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1. INTRODUCTION AND TERMINOLOGY

Let all groups into consideration be p-torsion abelian groups, where p is
a prime fixed for the duration of the paper, and let n ≥ 0 be an arbitrary
integer. Our notions and notations are standard and follow essentially those
from [8]. These that are not stated there can be found in [9] and [2], respec-
tively. For instance, imitating [13], a group G is pω+n-projective if there exists
a pn-bounded subgroup A such that G/A is Σ-cyclic (i.e., a direct sum of cyclic
groups).

In his seminal work [9], Keef successfully generalized the classical concept
of pω+n-projective groups by defining the class of so-called ω1-pω+n-projective
groups. Two of their important characterizations are the following:

Theorem 1.1. The group G is ω1-pω+n-projective if exactly one of the
next conditions hold:

(i) There is a countable nice subgroup C such that (pω+nG ⊆ C ⊆ pωG
and) G/C is pω+n-projective.

(ii) There is a pn-bounded subgroup B with G/B as the direct sum of a
countable group and a Σ-cyclic group.
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It is appropriate to point out that the subgroup B in clause (ii) need
not be nice in G, so that the additional restriction on niceness of B could be
interesting and worthy of investigation. This was done in [2] by calling such
groups strongly ω1-pω+n-projective. In the spirit of [10, 11] and [12] certain
comprehensive classifications of these groups were additionally established in
[2], and in some more generalized form in [4] and [3], too.

The purpose here is to define a new subclass of groups of the class of ω1-
pω+n-projectives, suggested in [2] and termed nicely ω1-pω+n-projective groups,
which properly contain strongly ω1-p

ω+n-projectives. The paper is structured
as follows. In the next section, we foremost add two crucial technical claims
which are necessary for applicable purposes in the sequel. After that, we ex-
plore nicely ω1-p

ω+n-projective groups and a number of their several different
characterizations are obtained. Later on, in a separate section, we study so-
named co-nicely ω1-pω+n-projective groups. Next, we investigate the aforemen-
tioned strongly ω1-p

ω+n-projective groups as well as some relations with the
above mentioned nicely ω1-p

ω+n-projective groups are given. Finally, we close
the article with some explicitly stated left-open questions and problems.

2. TWO PRELIMINARY TECHNICALITIES

The following two lemmas possess a central position.

Lemma 2.1. Suppose that α is an ordinal, and that G and F are groups
where F is finite. Then the following formula is fulfilled:

pα(G+ F ) = pαG+ F ∩ pα(G+ F ).

Proof. We will use a transfinite induction on α. First, if α− 1 exists, we
have

pα(G+ F ) = p(pα−1(G+ F )) = p(pα−1G+ F ∩ pα−1(G+ F )) =

p(pα−1G)+p(F∩pα−1(G+F )) ⊆ pαG+F∩p(pα−1(G+F )) = pαG+F∩pα(G+F ).

Since the reverse inclusion “⊇” is obvious, we obtain the desired equality.
If now α − 1 does not exist, we have that pα(G + F ) = ∩β<α(pβ(G +

F )) ⊆ ∩β<α(pβG + F ) = ∩β<αpβG + F = pαG + F . In fact, the second
sign “=” follows like this: Given x ∈ ∩β<α(pβG + F ), we write that x =
gβ1 + f1 = · · · = gβs + fs = · · · where f1, · · · , fs ∈ F are all the elements of F ;
gβ1 ∈ pβ1G, · · · , gβs ∈ pβsG with β1 < · · · < βs < · · · .

Since F is finite, while the number of equalities is infinite due to the
infinite cardinality of α, we infer that gβs ∈ pβG for any ordinal β < α which
means that gβs ∈ ∩β<αpβG = pαG. Thus x ∈ ∩β<αpβG + F = pαG + F , as
claimed. Furthermore, pα(G + F ) ⊆ (pαG + F ) ∩ pα(G + F ) = pαG + F ∩
pα(G+ F ) which is obviously equivalent to an equality. �
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Lemma 2.2. Let N be a nice subgroup of a group G. Then

(i) N +R is nice in G for every finite subgroup R ≤ G;

(ii) N is nice in G+ F for each finite group F .

Proof. (i) For any limit ordinal γ, we deduce that ∩δ<γ(N +R+ pδG) ⊆
R+∩δ<γ(N+pδG) = R+N+pγG, as required. Indeed, the relation “⊆” follows
like this: Given x ∈ ∩δ<γ(N + R + pδG), we write x = a1 + r1 + g1 = · · · =
as + rs + gs = · · · = ak + r1 + gk = · · · , where a1, · · · , ak ∈ N ; r1, · · · , rk ∈ R;
g1 ∈ pδ1G, · · · , gk ∈ pδkG with δ1 < · · · < δk. So a1 + g1 = · · · = ak + gk =
· · · ∈ ∩δ<γ(N + pδG) and hence x ∈ R+ ∩δ<γ(N + pδG), as requested.

