r)\right|$ and $\pi(H / N)=\pi(G)$, we deduce that either $t=r$ or $u=r$. Thus, we have the following subcases:

Subcase i. $t=r$. Then since $r=t$ is the maximal prime divisor of $\left|L_{2}\left(3^{m}\right)\right|$, we deduce that $t=\left(3^{m}+1\right) / 4$ and $v=u$. Thus, by Lemma 2.4, $t(t-1) / 2=r(r-1) / 2=n_{u}\left(L_{2}(r)\right)$ divides $n_{u}\left(L_{2}\left(3^{m}\right)\right)=3^{m}\left(3^{m}+1\right) / 2$, so $\left(3^{m}-3\right) t / 8$ divides 2.t. 3^{m}. This implies that $m=3$ and hence, $r=t=7$. Thus, $\pi\left(P_{j}\right)=\pi\left(L_{2}(7)\right)=\{2,3,7\}$, a contradiction;

Subcase ii. $u=r$. Then since $r=u$ is the maximal prime divisor of
$\left|L_{2}\left(3^{m}\right)\right|$, we deduce that $u=\left(3^{m}-1\right) / 2$ and $v=t$. Thus, by Lemma 2.4, $u(u-1) / 2=r(r-1) / 2=n_{t}\left(L_{2}(r)\right)$ divides $n_{t}\left(L_{2}\left(3^{m}\right)\right)=3^{m}\left(3^{m}-1\right) / 2$, so $u\left(3^{m}-3\right) / 4$ divides $u .3^{m}$. This implies that $m=2$, which is a contradiction;

Case 3. $P_{j} \cong L_{2}\left(2^{m^{\prime}}\right)$, where $m^{\prime} \geq 5$ satisfies $2^{m^{\prime}}-1=u^{\prime}$ and $2^{m^{\prime}}+1=$ $3 t^{b^{\prime}}$, where u^{\prime} and t^{\prime} are primes, $t^{\prime}>3$ and $b^{\prime} \geq 1$. Then u^{\prime} is the maximal prime divisor of $\left|P_{j}\right|$ and hence, as stated before, we have the following subcases:

Subcase i. $t=u^{\prime}$ and hence, $t=\left(3^{m}+1\right) / 4$ and $t^{\prime}=u$. Thus, by Lemma 2.4, $2^{m^{\prime}}\left(2^{m^{\prime}}+1\right) / 2=n_{u^{\prime}}\left(L_{2}\left(2^{m^{\prime}}\right)\right)$ divides $n_{t}\left(L_{2}\left(3^{m}\right)\right)=3^{m}\left(3^{m}-1\right) / 2$, so $3.2^{m^{\prime}} . t^{b^{\prime}}$ divides $3^{m} . u^{c}$, which is impossible;

Subcase ii. $u=u^{\prime}$ and hence, $u=\left(3^{m}-1\right) / 2$ and $t^{\prime}=t$. Thus, by Lemma 2.4, $2^{m^{\prime}}\left(2^{m^{\prime}}+1\right) / 2=n_{u^{\prime}}\left(L_{2}\left(2^{m^{\prime}}\right)\right)$ divides $n_{u}\left(L_{2}\left(3^{m}\right)\right)=3^{m}\left(3^{m}+1\right) / 2$, so $3.2^{m^{\prime}} . t^{\prime b^{\prime}}$ divides $2.3^{m} . t^{b}$. It follows that $m^{\prime} \leq 1$, a contradiction;

