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Let X and Y be topological spaces, and λ and β be two nonempty families
of compact subsets of X and Y , respectively. Let Cλ(X) denote the set of
all continuous real valued functions on X endowed with the set open topology
defined by λ. Let Φ : X → Y be a continuous function and Φ∗ : Cβ(Y ) → Cλ(X)
be its induced function. In this paper, the continuity and openness of Φ∗ are
studied. Also the weak α-favorability and Baireness of Cλ(X) are characterized.
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1. INTRODUCTION

For a topological spaceX, let C(X) be the set of all continuous real-valued
functions on X and λ a nonempty family of subsets of X. The set open topology
on C(X) has a subbase consisting of the sets [A, V ] = {f ∈ C (X) : f (A) ⊆ V },
where A ∈ λ and V is an open subset of R, and the function space C(X)
endowed with this topology is denoted by Cλ (X) . The set open topology is
a generalization of the compact-open topology and the topology of pointwise
convergence. This topology was first introduced by Arens and Dugundji in [1]
and studied over the last years by many authors, see [11, 13, 16–18].

A useful tool normally used for studying function spaces is the concept of
induced function. For topological spaces X and Y , every continuous function
Φ : X → Y induces a function Φ∗ : C(Y )→ C(X), called the induced function
of Φ, defined by Φ∗(f) = f ◦Φ for each f ∈ C(Y ). In ([13], Theorem 2.1), Mc-
Coy and Ntantu stated the following result: Let Φ : X → Y be a continuous
function, and let λ and β be families of compact subsets of X and Y , respec-
tively. Then Φ∗ : Cβ(Y )→ Cλ(X) is continuous if and only if β approximates
Φ(λ). Also Φ∗ : Cβ(Y ) → Cλ(X) is open onto its image if and only if Φ(λ)

approximates β ∩Φ(X). We will give an example (see Section 4) to show that
the necessary conditions in this theorem, in general, are not true. However, as
we will prove, they are correct in the presence of additional assumptions.
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Completeness properties in a topological space range from complete metriz-
ability to the Baire space property. (Complete) metrizability and Čech com-
pleteness of Cλ (X) were characterized in [15] and necessary conditions for
Baireness of Cλ (X) are also given. Another completeness property that a
topological space may have, stronger to the Baire property, is the property
of being a weakly α-favorable space. This property is defined by means of a
topological game. In the case of C(X) endowed with the compact-open topol-
ogy (the corresponding space is denoted by Ck(X)), weak α-favorability and
Baireness of Ck(X) were investigated in [6, 12, 14]. In particular, Ma in his
paper ([12], Theorem 1.2) showed that, for a locally compact space X, Ck(X)
is weakly α-favorable if and only if X is paracompact. It remains an unsolved
problem to obtain a complete characterization of α-favorability of Cλ(X). In
the present paper, we will be concerned to characterize the weak α-favorability
and Baireness of C(X) when it is equipped with the set-open topology.

We end this introduction with an outline of the paper. In Section 2, we
give some basic definitions and properties of the families λ needed in the next
sections. In Section 3, we introduce several infinite topological games played on
a topological space X and present some results in this frame. In Section 4, we
give a new proof of the result of McCoy-Ntantu mentioned above concerning
the continuity and openness of Φ∗. We show that, if λ is a family of compact
subsets of X and β is an admissible family of compact subsets of Y, then the
continuity of Φ∗ : Cβ (Y ) → Cλ (X) implies that β approximates Φ (λ) . We
also show that, if λ and β are admissible families of compact subsets of X and
Y respectively, then Φ∗ : Cβ(Y ) → Cλ(X) is open onto its image if and only

if Φ(λ) approximates β ∩ Φ(X). The last section of this paper is reserved to
weak-α-favorability and Baireness of Cλ(X). The main result of this section is
Theorem 11 which states that, if λ is an admissible family of compact subsets
of X such that each point of X admits a member of λ as a neighborhood,
then Cλ(X) is weakly α-favorable if and only if X is paracompact. We then
use this result to obtain a characterization for Baireness of Cλ(X) when X
is a paracompact q-space, extending by this a result obtained by McCoy and
Ntantu in the framework of the compact open topology ([15], Corollary 5.3.4).