(ii) Since N is nice in G, we may write ∩δ<γ [N + pδG] = N + pγG for
every limit ordinal γ. Furthermore, with Lemma 2.1 at hand, we subsequently
deduce that

∩δ<γ [N + pδ(G+ F )] = ∩δ<γ [N + pδG+ F ∩ pδ(G+ F )] ⊆

∩δ<γ(N +pδG) +F ∩pγ(G+F ) = N +pγG+F ∩pγ(G+F ) = N +pγ(G+F ).

In fact, the inclusion “⊆” follows thus: Given x ∈ ∩δ<γ [N + pδG +
F ∩ pδ(G + F )], we write x = a1 + g1 + f1 = · · · = as + gs + fs = · · · =
ak + gk + f1 = · · · , where a1, · · · , ak ∈ N ; g1 ∈ pδ1G, · · · , gk ∈ pδkG; f1 ∈
F ∩ pδ1(G+ F ), · · · , fk ∈ F ∩ pδk(G+ F ) with δ1 < · · · < δk. Hence a1 + g1 =
· · · = ak + gk = · · · ∈ ∩δ<γ(N + pδG) and because the number of the fi’s
(1 ≤ i ≤ k) is finite whereas the number of equalities is not, we can deduce
that f1 ∈ ∩δ<γ(F ∩ pδ(G+ F )) = F ∩ pγ(G+ F ), as needed. �

3. NICELY ω1-p
ω+n-PROJECTIVE GROUPS

We begin here with

Definition 3.1. The group G is said to be nicely ω1-pω+n-projective if there
exists a nice pω+n-projective subgroup N of G such that G/N is countable (that
is, G = N +K for some countable K ≤ G).

Notice that if the quotient G/N is finite, i.e., so is K, then it is obvious
that G must be necessarily pω+n-projective.

Note that nicely ω1-p
ω+n-projective groups are themselves ω1-p

ω+n-pro-
jective; actually, Definition 3.1 without the limitation on niceness of N in G
is precisely one of the characterizations of ω1-p

ω+n-projectives (see, e.g., [9]).
Likewise, it is easily checked that the direct sum of a countable group and a
pω+n-projective group is necessarily nicely ω1-p

ω+n-projective.

Under some length requirements, the above definition can be weakened.
Specifically, the following is true:
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Proposition 3.1. Suppose G is a group such that pω+nG = {0}. Then
G is nicely ω1-pω+n-projective if and only if there exists a pω+n-projective sub-
group P of G such that G/P is separable countable (i.e., a countable Σ-cyclic
group).

Proof. The sufficiency being self-evident, we concentrate on the necessity.
To that aim, write G/N is countable for some pω+n-projective nice subgroup
N ⊆ G. Since pω+n(G/N) = (pω+nG + N)/N = {0}, it follows in view
of [8] that G/N is countable pω+n-projective. Hence, there is a subgroup
P/N ≤ G/N with pnP ⊆ N and (G/N)/(P/N) ∼= G/P is Σ-cyclic. Also, G/P
is countable being an epimorphic image of the countable G/N . One seeing
readily that pnP is pω+n-projective, whence so does P , as stated. �

Remark 1. One may observe that inseparable pω+n-bounded nicely ω1-
pω+n-projectives need not be pω+n-projective.

A helpful consequence is the following one:

Corollary 3.2. Any subgroup of a pω+n-bounded nicely ω1-pω+n-pro-
jective group is again nicely ω1-pω+n-projective.

Proof. Appealing to Proposition 3.1 one may write that G/P is separable
countable for some pω+n-projective subgroup P of a group G whenever the
latter is nicely ω1-p

ω+n-projective. Letting A ≤ G be its arbitrary subgroup,
it is plainly seen that A/(A ∩ P ) ∼= (A + P )/P ⊆ G/P remains countable
separable, and A ∩ P ⊆ P remains pω+n-projective, as required. �

Another reformulation of Definition 3.1 listed above is the following:

Theorem 3.3. The group G is nicely ω1-pω+n-projective if and only if
there exists a pn-bounded subgroup X of G such that G/X is equal to the sum
K/X + N/X of a countable group K/X and a Σ-cyclic group N/X with N
nice in G.