Case 4. $P_{j} \cong L_{2}\left(3^{m^{\prime}}\right)$, where $m^{\prime} \geq 3$ satisfies $3^{m^{\prime}}+1=4 t^{\prime}, 3^{m^{\prime}}-1=2 u^{\prime c^{\prime}}$ or $3^{m^{\prime}}+1=4 t^{\prime b^{\prime}}, 3^{m^{\prime}}-1=2 u^{\prime}$, where u^{\prime} and t^{\prime} are odd primes, and $b^{\prime}, c^{\prime} \geq 1$. Then comparing the maximal prime divisor of $\left|L_{2}\left(3^{m}\right)\right|$ with the maximal prime divisor of $\left|L_{2}\left(3^{m^{\prime}}\right)\right|$ leads us to see that $m=m^{\prime}$ and hence, $P_{j} \cong L_{2}\left(3^{m}\right)$. It follows from Lemma 2.4 that $n_{t}(H / N)=\left(3^{m}\left(3^{m}-1\right) / 2\right)^{w}$ divides $n_{t}(G)=$ $3^{m}\left(3^{m}-1\right) / 2$, so $w=1$ and consequently, $H / N \cong L_{2}\left(3^{m}\right)$. Set $\bar{G}:=G / N$ and $\bar{H}:=H / N$, which is isomorphic to $L_{2}\left(3^{m}\right)$. Since $Z(\bar{H})=1$, we have

$$
L_{2}\left(3^{m}\right) \cong \bar{H} \cong \frac{\bar{H} C_{\bar{G}}(\bar{H})}{C_{\bar{G}}(\bar{H})} \leq \frac{\bar{G}}{C_{\bar{G}}(\bar{H})}=\frac{\bar{N}_{\bar{G}}(\bar{H})}{C_{\bar{G}}(\bar{H})} \lesssim \operatorname{Aut}(\bar{H})
$$

Let $C_{\bar{G}}(\bar{H})=K / N$. Then $K \unlhd G$ and $G / K \cong \bar{G} / C_{\bar{G}}(\bar{H})$. Since by Lemma 2.4, for every $p \in \pi(G)$, $n_{p}\left(L_{2}\left(3^{m}\right)\right)$ divides $n_{p}(G / K)$ and $n_{p}(G / K)$ divides $n_{p}(G)=n_{p}\left(L_{2}\left(3^{m}\right)\right)$, we deduce that $n_{p}(G / K)=n_{p}\left(L_{2}\left(3^{m}\right)\right)=n_{p}(G)$ and hence, Lemma 2.4 leads us to see that $n_{p}(K)=1$, for every $p \in \pi(G)$. Thus, K is nilpotent. We claim that $K=1$. Let Q be a q-Sylow subgroup of K. Then since K is nilpotent, Q is normal in G. For $p \in \pi(G)$ and $P \in \operatorname{Syl}_{p}(G)$, set $\widetilde{P}=P K / K$ and $\widetilde{G}=G / K$. It is easy to check that $\widetilde{P} \in \operatorname{Syl}_{p}(\widetilde{G})$ and $N_{\widetilde{G}}(\widetilde{P})=N_{G}(P) K / K$. But as mentioned before, $n_{p}(G / K)=n_{p}(G)$ and hence, $\left|N_{G}(P) K\right|=\left|N_{G}(P)\right|$. This shows that $K \leq N_{G}(P)$. Thus, Q normalizes P and so, if $p \neq q$, then P and Q centralizes each other. Let $C=C_{G}(Q)$. Then for every $p \in \pi(G) \backslash\{q\}, C$ contains the p-Sylow subgroups of G and hence, $|G: C|$ is a power of q. Now let S be a q-Sylow subgroup of G. Then $G=C S$. Also if $Q \neq 1$, then " $Q \unlhd G$ " guarantees that $C_{Q}(S) \neq 1$. But $C_{Q}(S) \leq Z(G)=1$. This forces Q to be trivial. Since q is an arbitrary element of $\pi(G)$, we have $K=$ 1. Thus, $L_{2}\left(3^{m}\right) \unlhd G \cong \bar{G} / C_{\bar{G}}(\bar{H}) \lesssim \operatorname{Aut}\left(L_{2}\left(3^{m}\right)\right) \cong P G L_{2}\left(3^{m}\right) . \mathbb{Z}_{m}$. Thus, we conclude that either $G \cong P G L_{2}\left(3^{m}\right) \cdot \mathbb{Z}_{n}$ or $G \cong L_{2}\left(3^{m}\right) . \mathbb{Z}_{n}$, where $n \mid m$. If $G \cong P G L_{2}\left(3^{m}\right) \cdot \mathbb{Z}_{n}$, then by Lemma 2.4, $n_{2}\left(P G L_{2}\left(3^{m}\right)\right)$ divides $n_{2}(G)=$
$n_{2}\left(L_{2}\left(3^{m}\right)\right)$ and [2, Lemma 3] shows that $\left|P G L_{2}\left(3^{m}\right)\right| /\left|P G L_{2}\left(3^{m}\right)\right|_{2}$ divides $\left|L_{2}\left(3^{m}\right)\right| /\left(3 .\left|L_{2}\left(3^{m}\right)\right|_{2}\right)=\left|P G L_{2}\left(3^{m}\right)\right| /\left(3 .\left|P G L_{2}\left(3^{m}\right)\right|_{2}\right)$, which is impossible. Thus, $G \cong L_{2}\left(3^{m}\right) \cdot \mathbb{Z}_{n}$. Then since $n \mid m$ and m is a prime number, we get that either $n=1$ or $n=m$. We claim that $n=1$. If not, $n=m \in$ $\pi(G)=\pi\left(L_{2}\left(3^{m}\right)\right)=\{2,3, u, t\}$. But $t \in Z_{2 m}(3)$ and $u \in Z_{m}(3)$, so Fermat's little theorem shows that $m \mid u-1$ and $2 m \mid t-1$ and hence, $t, u \nmid m$, consequently, $m \neq u$ and $m \neq t$. Thus, $n=m \in\{2,3\}$. If $n=m=2$, then $\pi(G)=\pi\left(L_{2}(9)\right)=\{2,3,5\}$, which is a contradiction. This forces $n=m=3$. Thus, $364=n_{3}\left(L_{2}(27) \cdot \mathbb{Z}_{3}\right)=n_{3}(G)=n_{3}\left(L_{2}(27)\right)=28$, which is impossible. This shows that $n=1$. So $G \cong L_{2}\left(3^{m}\right)$, which implies that the simple $K_{4^{-}}$ group $L_{2}\left({ }^{m}\right)$ is uniquely (up to isomorphism) determined by the number of its Sylow subgroups, as desired.