2. DEFINITIONS AND NOTATION

Let λ and β be two nonempty families of subsets of X, we recall the
following definitions which will be used throughout the paper.
We say that λ refines or that it is a refinement of β if every member of λ is
contained in some member of β. If λ refines β, then the family β is called an
λ-cover of X.
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We say that β approximates λ or that λ can be approximated by β provided
that for every A ∈ λ and every open U in X such that A ⊆ U, there exist

B1, ..., Bn ∈ β with A ⊆
n⋃
i=1

Bi ⊆ U.

A family λ is said to be admissible if for every A ∈ λ and every finite
sequence U1, U2, ..., Un of open subsets of X such that A ⊆ U1 ∪ ... ∪ Un, there
exists a finite sequence A1, ..., Am of members of λ which refines U1, U2, ..., Un
and whose union contains A. This notion was introduced by McCoy and Ntantu
[13] in the characterization of countability properties of function spaces with
set open topologies.
In view of the results obtained in [10, 13], the property being admissible for a
family of subsets of X proves to be useful in the study of certain topological
properties of Cλ(X).

It would be useful to mention that if Z is a subset of X, then the set
C(Z) may be endowed with the set-open topology generated by the subbase
{[A ∩ Z, V ] : A ∈ λ and V is an open subset of R}, and it will be denoted by
Cλ∩Z (Z) . In addition, if λ is an admissible family of subsets in X, then the
family λ ∩ Z = {A ∩ Z : A ∈ λ} in Z, endowed with its subspace topology, is
also an admissible family. Note that, if λ is replaced by the family of all finite
unions of its elements then the topology of Cλ(X) does not change; therefore
we can always assume that the family λ is closed under finite unions, i.e., if
A,B ∈ λ, then A ∪B ∈ λ.

Throughout this paper all spaces are assumed to be completely regular
and Hausdorff, C(X) is the set of all continuous real-valued functions on a
topological space X, and λ is always a non-empty family of subsets of X.
The symbols ∅ and N will stand for the empty set and the positive integers,
respectively. We denote by R the real numbers with the usual topology. The
complement and the closure of a subset A in X is denoted by Ac and A,
respectively. If A ⊆ X, the restriction of a function f ∈ C(X) to the set A is
denoted by f|A. Notations not defined in this paper can be found in [4].

3. TOPOLOGICAL GAMES

In this section, we will give several infinite topological games played on
a topological space X between two players I and II. Let λ be a nonempty
family of subsets of X including the empty set.

The first game, called the Banach-Mazur game BM(X) [3, 8, 14], is
defined as follows: Player I starts the game by choosing a non-empty open
subset U0 of X, then player II chooses a non-empty open subset V0 ⊆ U0. At
the nth step (n ≥ 1), player I selects a non-empty open subset Un ⊆ Vn−1
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then II answers by choosing a non-empty open subset Vn ⊆ Un ⊆ Vn−1. We
say that II wins the game if ∩{Un : n ∈ N} 6= ∅, otherwise player I wins. The
Banach-Mazur game is also called Choquet game in [9], but we use here the
former terminology.

The second game, denoted by Γ1
λ(X), is played on X as follows: Player I

begins by choosing some A0 ∈ λ, then player II takes B0 ∈ λ. At the nth play
(n ≥ 1), player I chooses An ∈ λ such that An ∩ (B1 ∪ ...∪Bn−1) = ∅, then II
takes Bn ∈ λ. Player II wins the play if {An : n ∈ N} is a discrete family in
X, otherwise player I wins. Recall that a family A of subsets of X is discrete
if each point of X has a neighborhood which meets at most one member of
A. It should be mentioned that if λ is the family of all compact subsets of X
then Γ1

λ(X) is the McCoy-Ntantu’s game introduced in [14] in order to study
completeness properties of C(X) with compact-open topology.

The last game G∗(X) introduced by Gruenhage in [5] is played as follows:
players I and II (called K and L, respectively, in [5]) take turns in choosing
compact subsets of X. At the nth play, player I chooses a compact subset Kn

of X, and player II responds by choosing a compact subset Ln of X such that
Ln ∩Kn = ∅. Player I wins the game if {Ln : n ∈ N} is a locally finite family
in X.

A strategy in these games for player I is a rule which tells him what
sets to select given all the previous sets chosen by the opponent. A winning
strategy for a player is a strategy such that he/she wins all plays of the game
according to this strategy.
Recall that a topological space is a Baire space if the intersection of any se-
quence of dense open subsets of X is dense. It is well known that a topological
space X is a Baire space if and only if player I has no winning strategy in the
game BM(X). This result was first discovered by Oxtoby [19] (for the proof
see, for example, [7], Theorem 3.16 or [20], Theorems 1 and 2).