Proof. “⇒”. Write G/N is countable for some pω+n-projective nice sub-
group N ⊆ G. There is a pn-bounded subgroup X ≤ N such that N/X
is Σ-cyclic. Therefore, G/N ∼= (G/X)/(N/X) being countable implies that
G/X = N/X +K/X for some countable K/X with K ≤ G.

“⇐”. It is plainly seen that (G/X)/(N/X) ∼= G/N is countable, and N
is pω+n-projective and nice in G, as required. �

Remark 2. First of all, notice that using the same idea as that in Corol-
lary 4.1 from [5], if for some group A the quotient A/B is countable and B
is a Σ-cyclic subgroup, then A is the direct sum of a countable group and a
Σ-cyclic group. Thus, we may write G/X = (C/X) ⊕ (L/X) where C/X is
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countable and L/X is Σ-cyclic (whence L is pω+n-projective). Moreover, if X
is nice in G, then L is nice in G because L/X is nice in G/X being its direct
summand (cf. [8]). The converse perhaps does not hold, that is, if L is nice in
X, then X is probably not necessarily nice in G too.

However, it is not obvious whether or not we can take (N/X)∩(K/X)={0}.

Concerning now certain important properties of these groups, nicely ω1-
pω+n-projectives are closed under taking Ulm subgroups and countable direct
sums; for Ulm factors the problem is more complicated and will be treated
below.

Proposition 3.4. If G is a nicely ω1-pω+n-projective group, then so is
pαG for any ordinal α.

Proof. Write G/P is countable for some nice pω+n-projective subgroup
P of G. Clearly, P ∩ pαG is nice in pαG (see [8]), and is also pω+n-projective
being a subgroup of P . Moreover, G/P ⊇ (pαG + P )/P ∼= pαG/(pαG ∩ P ) is
countable, as required, and this gives the claim. �

Proposition 3.5. The countable direct sum of nicely ω1-pω+n-projective
groups is again a nicely ω1-pω+n-projective group.

Proof. Suppose i ∈ I is an arbitrary index in some countable set I such
that Gi is a nicely ω1-p

ω+n-projective group. We claim that the direct sum
⊕i∈IGi is also a nicely ω1-p

ω+n-projective group. In fact, there exist corre-
sponding nice subgroups Pi of Gi which are also pω+n-projective and for which
Gi/Pi are countable. It is well known that P = ⊕i∈IPi is nice in ⊕i∈IGi = G
and G/P ∼= ⊕i∈I(Gi/Pi) is countable because |I| ≤ ℵ0. Likewise, P is obvi-
ously pω+n-projective, that gives the result. �

The last affirmation can be slightly extended for pω+n-bounded nicely
ω1-p

ω+n-projective groups, but for such groups of lengths beyond ω + n this
cannot happen, because neither the structure of subgroups nor even of direct
summands is known yet (compare with Proposition 5.9 below).

Proposition 3.6. Let G = ⊕i∈IGi be a group of length not exceeding
ω + n. Then G is nicely ω1-pω+n-projective if and only if any Gi is nicely
ω1-pω+n-projective and there exists a countable subset J ⊆ I with the property
that Gi are pω+n-projective for any i ∈ I \ J .

Proof. To treat the necessity, observe that all Gi are nicely ω1-p
ω+n-

projective from the utilization of Corollary 3.2. Moreover, G/Y is countable
for some pω+n-projective subgroup Y ≤ G. Thus G/Y =

∑
i∈I(Gi + Y )/Y

is countable, whence I is either countable and we may choose J = I, or I
is uncountable and (Gi + Y )/Y ∼= Gi/(Gi ∩ Y ) = {0} for almost all indices
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i, that is, for all but a countable number of indexes i. Hence there exists a
countable subset J ⊆ I with Gi = Gi ∩ Y ⊆ Y for every i ∈ J ; thus these Gi
are pω+n-projective being subgroups, as needed.

Conversely, to deal with the sufficiency, write G = ⊕i∈IGi = (⊕i∈JGi)⊕
(⊕i∈I\JGi), and set X = (⊕i∈JXi)⊕ (⊕i∈I\JGi) where for each i ∈ J these Xi

are nice in G, Xi are pω+n-projective and Gi/Xi are countable. Consequently,
X is nice in G and G/X ∼= ⊕i∈J(Gi/Xi) is countable, as required. �

A new useful restatement of Definition 3.1 is the following statement
which is very similar to that of [2].

Proposition 3.7. The group G is nicely ω1-pω+n-projective if and only
if there is a nice pω+n-projective group P of G such that both pωG/(pωG ∩ P )
and G/(pωG+ P ) are countable.