REFERENCES

[1] J. Bi, A characterization of $L_{2}(q)$. J. Liaoning Univ. Nat. Sci. 19 (1992), 1-4.
[2] R. Carter and P. Fong, The Sylow 2-subgroups of the finite classical groups. J. Algebra 1 (1964), 139-151.
[3] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups. Clarendon, Oxford University Press, 1985.
[4] W. Feit, On large Zsigmondy primes. Proc. Amer. Math. Soc. 102 (1988), 29-33.
[5] A. Khalili Asboei, S.S. Salehi Amiri, A. Iranmanesh and A. Tehranian, A characterization of some linear groups by the number of Sylow subgroups. Australian J. Basic Appl. Sci. 5 (2011), 831-834.
[6] P. Kleidman and M. Liebeck, The subgroup structure of finite classical groups. London Mathematical Society Lecture Note Series 129. Cambridge University Press, 1990.
[7] M. Hall, The Theory of Groups. Macmillan, New York, 1959.
[8] M. Herzog, On finite simple groups of order divisible by three primes only. J. Algebra 120 (1968), 383-388.
[9] W. Shi, On simple K_{4}-groups. Chinese Science Bull. 36 (1991), 1281-1283.
[10] J. Zhang, Sylow numbers of finite groups. J. Algebra 176 (1995), 111-123.
Received 14 March 2013

Shahre-kord University, Faculty of Mathematical Sciences, Department of pure Mathematics, P.O. Box 115, Shahre-kord, Iran
heydarisomaye@yahoo.com
ahanjideh.neda@sci.sku.ac.ir asadian.bahare@gmail.com