Definition 1. A topological space X is weakly α-favorable (also called
Choquet space in [9]) if player II has a winning strategy in the Banach-Mazur
game BM(X).

It is clear that weakly α -favorable spaces are Baire spaces. However the
converse is not true in general (see, for example, [12], Section 5).
It is also well known [21] that the property of being weakly α -favorable is
productive, i.e.,

∏
j∈J Xj is a weakly α-favorable space if Xj so is for each

j ∈ J. The following result, which will be used later, gives us a necessary
condition for weak α-favorability of Cλ(X).

Proposition 1 ([2]). Let X be a topological space, and let λ be an ad-
missible family of compact subsets of X. If Cλ(X) is weakly α-favorable, then
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player II has a winning strategy in the game Γ1
λ(X).

Gruenhage [5] proved the following characterization of paracompactness
for the class of locally compact spaces.

Theorem 1. Let X be a locally compact space. Then X is paracompact
if and only if player I has a winning strategy in G∗(X).

The following lemma will be used in the proof of Proposition 2.

Lemma 1. Let λ be an admissible family of compact subsets of X. If
A,K ∈ λ, then there exists C ∈ λ such that A \K ⊆ C and C ∩K = ∅.

Proof. If A ⊆ K, we take C = ∅, otherwise let x ∈ A \ K. The family
{{x}c ,Kc} is an open cover of A. By admissibility of λ, there exists a finite
sequence A1, ..., Am of elements of λ which refines {{x}c ,Kc} and whose union
contains A. We set C = ∪{Ai : Ai ⊆ Kc}. It is clear that A \ K ⊆ C and
C ∩K = ∅. �

Proposition 2. Let X be a topological space, and let λ be an admissible
family of compact subsets of X. If the family of all compact subsets of X refines
λ, then player II has a winning strategy in the game Γ1

λ(X) implies player I
has a winning strategy in G∗(X).

Proof. Let τ be a winning strategy for player II in Γ1
λ(X). Define a

strategy σ for player I in the game G∗(X) as follows. Suppose first that I
chooses K0 = ∅ and player II answers by a compact L0 in the game G∗(X).
Since the compact sets refine λ, then there exists an element A0 of λ which
contains L0. As τ is a winning strategy for player II in Γ1

λ(X), then whatever
is the play of player I in this game, player II must win if he moves according
to τ . So let A0 be I’s first move in the game Γ1

λ(X). Define K1 = σ(L0) =
τ(A0). For the nth step (n ≥ 1), suppose that we have the compact sets
Kn, Ln such that Kn ∩ Ln = ∅ and A0, τ(A0), ..., An, τ(A0, ..., An) ∈ λ have
been defined, representing a partial play of the game Γ1

λ(X), so that each
Ai ∈ λ contains Li with Ai ∩Ki = ∅ and Ki = τ(A0, ..., Ai−1) ∪Ki−1. We set
Kn+1 = τ(A0, ..., An) ∪Kn and define σ(L0, ..., Ln) = Kn+1. Let Ln+1 be II’s
next choice. Player I selects An+1 ∈ λ which contains Ln+1 and, according to
Lemma 1, such that An+1 ∩ Kn+1 = ∅. Then player II answers by choosing
an element τ(A0, ..., An+1) of λ. Since τ is a winning strategy, then the family
{An : n ∈ N} is discrete in X and hence, {Ln : n ∈ N} is a locally finite family.
Thus, L0,K0, ..., Ln,Kn, ... is a winning play for player I in the game G∗(X).
Hence, σ is a winning strategy for player I in G∗(X). �
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4. INDUCED FUNCTIONS ON THE FUNCTION SPACE

Let X and Y be topological spaces. Every continuous function Φ : X → Y
induces a function Φ∗ : C(Y )→ C(X), called the induced function, defined by
Φ∗(f) = f ◦Φ for each f ∈ C(Y ). This concept is a useful tool usually used for
studying function spaces. In this section we study the continuity and openness
of Φ∗ when C(X) and C(Y ) are endowed with set open topologies defined by
two families λ and β of X and Y , respectively. If λ is a family of subsets of X
and if Φ : X → Y is a function, we denote Φ(λ) = {Φ(A) : A ∈ λ}.