Proof. Observing that G/P is countable uniquely when so are pω(G/P ) =
(pωG+P )/P ∼= pωG/(P∩pωG) and (G/P )/pω(G/P ) = (G/P )/(P+pωG)/P ∼=
G/(P + pωG), we are done. �

We will now extend (Corollary 4.1, [5]) to the following statement.

Lemma 3.8. Suppose B is a Σ-cyclic subgroup of a group A such that
A/B is countable. Then A is the direct sum of a countable group and a Σ-
cyclic group.

Proof. Write A = B + C for some countable C ≤ A. Decompose B =
B1 ⊕ B2 where B2 ⊇ B ∩ C and it is countable as well. Thus C + B2 is also
countable, and one may see that A = B1⊕(B2+C). In fact, that A is generated
by the sum B1 +B2 +C is trivial. That the intersection B1 ∩ (B2 +C) = {0},
we choose x in it. Hence x = b1 = b2 + c where b1 ∈ B1, b2 ∈ B2 and c ∈ C.
But b1 − b2 = c ∈ B ∩ C ⊆ B2, so that b1 ∈ B1 ∩ B2 = {0}, i.e., x = 0 as
needed. �

The next assertion shows that, although different, nicely ω1-p
ω+n-projective

groups are very close to strongly ω1-p
ω+n-projective groups. To that aim, we

will say that a subgroup U of a group G is almost nice in G if U is a nice sub-
group of some nice subgroup of G. Clearly, each nice subgroup is almost nice
while the converse claim is no longer true because niceness is not a transitive
property (see cf. [8]).

Proposition 3.9. If G is a nicely ω1-pω+n-projective group, then there
exists an almost nice pn-bounded subgroup Y of G such that G/Y is a direct
sum of a countable group and a Σ-cyclic group.

Proof. Let us use the terms of Definition 3.1. Since there is a pn-bounded
subgroup Y of P such that P/Y is Σ-cyclic, we deduce that Y is nice in P . But
P is nice in G and thus Y is almost nice in G. Moreover, the quotient G/P ∼=
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(G/Y )/(P/Y ) is countable. Hence the above Lemma 3.8 applies to get the
desired decomposition. �

Of some interest and importance is whether or not the converse implica-
tion of the last result is also valid. We have some doubts about its validity.

Proposition 3.10. Suppose that A is a group with a subgroup G such
that A/G is finite. If G is nicely ω1-pω+n-projective, then A is nicely ω1-pω+n-
projective.

Proof. Suppose P is a pω+n-projective nice subgroup of G such that G/P
is countable. Note that Lemma 2.2 assures that P is nice in A, and moreover
(A/P )/(G/P ) ∼= A/G being countable guarantees that A/P is countable, as
needed. �

Proposition 3.11. Let F be a finite subgroup of a group A. If A is nicely
ω1-pω+n-projective, then A/F is nicely ω1-pω+n-projective.

Proof. Assume that A/X is countable for some nice pω+n-projective sub-
group X. Furthermore, (A/X)/((X + F )/X) ∼= A/(X + F ) ∼= (A/F )/((X +
F )/F ) is countable, and (X + F )/F ∼= X/(X ∩ F ) is pω+n-projective in view
of [1] because X ∩ F is finite. Besides, Lemma 2.2 gives that X + F is nice in
A whence (X + F )/F is nice in A/F (cf. [8]). �

As a useful consequence, we yield:

Corollary 3.12. Suppose A is a nicely ω1-pω+n-projective group for
which pλA is finite. Then A/pλA is nicely ω1-pω+n-projective.

A question which directly arises is whether or not the converse holds,
i.e., if A/pλA is nicely ω1-p

ω+n-projective and pλA is finite, is then A nicely
ω1-p

ω+n-projective as well?

Remark 3. The converse implication that A/F being nicely ω1-p
ω+n-

projective implies the same for A perhaps does not hold in general; one reason
for that is that if P/F is pω+n-projective, then P need not be pω+n-projective
too – in fact, P is ω-pω+n-projective.

In this aspect, is it true that ω-pω+n-projectives are nicely ω1-p
ω+n-

projective? Notice that in Example 2.3 of [9] was constructed an ω-pω+n-
projective group of length ω + n which is not strongly ω1-p

ω+n-projective
(= pω+n-projective).

4. CO-NICELY ω1-p
ω+n-PROJECTIVE GROUPS

We start here with

Definition 4.1. The group G is said to be co-nicely ω1-pω+n-projective if
there exists a pω+n-projective group P with a countable nice subgroup S ≤ P
such that G ∼= P/S.
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Owing to [9] these groups are of necessity ω1-p
ω+n-projective. However,

they possess some more attractive properties. We first list a few elementary
pieces of them:

(P1) If G is co-nicely ω1-p
ω+n-projective, then pω+nG = {0}.

