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This paper presents a computational technique based on the Tau method and
Legendre polynomials for the solution of a class of time-fractional telegraph
equations. An appropriate representation of the solution via the Legendre oper-
ational matrix of fractional derivative is used to reduces its numerical treatment
to the solution of a set of linear algebraic equations. The fractional derivatives
are described based on the Caputo sense. The method is easy to implement and
yields very accurate results. Illustrative examples are included to demonstrate
the validity and applicability of the proposed technique.
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1. INTRODUCTION

In recent years, it has been found that derivatives of fractional (non-
integer) order are very effective for the description of many phenomena in
engineering and applied sciences such as diffusion process, rheology, damping
laws, electric transmission, viscoelasticity and fluid mechanics, see, say [21] and
the references therein. However, in the case of fractional order differentiation,
the problem does not have a fully acceptable geometrical or physical interpre-
tation [23]. Today, there are many works on fractional calculus [11, 21]. Most
fractional differential equations do not have closed form solutions, so approxi-
mation and numerical techniques such as finite difference method [10, 24–26],
Adomian decomposition method [27], variational iteration method [14, 28], ho-
motopy analysis method [12, 13], pseudo-spectral method [17], Sinc-Legendre
collocation method [35], Tau method [34], Fourier method [9], wavelet method
[18, 37], and other methods [1, 2, 3, 6, 15, 16, 19, 22, 30, 32, 33], must be used.

Telegraph equations are hyperbolic partial differential equations that are
applicable in several fields such as wave propagation [36], random walk the-
ory [4], signal analysis [20], etc (see [31] and the references therein). The
time fractional telegraph equations have recently been considered by many
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authors. Liu and coworkers [8] derived the analytical solution of the nonhomo-
geneous time-fractional telegraph equation under three types of nonhomoge-
neous boundary conditions by the method of separation of variables. Authors
of [29] studied the fundamental solutions to time-fractional telegraph equations
of order 2α. For the special case α = 1/2, they showed that the fundamental
solution is the probability density of a telegraph process with Brownian time.
Also authors of [5] considered the fractional telegraph equation with partial
fractional derivatives of rational order α = m/n with m < n. They proved
that the fundamental solution to the Cauchy problem for the time-fractional
telegraph equation can be expressed as the density of the composition of two
processes, one depending on m and the other depending on n.

In this paper, we present a direct computational technique for the one-
dimensional time-fractional telegraph equation of the form [19, 8]:

(1.1)
∂2αu(x, t)

∂t2α
+λ

∂αu(x, t)

∂tα
= µ

∂2u(x, t)

∂x2
+f(x, t), 0 < x < `, 0 < t ≤ τ,

subject to initial conditions

(1.2) u(x, 0) = φ1(x), ut(x, 0) = φ2(x), 0 ≤ x ≤ `,

and boundary conditions

(1.3) u(0, t) + θ1ux(0, t) = ψ1(t), 0 ≤ t ≤ τ,

(1.4) u(`, t) + θ2ux(`, t) = ψ2(t), 0 ≤ t ≤ τ,

where f, φ1, φ2, ψ1 and ψ2 are sufficiently smooth prescribed functions, the rate
λ is an arbitrary nonnegative constant and µ is an arbitrary positive constant.
Also 1/2 < α ≤ 1 and the time-fractional derivative is defined as the Caputo
fractional derivatives.

Definition 1. The Caputo fractional derivative of order α > 0 is defined
as [21]

(1.5) Dαf(t) =
dαf(t)

dtα
=

{
1

Γ(n−α)

∫ t
0

f (n)(x)
(t−x)α+1−ndx, n− 1 < α < n, n ∈ N,

dn

dtn f(t), α = n ∈ N.

As said in [8], when λ = 0, Eq. (1.1) is the fractional counterpart of the
nonhomogeneous wave equation. In fact, without the forcing term f(x, t), and
with λ = 0, Eq. (1.1) is known as the fractional diffusion-wave equation.

The main idea of this work is to apply the Legendre polynomials and
operational matrix of fractional derivative together with the Tau method to
discretize Eq. (1.1). As a result, a linear system of algebraic equations is gen-
erated. Tau method consists of expanding the required approximate solution
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as the elements of a complete set of orthogonal polynomials [7]. It is worth to
point out that, the method based on using the operational matrix for solving
fractional-order differential equations is computer oriented.

The organization of the rest of this article is as follows. In Section 2,
we explain the basic formulation of shifted Legendre polynomials required for
our subsequent development. In Section 3 we illustrate how Legendre Tau
method may be used to replace problem (1.1)–(1.4) by an explicit system of
linear algebraic equations. In Section 4, we present some numerical examples
to demonstrate the effectiveness of the proposed method.