In [13], McCoy and Ntantu anounced the following result.
Let Φ : X → Y be a continuous function, and let λ and β be families of
compact subsets of X and Y , respectively.

(1) Then Φ∗ : Cβ(Y ) → Cλ(X) is continuous if and only if β approximates
Φ(λ).

(2) Also Φ∗ : Cβ(Y ) → Cλ(X) is open onto its image if and only if Φ(λ)

approximates β ∩ Φ(X).

The necessary conditions in this result, in general, are not true as is shown
by the example given below. However, we will give a new proof of this result
under additional assumptions.

Example 1. Suppose X = Y = R and λ the family of all finite subsets
of R, the two intervals [0, 1

2 ] and [0, 1], and the set [1
2 , 1] ∪ {2}. Take β =

λ \ [0, 1]. Then β does not approximate λ, because there is no finite sequence
B1, ..., Bn ∈ β such that the relation [0, 1] ⊆ B1 ∪ B2 ∪ ... ∪ Bn ⊆] − 1

2 ,
3
2 [

holds. On the other hand, we have Cλ(X) = Cβ(X), see ([16], Example 2.6).
Let Φ = id. We have then Φ∗ : Cβ(X) → Cλ(X) is continuous without that
β approximates Φ(λ) = λ, and Φ∗ : Cλ(X) → Cβ(X) is open without that

Φ(β) = β approximates λ ∩ Φ(X) = λ.

We state the following theorem (Theorem 1.4.2 in [10]) which gives a
necessary and sufficient criterion for the set open topology of Cβ (X) to be
finer than the set-open topology of Cλ (X) . This result will be used in the
proof of Theorem 3.

Theorem 2 ([10]). Let λ and β be two families of compact subsets of X,
such that β is admissible. Then the set-open topology of Cβ (X) is finer than
the set-open topology of Cλ (X) if and only if β approximates λ.

Theorem 3. Let λ and β be two families of compact subsets of X and Y
respectively, and let Φ : X → Y be a continuous mapping. If β approximates
Φ (λ) then Φ∗ : Cβ (Y )→ Cλ (X) is continuous. If, in addition, β is admissible
the converse is true.
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Proof. The proof of the first part is given in ([13], Theorem 2.1). For
the proof of the converse case, from Theorem 2, it is enough to prove that
the topology of Cβ(Y ) is finer than the topology of CΦ(λ)(Y ). To do this, let
A ∈ λ, V be open in R and f ∈ [Φ (A) , V ] . We have Φ∗ (f) ∈ [A, V ] . Since Φ∗

is continuous, there exist B1, ..., Bn ∈ β and V1, ..., Vn open subsets in R such
that

f ∈
n⋂
i=1

[Bi, Vi] ⊆ (Φ∗)−1 ([A, V ]) ⊆ [Φ (A) , V ] .

This means that the topology of Cβ(Y ) is finer than the topology of
CΦ(λ)(Y ). So β approximates Φ (λ) . �

For the study of the openness of Φ∗ onto its image, we begin with the
particular case when X is a subspace of Y and Φ is the inclusion mapping. We
need the following lemma given in [10].

Lemma 2. Let Y be a topological space, X a subspace of Y, β a family of
compact subsets of Y such that B∩X = B∩X for each B ∈ β and let g ∈ C (X)
be a function extendable to a continuous function over Y. Let B1, ..., Bn ∈ β
and V1, ..., Vn be bounded open intervals in R such that g

(
Bi ∩X

)
⊆ Vi for

each i = 1, ..., n. Then, there exists g′ ∈ C (Y ) an extension of g such that
g′ (Bi) ⊆ Vi for each i = 1, ..., n.

Recall that the standard base of the set open topology consists of all sets
of the form ∩ni=1[Ai, Vi], where Ai ∈ λ and Vi is open in R for each 1 ≤ i ≤ n. It
is shown in ([10], Theorem 1.2.2) that, if λ is an admissible family of compact
subsets of X, then the topology of Cλ(X) does not change if the Vi are not
arbitrary but belong to the collection of all open bounded intervals of R. This
allows us, for some families λ, to have only sets of the form [A, V ], where A ∈ λ
and V is an open bounded interval in R, in the study of Cλ(X).