Indeed, pω+nG ∼= pω+n(P/S) = (pω+nG+ S)/S = {0}.
(P2) If G is a co-nicely ω1-p

ω+n-projective group with pωG = {0}, then
G is pω+n-projective.

In fact, G being pω-bounded forces that pωP ⊆ S. Consequently, P/S ∼=
(P/pωP )/(S/pωP ). Moreover, it is readily verified that P/pωP is also separable
pω+n-projective, while S/pωP is countable. Thus, applying [5], we deduce that
P/S ∼= G is pω+n-projective, as claimed.

Note that this fact also follows directly from [9].
(P3) For each n ≥ 0 there exists an inseparable co-nicely ω1-p

ω+n-projective
group which is not pω+n-projective.

We continue with some other major properties concerning Ulm subgroups
and Ulm factors.

Proposition 4.1. If G is a co-nicely ω1-pω+n-projective group, then both
pαG and G/pαG are co-nicely ω1-pω+n-projective for every ordinal α ≤ ω +
n− 1.

Proof. For the first part, we have that the following isomorphism sequence
is valid:

pαG ∼= pα(P/S) = (pαP + S)/S ∼= pαP/(pαP ∩ S).
Next, since pαP ∩ S is countable, and pαP ∩ S is nice in pαP , where the

latter group is pω+n-projective, we are finished.
For the second part, observe that the following isomorphism sequence is

fulfilled:
G/pαG ∼= (P/S)/pα(P/S) = (P/S)/(pαP + S)/S ∼=

P/(pαP + S) ∼= (P/pαP )/(pαP + S)/pαP.
But it is easily checked that P/pαP remains pω+n-projective as is P , and

that the factor-group (pαP +S)/pαP ∼= S/(S∩pαP ) is countable and also nice
in P/pαP , as required. �

Problem 1. If pαG and G/pαG are both co-nicely ω1-p
ω+n-projective

groups for some α ≤ ω + n− 1, then does it follow that so is G?

5. STRONGLY ω1-p
ω+n-PROJECTIVE GROUPS

These groups were originally defined and carefully explored in [2] – com-
pare with Section 1. Recall once again that a group G is said to be strongly
ω1-pω+n-projective if there is a pn-bounded nice subgroup H such that G/H
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is the direct sum of a countable group and a Σ-cyclic group. As it will be
observed below, a valuable example of such type of groups is the direct sum of
a countable group and a pω+n-projective group.

Here, we obtain a new simple but useful reformulation of the original
definition for strongly ω1-p

ω+n-projective groups, listed in the first section,
which is the following statement:

Theorem 5.1. A group G is strongly ω1-pω+n-projective if and only if
there exist a countable subgroup K and a pn-bounded nice subgroup P such
that G/(K + P ) is Σ-cyclic.

Proof. “⇒”. By definition, write G/X = (A/X) ⊕ (B/X) where X is
nice in G with pnX = {0}, and A/X is countable, whereas B/X is Σ-cyclic.
Consequently, (G/X)/(A/X) ∼= G/A ∼= B/X is Σ-cyclic, and A = X + K for
some countable subgroup K ≤ A, as required.

“⇐”. Assume that G/(K+P ) is Σ-cyclic for some countable K ≤ G and
pn-bounded nice P ≤ G. Observing that (G/P )/((K+P )/P ) ∼= G/(K+P ) is
Σ-cyclic, and (K+P )/P ∼= K/(K∩P ) is countable, we deduce by the classical
Charles’ lemma (see, e.g., [3]) that G/P is the direct sum of a countable group
and a Σ-cyclic group, as required. �

The class of strongly ω1-p
ω+n-projectives, and especially the two differ-

ent characterizations that are ([2], Theorem 4.13) and Theorem 5.1 alluded
to above, generate under some extra conditions the classes of separably ω1-
pω+n-projectives and separately ω1-p

ω+n-projectives. Our further work in this
section is devoted to their mirror relationships.

And so, this leads us to the following definition (notice that it is apparent
that pω+n-projectives are strongly ω1-p

ω+n-projective by choosing K = {0}).

Definition 5.1. We shall say that a groupG is separately ω1-p
ω+n-projective

if there is a countable subgroup K and a pn-bounded nice subgroup P with
K ∩ P = {0} such that G/(K ⊕ P ) is Σ-cyclic.