2. PROPERTIES OF SHIFTED LEGENDRE POLYNOMIALS

Legendre polynomials are a well known family of orthogonal polynomials
that have many applications. They are defined on the interval [−1, 1] and are
recursively related by:

L0(z) = 1, L1(z) = z, (i+ 1)Li+1(z) = (2i+ 1)zLi(z)− iLi−1(z), i = 1, 2, ...

For practical use of Legendre polynomial on the interval of interest x ∈
[0, `] it is necessary to shift the defining domain by the following variable sub-
stitution:

z =
2x− `
`

, 0 ≤ x ≤ `.
The shifted Legendre polynomials L`i(x) = Li((2x − `)/`) are then ob-

tained as:

(2.1) (i+ 1)L`i+1(x) = (2i+ 1)

(
2x

`
− 1

)
L`i(x)− iL`i−1(x), i = 1, 2, . . .

where L`0(x) = 1 and L`1(x) = (2x−`)/`. They have the following orthogonality
relation:

(2.2)

∫ `

0
L`i(x)L`j(x)dx =

{
`

2i+1 for i = j,

0 for i 6= j.

The shifted Legendre polynomials have the following analytic form:

(2.3) L`i(x) =
i∑

k=0

(−1)i+k
(i+ k)!xk

(i− k)!(k!)2`k
.

Note that L`i(0) = (−1)i and L`i(`) = 1. A function y(x), square inte-
grable in [0, `], may be expressed in terms of shifted Legendre polynomials as

y(x) =

∞∑
j=0

cjL
`
j(x).
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In practice, only the first (m+ 1)-terms shifted Legendre polynomials are
considered. Then we have

ym(x) =

m∑
j=0

cjL
`
j(x) = CTΦm,`(x),

where the shifted Legendre coefficient vector C and the shifted Legendre vector
Φm,`(x) are given by

C = [c0, ..., cm]T ,

(2.4) Φm,`(x) = [L`0(x), L`1(x), · · · , L`m(x)]T .

The coefficients cj are chosen to minimize the mean integral square error

ε =

∫ `

0

(
y(x)− CTΦm,`(x)

)2
dx,

and are given by

cj =
(2j + 1)

`

∫ `

0
y(x)L`j(x)dx, j = 1, 2, . . .

Similarly we approximate a function u(x, t) of two independent variables
defined for 0 ≤ x ≤ ` and 0 ≤ t ≤ τ by double shifted Legendre polynomials as:

(2.5) um,n(x, t) =
n∑
i=0

m∑
j=0

aijL
τ
i (t)L`j(x) = ΦT

n,τ (t)AΦm,`(x),

where the shifted Legendre vector Φn,τ (t) is defined similarly to Eq. (2.4).
Also the shifted Legendre coefficient matrix A is given by

(2.6) A =

a0,0 · · · a0,m
...

...
...

an,0 · · · an,m

 ,

where

aij =

(
2i+ 1

τ

)(
2j + 1

`

)∫ τ

0

∫ `

0
u(x, t)Lτi (t)L`j(x)dxdt,

i = 0, 1, . . . , n, j = 0, 1, . . . ,m.

The derivative of the vector Φm,`(x) can be expressed by [7]

(2.7)
dΦm,`(x)

dx
= DΦm,`(x),

where D(1) is the (m+ 1)× (m+ 1) operational matrix of derivative given by

D(1) = (dij) =


2(2j+1)

l , for j = i− k,

{
k = 1, 3, ...,m, if m odd,

k = 1, 3, ...,m− 1, if m even,

0, otherwise.
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Using Eq. (2.7), it is clear that

(2.8)
dkΦm,`(x)

dxk
= (D(1))kΦm,`(x), k ∈ N,

here the super script, in D(1), denotes matrix powers. Thus,

(2.9) D(k) = (D(1))k, k = 1, 2, . . .

In the following theorem, which plays an important role in this paper, the
authors of [34, 33] generalized the operational matrix of derivative of shifted
Legendre polynomials to fractional derivative.

Theorem 1. Let Φm,`(x) be shifted Legendre vector defined in (2.4) and
also suppose α > 0 then

(2.10) DαΦm,`(x) ' D
(α)
m,`Φm,`(x),

where D
(α)
m,` is the (m+ 1)× (m+ 1) operational matrix of fractional derivative

of order α in Caputo sense and is defined as follows:

(2.11) D
(α)
m,` =



0 0 · · · 0
...

... · · ·
...

0 0 · · · 0∑dαe
k=dαe θdαe,0,k

∑dαe
k=dαe θdαe,1,k · · ·

∑dαe
k=dαe θdαe,m,k

...
... · · ·

...∑i
k=dαe θi,0,k

∑i
k=dαe θi,1,k · · ·

∑i
k=dαe θi,m,k

...
... · · ·

...∑m
k=dαe θm,0,k

∑m
k=dαe θm,1,k · · ·

∑m
k=dαe θm,m,k


,

where θi,j,k is given by

θi,j,k =
2j + 1

hk+1

j∑
`=0

(−1)i+j+k+`(i+ k)!(`+ j)!