Theorem 4. Let Y be a topological space, X a subspace of Y, β an ad-
missible family of compact subsets of Y and λ a family of compact subsets of
X. Let i : X → Y be the inclusion mapping. If λ approximates β ∩ X then
i∗ : Cβ (Y )→ Cλ (X) is open onto its image.

Proof. Suppose that λ approximates β∩X. Let us first show that B∩X =
B ∩ X for every B ∈ β. Assume the contrary, then there is B ∈ β such that
B ∩ (X \X) 6= ∅. Take a point x in B ∩ (X \X). Then x does not belong to
any A ∈ λ. Thus, B∩X can be in no finite union of elements of λ. This means
that λ does not approximate β ∩X, a contradiction. Hence, B ∩X = B ∩X
for every B ∈ β. Now, let ∩ni=1 [Bi, Vi] be a basic open subset of Cβ (Y ) and
f ∈ i∗ (∩ni=1 [Bi, Vi]) . Let f ′ ∈ C(Y ) be an extension of f over Y such that
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f ′ ∈ ∩ni=1 [Bi, Vi] . Since λ approximates β∩X, there exists, for each i = 1, ..., n,
a finite subfamily λi of the family λ such that:

Bi ∩X ⊆
⋃
{A : A ∈ λi} ⊆ f−1 (Vi) .

Then

f ∈

 n⋂
i=1

⋂
A∈λi

[A, Vi]

⋂ i∗ (C (Y )) = W.

We claim that W ⊆ i∗ (∩ni=1 [Bi, Vi]) . To justify our claim, let g ∈ W.
Because g(

⋃
{A : A ∈ λi}) ⊆ Vi, then g(Bi ∩ X) ⊆ Vi for every i = 1, ..., n.

Also we have B ∩ X = B ∩ X for every B ∈ β, as it is shown above. Then,
by Lemma 2, there exists a function g′ ∈ C(Y ) which agrees with g on X
and belongs to ∩ni=1 [Bi, Vi] . We have then g ∈ i∗ (∩ni=1 [Bi, Vi]) . Hence, W ⊆
i∗ (∩ni=1 [Bi, Vi]) . It follows that i∗ is open onto its image. �

For a family λ of subsets of X we consider the family

λ
′

= {A′/A′compact of X and ∃A ∈ λ : A′ ⊆ A}.

The following lemmas are needed in the proof of the next theorem.

Lemma 3. Let λ be a family of compact subsets of X. Then the following
statements are true:
(1) The family λ

′
is always admissible.

(2) λ is admissible if and only if λ approximates λ
′
.

Proof. (1) Let A′ ∈ λ′ and let {U1, ..., Un} be an open cover of A′.
There exists a finite sequence K1, ...,Km of compact subsets of X which refines
{U1, ..., Un} and whose union contains A′. Let A ∈ λ such that A′ ⊆ A. We
have A′ ⊆ (

⋃m
i=1Ki)∩A =

⋃m
i=1(Ki ∩A). Put A′i = Ki ∩A for 1 ≤ i ≤ m. The

family A′1, ..., A
′
m of members of λ

′
covers A′ and refines U1, ..., Un. Hence, λ

′

is admissible.
(2) Suppose that λ is admissible. We will show that λ approximates λ

′
.

Let A′ ∈ λ
′

and U be an open subset of X such that A′ ⊆ U. Let A ∈ λ
with A′ ⊆ A. If A ⊆ U the proof is over, otherwise suppose that A \ U 6= ∅.
Then {U,A′c} is an open cover of A. By admissibility of λ, there are A1, ..., An
members of λ which refine {U,A′c} and whose union contains A. Put I = {i :
Ai ⊆ U}. Then, we have A′ ⊆

⋃
i∈I Ai ⊆ U. This means that λ approximates λ

′
.

Conversely, suppose that λ approximates λ
′

and let us show that λ is
admissible. Let A ∈ λ and {U1, ..., Un} be a family of open subsets of X
which covers A. There exists a finite sequence K1, ...,Km of compact subsets
of X which refines U1, ..., Un and whose union contains A. Put A′i = Ki∩A for
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1 ≤ i ≤ m. Then the family {A′1, ..., A′m} ⊆ λ
′
covers A and refines {U1, ..., Un}.