It is worthwhile noticing that the direct sum of a countable group and
a pω+n-projective group is separately ω1-p

ω+n-projective; in fact, write A =
M ⊕ N where M is countable and N is pω+n-projective. So there is a nice
subgroup S ≤ N with pnS = {0} and N/S is Σ-cyclic. Therefore, S is nice in
A and A/(M ⊕ S) = (M ⊕N)/(M ⊕ S) ∼= N/S is Σ-cyclic, as wanted.

In particular, one may derive that each simply presented group G with
countable pω+nG is separately ω1-p

ω+n-projective.

A valuable necessary and sufficient condition for separately ω1-p
ω+n-

projective groups is the following one:
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Theorem 5.2. The group G is separately ω1-pω+1-projective if and only
if the following two conditions are fulfilled:

(1) pω+1G is countable;

(2) G/pω+1G is pω+1-projective.

Proof. The “and only if” part follows directly from [9].

As for the “if” part, with [7] at hand, we write that G = K ⊕S where K
is countable and S is pω+1-projective. Thus there is T ≤ S[p] such that S/T
is Σ-cyclic. Hence T is nice in S, and so in G. Furthermore, G/(K ⊕ T ) =
(K ⊕ S)/(K ⊕ T ) ∼= S/T is Σ-cyclic, as required. �

As immediate consequences, we derive:

Corollary 5.3. The group G is strongly ω1-pω+1-projective if and only
if G is separately ω1-pω+1-projective.

Proof. Follows from ([2], Proposition 4.7) and Theorem 5.2. �

Now, we recollect another critical concept from [2]. We will say that
the group G is separably ω1-pω+n-projective if there exists a pn-bounded nice
subgroup P such that P ∩ pωG = {0} and G/(pωG⊕ P ) is Σ-cyclic.

We can note that the direct sum of a countable group and a separable
pω+n-projective group is separably ω1-p

ω+n-projective; indeed, writeB = K⊕L
where K is countable and L is separable pω+n-projective. Thus there exists
P ≤ L such that pnP = {0} and L/P is Σ-cyclic. That is why P is nice in
L and hence in B. Moreover, pωB ∩ P = pωK ∩ P ⊆ K ∩ L = {0} whence
B/(pωB ⊕ P ) = (K ⊕ L)/(pωK ⊕ P ) ∼= (K/pωK) ⊕ (L/P ) is Σ-cyclic, as
required.

It is also worthy of noticing that there exists a separately ω1-p
ω+1-projective

group G which is not separably ω1-p
ω+1-projective if we take pωG to be un-

countable. However, for countable pωG, the problem seems to be more difficult
than we anticipate.

Specifically, we will prove the following:

Proposition 5.4. Suppose that G is a group whose pωG is countable. If
G is separably ω1-pω+n-projective, then G is separately ω1-pω+n-projective.

Proof. Just take K = pωG. �

It follows from (Proposition 4.9, [2]) that G is even separably n-simply
presented (see also [3]).

A useful idea to prove the converse relation could be the following: write
G/(K⊕P ) is Σ-cyclic for some pn-bounded nice subgroup P ≤ G and countable
K ≤ G. Hence pωG ⊆ K ⊕ P . The critical step is whether or not we may
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assume that pωG ⊆ K, whence P ∩ pωG = {0}. If yes, we therefore have that

G/(pωG⊕ P )/(K ⊕ P )/(pωG⊕ P ) ∼= G/(K ⊕ P )

is Σ-cyclic, where the quotient (K ⊕ P )/(pωG ⊕ P ) ∼= K/pωG is countable.
Furthermore, the Charles’ lemma assures that G/(pωG⊕ P ) is the direct sum
of a countable group and a Σ-cyclic group. However, G/(pωG⊕P ) is obviously
checked to be separable (because pωG⊕P is nice in G), and consequently it is
Σ-cyclic, as wanted.

Remark 3. However, for n = 1 there is an equivalence according to ([2],
Proposition 4.8) combined with Theorem 5.2 stated above. So, we can state
(compare with Corollary 5.3).

Corollary 5.5. Let G be a group for which pωG is countable. Then G is
separably ω1-pω+1-projective if and only if G is separately ω1-pω+1-projective.

We end this section with the following result.

Proposition 5.6. If G is strongly ω1-pω+n-projective, then G is nicely
ω1-pω+n-projective.

Proof. In virtue of the corresponding definition, write G/B = (A/B) ⊕
(C/B) where A/B is Σ-cyclic and C/B is countable for some B ≤ A and
B ≤ C with pnB = {0} and B nice in G. Thus A is pω+n-projective and
(G/B)/(A/B) ∼= G/A ∼= C/B is countable. But A/B is nice in G/B, and
hence A is nice in G, as required, because B is nice in G (see, e.g., [8]). �

Remark 4. The converse implication is not valid since, as we have seen
above, there exists a nicely ω1-p

ω+n-projective group of length ω + n which
is not pω+n-projective, in contrast with strongly ω1-p

ω+n-projective groups
(see [2]).