(i− k)!k!Γ(k − α+ 1)(j − `)!(`!)2(k + `− α+ 1)
.

We use the ceiling function dαe to denote the smallest integer greater

than or equal to α. Also, note that in D
(α)
m,`, the first dαe rows, are all zero and

if α = k ∈ N, then Theorem 1 gives the same result as Eq. (2.9).

Proof. The proof of this Theorem is available in [34]. �
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3. IMPLEMENTATION OF THE METHOD

To solve problem (1.1)–(1.4), we approximate f(x, t) by shifted Legendre
series as:

(3.1) fm,n(x, t) = ΦT
n,τ (t)FΦm,`(x),

where F is known (n+1)×(m+1) matrix and is obtained similarly to Eq. (2.6).
Also we approximate u(x, t) by shifted Legendre polynomials as:

(3.2) um,n(x, t) = ΦT
n,τ (t)AΦm,`(x),

where A is unknown (n+ 1)× (m+ 1) matrix. Using Eqs. (2.10) and (3.2) we
have

(3.3)
∂α

∂tα
um,n(x, t) =

(
dα

dtα
ΦT
n,τ (t)

)
AΦm,`(x) ' ΦT

n,τ (t)(D(α)
n,τ )TAΦm,`(x),

(3.4)
∂2α

∂t2α
um,n(x, t) ' ΦT

n,τ (t)(D(2α)
n,τ )TAΦm,`(x),

(3.5)
∂2

∂x2
um,n(x, t) = ΦT

n,τ (t)A

(
d2

dx2
Φm,`(x)

)
' ΦT

n,τ (t)AD
(2)
m,`Φm,`(x),

where D
(α)
n,τ is defined similarly to Eq. (2.11). Employing Eqs. (3.1), (3.2),

(3.3), (3.4) and (3.5) the residual Rm,n(x, t) for Eq. (1.1) can be written as

(3.6) Rm,n(x, t) = ΦT
n,τ (t){(D(2α)

n,τ )TA + λ(D(α)
n,τ )TA− µAD

(2)
m,` − F}Φm,`

= ΦT
n,τ (t)EΦm,`(x),

where
E = (D(2α)

n,τ )TA + λ(D(α)
n,τ )TA− µAD

(2)
m,` − F.

As in a typical Tau method [7] we generate (n − 1) × (m − 1) linear
algebraic equations using the following algebraic equations

(3.7) Ei,j = 0, i = 0, 1, . . . , n− 2 j = 0, 1, . . . ,m− 2.

Also substituting Eq. (3.2) in Eq.(1.2) yields

(3.8) ΦT
n,τ (0)AΦm,`(x) = φ1(x),

(3.9) ΦT
n,τ (0)(D(1)

n,τ )TAΦm,`(x) = φ2(x),

Eqs. (3.8) and (3.9) are collocated at (m− 1) points. For suitable points
we use the shifted Legendre roots xi, i = 1, 2, ...,m − 1 of L`m−1(x). Further-
more, applying Eq. (3.2) in Eqs. (1.3) and (1.4) we obtain

(3.10) Φn,τ (t)T (A + θ1AD
(1)
m,`)Φm,`(0) = ψ1(t),
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(3.11) Φn,τ (t)T (A + θ2AD
(1)
m,`)Φm,`(`) = ψ2(t),

respectively. Eqs. (3.10) and (3.11) are collocated at (n + 1) points. For
suitable points we use the shifted Legendre roots tj , j = 1, 2, ..., n+1 of Lτn+1(t).
The number of unknown coefficients ai,j is equal to (n + 1) × (m + 1) can be
obtained from Eqs. (3.7)–(3.11). Consequently un,m(x, t) given in Eq. (3.2)
can be calculated. It is worth to mention here that, throughout this paper,
we use the Maple’s fsolve command to find unknown coefficients ai,j from
Eqs. (3.7)–(3.11).