For each j = 1, ...,m, let us choose some ij such that A′j ⊆ Uij . By our

assumption there is, for every j = 1, ...,m, a finite family Aj = {Aj1, ..., A
j
mj}

of elements of λ such that A′j ⊆
⋃mj
k=1A

j
k ⊆ Uij . We set A =

⋃m
j=1Aj , this

is a finite family of elements of λ which covers A and refines U1, ..., Un. This
completes the proof of the lemma. �

Lemma 4. Let Y be a topological space, X a subspace of Y, and λ and β
be two families of compact subsets of X and Y, respectively. Let i : X → Y be
the inclusion mapping. If i∗ : Cβ (Y ) → Cλ (X) is open onto its image then
B ∩X = B ∩X for every B ∈ β.

Proof. Suppose that, on the contrary, there is B ∈ β such that B ∩ (X \
X) 6= ∅. Let x ∈ B ∩ (X \X), V =]1

3 ,
2
3 [, and f ∈ i∗([B, V ]). We observe that

i∗(g) = g|X for any g ∈ C(Y ). Then we have f = f ′|X for some f ′ ∈ [B, V ].
Since i∗ is open onto its image, there exist A1, ..., An ∈ λ and V1, ..., Vn open
subsets in R such that

f ∈ (

n⋂
i=1

[Ai, Vi]) ∩ i∗ (C (Y )) ⊆ i∗ ([B, V ]) .

Since x ∈ B ∩ (X \ X), we have x /∈ ∪ni=1Ai. Complete regularity of Y
gives us a function h ∈ C(Y ) with h(x) = 0 and h(∪ni=1Ai) = {1}. Consider
the function h1 = f ′.h. We have then h1(∪ni=1Ai) ⊆ V and h1(x) = 0. So

h1|X ∈ (
n⋂
i=1

[Ai, Vi]) ∩ i∗ (C (Y )) and h1 does not belong to [B, V ] as well as

any continuous extension of h1|X over Y. This gives a contradiction. Hence, we

must have B ∩X = B ∩X for every B ∈ β. �

The following result is the converse of Theorem 4.

Theorem 5. Let Y be a topological space, X a subspace of Y, β a family
of compact subsets of Y and λ an admissible family of compact subsets of X.
Let i : X → Y be the inclusion mapping. If i∗ : Cβ (Y )→ Cλ (X) is open onto
its image then λ approximates β ∩X.

Proof. Note that, by Lemma 4, we have B ∩X = B ∩X for every B ∈ β.
Let B ∈ β, G an open subset of X such that B ∩X = B ∩X ⊆ G, and let G1

be open in Y with G1 ∩X = G. Now the subset G2 = G1 ∪
(
Y \X

)
, which is

open in Y , contains B and verifies G2 ∩X = G1 ∩X = G. Let f : Y → [0, 1]
be a continuous function such that f (B) = {1} and f (Y \G2) = {0} . Let us
put V =

]
1
2 ,

3
2

[
. We have f−1 (V ) ⊆ G2. Then f−1

|X (V ) = f−1(V ) ∩X ⊆ G.

Consider in Cβ (Y ) the subbasic open subset [B, V ]. We have then f ∈
[B, V ] . Thus, i∗ (f) = f|X belongs to i∗ ([B, V ]) which is open in i∗ (C (Y )) , by
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our assumption. Therefore, there exist A1, ..., An members of λ and bounded
open intervals V1, ..., Vn in R such that

f|X ∈ (∩ni=1 [Ai, Vi]) ∩ i∗ (C (Y )) ⊆ i∗ ([B, V ]) .

This implies that B ∩X ⊆ ∪ni=1Ai. Indeed, suppose that there exists an
x0 ∈ (B ∩ X) \ ∪ni=1Ai. Since Y is a completely regular space, we can find a
continuous function g : Y −→ [0, 1] such that g(x0) = 0 and g(∪ni=1Ai) = {1}.
Then the function h = f|X .g|X does not belong to i∗ ([B, V ]) , because h(x0) =
0 /∈ V. But h ∈ (∩ni=1 [Ai, Vi]) ∩ i∗ (C (Y )), which is a contradiction.
Now, put A = A1, Ac = A0 and I = {1, ..., n} and let

4 =
{

(δi)i∈I ∈ {0, 1}
n \ {(0, ..., 0)} :

(
∩i∈IAδii

)
∩
(
B ∩X

)
6= φ

}
.

It is clear that

B ∩X = B ∩X ⊆ ∪
{
∩ni=1A

δi
i / (δi) ∈ 4

}
.