We will now explore how strongly ω1-p
ω+n-projectives are situated con-

cerning finite extensions. Specifically, the following holds:

Proposition 5.7. Suppose A is a group with a subgroup G such that A/G
is finite. If G is strongly ω1-pω+n-projective, then so is A.

Proof. Appealing to Theorem 5.1, suppose P is a pn-bounded nice sub-
group of G and K is a countable subgroup of G with G/(K+P ) being Σ-cyclic.
Writing A = G + F for some finite F ≤ A, we deduce that A/(K + P ) =
[G/(K+P )]+[(F +K+P )/(K+P )] where the latter quotient is finite. Hence
the sum is also Σ-cyclic, as required. Observing that with Lemma 2.2 in hand
P is nice in A, we are done. �

A helpful consequence could be the following:

Corollary 5.8. Suppose that A = G⊕H where H is countable. Then A
is strongly ω1-pω+n-projective if and only if G is strongly ω1-pω+n-projective.
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Proof. In virtue of Corollary 4.19 from [2], the necessity is true.
As for the sufficiency, we observe that pω+nA = pω+nG⊕pω+nH is count-

able because so are pω+nG and pω+nH as well as A/pω+nA ∼= (G/pω+nG) ⊕
(H/pω+nH) is pω+n-projective since both G/pω+nG and H/pω+nH are so. We
now apply the First Reduction Criterion from [2] to infer that A is strongly
ω1-p

ω+n-projective, as stated. �

The last construction may be extended to the following one (compare also
with Proposition 2.4 from [9]):

Proposition 5.9. Suppose that G = ⊕i∈IGi. Then G is strongly ω1-
pω+n-projective if and only if all Gi are strongly ω1-pω+n-projective and there
is a countable subset J ⊆ I such that Gi are pω+n-projective for all i ∈ I \ J .

Proof. “⇒”. That Gi is strongly ω1-p
ω+n-projective for any i ∈ I follows

from Corollary 4.19 in [2], and hence each pω+nGi is countable.
Since pω+nG = ⊕i∈Ipω+nGi, it follows that either I is countable (whence

we may take J = I, so that I \ J = ∅), or I is uncountable and pω+nGi = {0}
for almost all indices i (that is, for all but a countable number of them) and
thus we set J = {i | pω+nGi 6= {0}}. That is why these Gi are pω+n-projective,
as claimed.

“⇐”. We see that pω+nG = ⊕i∈Ipω+nGi = ⊕i∈Jpω+nGi is countable
because so is every pω+nGi (i ∈ I). Moreover, G/pω+nG ∼= ⊕i∈I(Gi/pω+nGi)
is pω+n-projective since all factors Gi/p

ω+nGi are so. Now the First Reduction
Criterion from [2] works to get the claim. �

As a direct consequence, we derive:

Corollary 5.10. The countable direct sum of strongly ω1-pω+n-projective
groups is a strongly ω1-pω+n-projective group.

For some results of the type described in the next result the interested
reader can see [1].

Proposition 5.11. Suppose F is a finite subgroup of a group A. If A is
strongly ω1-pω+n-projective, then A/F is strongly ω1-pω+n-projective.

Proof. Observe that pω+n(A/F ) = (pω+nA + F )/F ∼= pω+nA/(pω+nA ∩
F ) is countable since as mentioned before pω+nA is so. Next, utilizing [1],
A/pω+nA is pω+n-projective and thus (A/F )/pω+n(A/F ) ∼= A/(pω+nA+F ) ∼=
(A/pω+nA)/((pω+nA+F )/pω+nA) is pω+n-projective too, because the quotient
(pω+nA+ F )/pω+nA ∼= F/(F ∩ pω+nA) is finite. We therefore apply [2] to get
the claim. �

Remark 5. Unfortunately, the converse is not true in general, that is, A/F
being strongly ω1-p

ω+n-projective does not imply that so is A. In fact, let us
assume that A/F is strongly ω1-p

ω+n-projective. Thus pω+n(A/F ) = (pω+nA+
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F )/F ∼= pω+nA/(pω+nA∩F ) should be countable, whence so is pω+nA. More-
over, (A/F )/pω+n(A/F ) ∼= A/(pω+nA+F ) ∼= (A/pω+nA)/((pω+nA+F )/pω+nA).
However, (pω+nA + F )/pω+nA ∼= F/(pω+nA ∩ F ) is finite, and as observed
above, (A/F )/pω+n(A/F ) being pω+n-projective does not yield that A/pω+nA
is so. We therefore conclude with the help of the First Reduction Criterion
from [2] that A need not be strongly ω1-p

ω+n-projective, as asserted.