4. ILLUSTRATIVE EXAMPLES

This section is devoted to computational results. We applied the method
presented in this paper and solved two examples. We will report the accu-
racy and efficiency of the new method based on maximum absolute error em,n
defined as:

em,n = max{|u(x, t)− um,n(x, t)|, 0 ≤ x ≤ `, 0 < t ≤ τ}.
Example 1. Consider the fractional telegraph equation [19],

∂2αu(x, t)

∂t2α
+
∂αu(x, t)

∂tα
=

1

2

∂2u(x, t)

∂x2
+ f(x, t),

0.5 < α ≤ 1, 0 < x < 1, 0 < t ≤ 1,
subject to initial conditions

u(x, 0) = 0, ut(x, 0) = 0, 0 < x < 1,

and boundary conditions

u(0, t) + ux(0, t) = 2t2, 0 < t ≤ 1,

u(1, t)− 1

2
ux(1, t) =

et2

2
, 0 < t ≤ 1,

whose exact solution is u(x, t) = t2ex. We solved the problem, by applying the
technique described in section 3. To explore the dependence of errors on the
discretization parameter m,n, in Figure 1 we represent em,n with n = 3, α =
0.64 and for different values of m. Also in Figure 2 we plot em,n with m = n
and α = 0.64 as a function of m. According to Figures 1, and 2 we find that
the presented method provides accurate results even for small m,n and we see
the errors decrease rapidly as m and n increase.

In [19], the reproducing kernel theorem is used to solve this problem. For
the purpose of comparison in Table 1, we compare the maximum absolute error
of our method with m = n, together with the method of [19]. From Table 1, we
see that our method is clearly reliable if compared with the method introduced
in [19].
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Fig. 1 – Comparison of em,n with n = 3 and for different values of m.

Fig. 2 – Comparison of em,n with m = n and for different values of m.

Table 1
The maximum absolute error for Example 1

method in [19] our method
n α = 0.64 α = 0.8 α = 0.96 α = 0.64, 0.8, 0.96

4 1.86E-03 2.68E-03 2.33E-03 1.40E-04
8 2.49E-04 5.87E-04 4.99E-04 1.20E-10
12 7.77E-05 7.60E-05 2.10E-04 2.50E-17
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Example 2. As the second example, we consider the following problem,

∂
4
3u(x, t)

∂t
4
3

+
∂

2
3u(x, t)

∂t
2
3

=
∂2u(x, t)

∂x2
+ f(x, t), 0 < x < 1, 0 < t ≤ 1,

where

f(x, t) = 6 sin(x+ 1)

(
t
5
3

Γ
(

8
3

) +
t
7
3

Γ
(

10
3

))+ sin(x+ 1)(t3 + 1),

and with the initial conditions

u(x, 0) = sin(x+ 1), ut(x, 0) = 0, 0 < x < 1,

and the boundary conditions

u(0, t) = sin(1)(t3 + 1), u(1, t) + 3ux(1, t) = (t3 + 1)(sin(2) + 3 cos(2)).

The exact solution to this problem is u(x, t) = (t3 + 1) sin(x + 1) which
can be verified by direct fractional differentiation of the given solution and
substituting in the fractional differential equation. In Figure 2 we plot em,n
with m = n and for different values of m and also in Figure 3 we represent
em,n with n = 3 and for different values of m. Furthermore the absolute error
|u(x, 1)− un,m(x, 1)| for n = m = 4, 6, 8 and 10 are shown in Table 2 and the
absolute error function |u(x, t) − u13,13(x, t)| obtained by the present method
is shown in Figure 4. As the previous example, it is seen from Table 2 and
Figures 2, 3 and 4 that we can achieve a very good approximation with the
exact solution using a few terms of the shifted Legendre polynomials.

Fig. 3 – Comparison of em,n with n = 3 and for different values of m.



164 Abbas Saadatmandi and Mohadeseh Mohabbati 10

Fig. 4 – Plot of error function, |u(x, t)− u13,13(x, t)|, from Example 2.

Table 2
The absolute errors for u(x, 1) from Example 2

x m = 4 m = 6 m = 8 m = 10

0.1 1.52E-05 2.18E-08 2.23E-13 7.83E-15
0.2 2.16E-05 4.38E-09 1.56E-11 6.06E-15
0.3 1.56E-05 2.36E-08 1.01E-11 2.54E-15
0.4 2.49E-06 1.23E-08 1.50E-11 9.27E-15
0.5 9.93E-06 1.13E-08 8.32E-12 4.04E-15
0.6 1.56E-05 1.96E-08 1.39E-11 5.56E-15
0.7 1.27E-05 5.63E-09 5.65E-12 6.72E-15
0.8 4.02E-06 1.05E-08 9.09E-12 1.59E-15
0.9 4.54E-06 6.22E-09 6.17E-12 1.48E-15

5. CONCLUSION

In the present work, we proposed a numerical scheme, based on the shifted
Legendre Tau method, to solve the time-fractional telegraph equation. Using
the operational matrix of fractional derivative the problem can be reduced to
a set of linear algebraic equations. The solution obtained using the suggested
method shows that this approach can solve the problem effectively and it needs
less CPU time. Two examples are given and the numerical results demonstrate
the reliability and efficiency of the method for solving this type of problem.

Acknowledgments. The authors would like to thank the referee for his (or her) com-
ments. A. Saadatmandi is also thankful to the University of Kashan for the financial
support (Grant No. 159026) of this work.
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