We claim that ∩δi=1Vi ⊆ V for each (δi) ∈ 4 fixed. To prove our claim,
arguing by contradiction. Let t ∈ ∩δi=1Vi\V for some (δi) ∈ 4. We can assume

t > 1 (the case t < 1 will be treated similarly). Pick x0 ∈
(
∩i∈IAδii

)
∩
(
B ∩X

)
,

then x0 /∈ (∪δi=0Ai) and f(x0) = 1 ∈ ∩δi=1Vi. Let ε > 0 with

ε < min(inf{| t− s |: s ∈ (∩δi=1Vi)
c}, inf{| 1− s |: s ∈ (∩δi=1Vi)

c}).

By continuity of f , regularity of the space X, and the fact that x0 /∈
(∪δi=0Ai), we can take an open neighborhood U of x0 such that U∩(∪δi=0Ai) =
∅ and | f(y) − 1 |< ε for any y ∈ U. Consider a continuous function g : Y →
[0, t− 1] such that g(x0) = t− 1 and g(U c) = {0}, and put h = f|X + g|X . We
shall now verify that h ∈ ∩ni=1 [Ai, Vi] . If Ai ∩ U 6= ∅, with 1 ≤ i ≤ n, then
δi = 1 and for each y ∈ Ai∩U, we have h(y) = f(y)+g(y) ∈]1− ε, t+ ε[⊆ Vi. If
y ∈ Ai \U, we have h(y) = f(y) ∈ Vi. Therefore h ∈ (∩ni=1 [Ai, Vi])∩ i∗ (C (Y )) .
But h /∈ i∗([B, V ]), because h(x0) = f(x0) + g(x0) = t /∈ V. A contradiction.
Hence, we have ∩δi=1Vi ⊆ V for each (δi) ∈ 4. So we obtain that

B ∩X ⊆ ∪{∩δi=1Ai / (δi) ∈ 4} ⊆ f−1
|X (V ) .

Moreover, the admissibility of λ gives, by Lemma 3, that for each (δi) ∈ 4,
there exist λ(δi) finite ⊆ λ such that

∩δi=1Ai ⊆ ∪
{
A : A ∈ λ(δi)

}
⊆ f−1
|X (V ) .

Hence,

B ∩X = B ∩X ⊆
⋃

(δi)∈4

(
⋃

A∈λ(δi)

A) ⊆ f−1
|X (V ) ⊆ G.
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Thus, we have that λ approximates β ∩X. �

Theorems 4 and 5 give us the following.

Theorem 6. Let Y be a topological space, X a subspace of Y, and λ and
β be two admissible families of compact subsets of X and Y , respectively. Let
i : X → Y be the inclusion mapping. Then i∗ : Cβ (Y )→ Cλ (X) is open onto
its image if and only if λ approximates β ∩X.

Now we generalize Theorem 6 to the case where X and Y are arbitrary
topological spaces and Φ : X → Y is an arbitrary continuous function. To
do this, let j be the mapping from X to Φ(X) defined by j(x) = Φ(x). Let
i : Φ(X)→ Y be the inclusion mapping. We have Φ = i◦j, and so Φ∗ = j∗ ◦ i∗.
We observe that j is continuous. If λ is a family of compact subsets of X then,
from ([15], Theorem 2.2.7), j∗ : CΦ(λ)(Φ(X))→ Cλ(X) is an homeomorphism
onto its image.

Theorem 7. Let Φ : X → Y be a continuous function, λ a family of
compact subsets of X and β an admissible family of compact subsets of Y. If
Φ(λ) approximates β∩Φ(X) then Φ∗ : Cβ(Y )→ Cλ(X) is open onto its image.

Proof. Let W be an open subset of Cβ(Y ). We have Φ∗(W ) = j∗(i∗(W )).
From Theorem 4, the mapping i∗ is open onto its image. Then there exists an
open subset W1 of CΦ(λ)(Φ(X)) such that Φ∗(W ) = j∗(W1 ∩ i∗(C(Y ))), and
hence,

Φ∗(W ) = j∗(W1) ∩ j∗(i∗(C(Y ))) = W2 ∩ j∗(C(Φ(X))) ∩ Φ∗(C(Y )),

where W2 is an open subset of Cλ(X), from the fact that j∗ is an homeo-
morphism onto its image. Since Φ∗(C(Y )) ⊆ j∗(C(Φ(X))), we obtain that
Φ∗(W ) = W2 ∩ Φ∗(C(Y )), and so, Φ∗ is open onto its image. �

Theorem 8. Let Φ : X → Y be a continuous function, λ an admissible
family of compact subsets of X and β a family of compact subsets of Y. If
Φ∗ : Cβ(Y )→ Cλ(X) is open onto its image then Φ(λ) approximates β∩Φ(X).