On another vein, a group is called ω + n-totally pω+n-projective if each
of its pω+n-bounded subgroup is pω+n-projective. These groups are shown in
Proposition 3.1 from [9] to be ω1-p

ω+n-projective.
On the other hand, a group is said to be ω-totally pω+n-projective if

each of its pω-bounded subgroup is pω+n-projective. These groups are proved
in Corollary 3.4 of [9] to contain the ω1-p

ω+n-projective ones. However, for
groups with countable first Ulm subgroup, these two group classes coincide
(see [9], Theorem 3.6). In Question 1 from [9] it is asked whether or not these
two classes of groups are absolutely equal in general.

Since strongly ω1-p
ω+n-projective groups are ω1-p

ω+n-projective, it is rea-
sonably right to ask whether or not strongly ω1-p

ω+n-projectives are ω + n-
totally pω+n-projective and/or vice versa, again provided the first Ulm sub-
group is countable. However, the next construction illustrates that this is not
the case, at least in one direction (see Example 2 of [11] too).

Example 5.12. For any fixed integer n ≥ 1, there exists a strongly ω1-
pω+n-projective group G with finite but not pn-bounded Ulm subgroup pωG,
which is not ω + n-totally pω+n-projective.

Proof. Let A be a separable (proper) pω+1-projective group whose socle
A[p] is not ℵ0-coseparable (for its existence see [6] and [7]), and let H be a
countable group whose pωH is finite and pω+nH 6= 0. Supposing now that G =
A ⊕H, we see that G is strongly ω1-p

ω+n-projective. In fact, since pω+nG =
pω+nH is countable and G/pω+nG ∼= A ⊕ (H/pω+nH) is pω+n-projective, it
follows from [2] that G is so as claimed.

Furthermore, since G is neither a direct sum of countable groups (other-
wise A must be Σ-cyclic, a contradiction with its choice) nor a pω+n-projective
group (otherwise, pω+nG = {0} will imply that pω+nH = {0}, contrary to its
construction), if it were ω+n-totally pω+n-projective, it would be proper. But
this contradicts Theorem 3.1 of [7]. �

Remark 6. The eventual existence of an ω + n-totally pω+n-projective
groupG, with countable pωG in addition, that is not strongly ω1-p

ω+n-projective,
is unknown yet. Nevertheless, for pω+n-bounded groups, the classes of strongly
ω1-p

ω+n-projective groups and ω+n-totally pω+n-projective groups are exactly
the pω+n-projective groups. So, we can state:
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Problem 2. If G is an ω + n-totally pω+n-projective group, is it true that
the factor-group G/pω+nG is pω+n-projective? If so, all ω + n-totally pω+n-
projectives will be strongly ω1-p

ω+n-projective.

We suspect the answer is “no” because of the following thoughts: Let G
be a proper ω+n-totally pω+n-projective group. By the utilization of [7], under
the assumption that 2ℵ0 < 2ℵ1 , we derive that pωG is countable. Assuming
that G/pω+1G is pω+1-projective, again [7] applies to get the decomposition
G = K⊕L, where K is countable and L is separable pω+1-projective. Thus any
proper ω + 1-totally pω+1-projective group must have such a decomposition.
However, it seems to be with some doubts about its validity.

Problem 3. Does it follow that the property of being a strongly or nicely
ω1-p

ω+n-projective group is closed under taking ω-bijections?

Note that by virtue of Remark 5 the answer seems to be “no” for strongly
ω1-p

ω+n-projectives.

It was shown before that the direct sum of a countable group and a
separable pω+n-projective group is separable ω1-p

ω+n-projective as well as the
direct sum of a countable group and a pω+n-projective group is separately
ω1-p

ω+n-projective. In this regard, we pose:

Problem 4. Describe the classes of

(a) nice subgroups of the direct sum of a countable group and a pω+n-
projective group;

(b) isotype subgroups of the direct sum of a countable group and a pω+n-
projective group;

(c) balanced subgroups of the direct sum of a countable group and a
pω+n-projective group.

Corrections: In [11] on p. 769, Example 2 there are two misprints. They
are as follows: Firstly, on line 1, the phrase “inseparable first Ulm subgroup”
should be “non-trivial first Ulm subgroup”, and secondly, on line 3 of the proof
of the same example, the phrase “is strongly n-totally projective” should be
“is inseparable strongly n-totally projective”.
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