Proof. Note that the admissibility of λ implies the admissibility of Φ(λ).
Note also that j∗, defined as above, restricted to i∗(Φ(Y )) is an homeomorphism
from i∗(Φ(Y )) to j∗(i∗(Φ(Y ))) = Φ∗(C(Y )). Now, let W be an open subset of
Cβ(Y ). We have i∗(W ) = (j∗)−1(Φ∗(W )). Since Φ∗(W ) is open in Φ∗(C(Y )),
we obtain that i∗(W ) is open in i∗(C(Y )) = (j∗)−1(Φ∗(C(Y ))). Hence, i∗

is open onto its image. It follows from Theorem 5 that Φ(λ) approximates
β ∩ Φ(X). �

Theorem 9. Let X and Y be topological spaces, λ and β be two admis-
sible families of compact subsets of X and Y respectively, and Φ : X → Y a



178 Abderrahmane Bouchair and Smail Kelaiaia 12

continuous mapping. Then Φ∗ : Cβ (Y ) → Cλ (X) is open onto its image if

and only if Φ(λ) approximates β ∩ Φ(X).

The following corollary is an immediate consequence of Theorems 3 and 9.

Corollary 1. Let X and Y be topological spaces, λ and β be two admis-
sible families of compact subsets of X and Y respectively, and Φ : X → Y a
continuous mapping such that Φ(X) is dense in Y . Then Φ∗ : Cβ (Y )→ Cλ (X)
is an embedding if and only if each of Φ(λ) and β approximates the other.

5. COMPLETENESS PROPERTIES OF Cλ(X)

In this section, we are going to characterize the weak-α-favorability and
Baireness of C(X) equipped with the set-open topology. Let X be a topological
space and let λ be a family of compact subsets of X. Following [15] and [10],
the space X is called a λ-space provided that every subset of X is closed
whenever its intersection with any member of λ is closed. The space X is
called λ-hemicompact if λ contains a countable λ-cover of X.

Proposition 3. If each point of X admits a member of λ as a neighbor-
hood, then X is a λ-space.

Proof. Let A be a subset of X such that the intersection of A with any
member of λ is closed. Suppose that A is not closed, let x ∈ A \ A and
U ∈ λ be a neighborhood of x. For every neighborhood V of x, we have
(V ∩U)∩A 6= ∅. Then x ∈ U ∩A\U ∩A, and hence, U ∩A is not closed which
is a contradiction. �

Before giving the next theorem which is due to McCoy and Ntantu, let d
be the usual metric on R bounded by 1, i.e., d(x, y) = min{1, |x − y|}. Then
Cd(X) will denote C(X) with the topology generated by the metric d∗(f, g) =
sup{d(f(x), g(x)) : x ∈ X}, which is a complete metric. It would be useful to
mention that if λ is an admissible family and A ∈ λ, then Cλ∩A (A) = Cd(A)
(see [13], Lemma 2.4).

Theorem 10. Let X be a topological space, and let λ be an admissible
family of compact subsets of X such that ∪{A : A ∈ λ} = X. If X is a λ-
hemicompact λ-space, then Cλ(X) is completely metrizable (and hence, weakly
α-favorable).

Proof. Let {An : n ∈ N} ⊆ λ be an λ-cover ofX. For each An, consider the
product space A′n = An×{n} which is naturally homeomorphic to An. Let Y be
the topological sum of the A′n’s, and let p : Y → X be the natural projection.
Since X is a λ-space, then p is a quotient map. Let p∗ : Cλ(X) → Cβ(Y ) be
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the induced map, where β = {(A × {n}) ∩ A′n 6= ∅ : A ∈ λ, n ∈ N}. It easy
to verify that the family β is admissible. The map p∗ is one-to-one because p
is onto. In addition, each of λ and p(β) approximates the other, this follows
immediately from the fact that λ ⊆ p(β) ⊆ λ

′
and applying Lemma 3. It

follows from Theorems 3 and 7 that p∗ is continuous and open onto its image;
thus, is an embedding onto its image.
Now we want to prove the following claim: p∗(Cλ(X)) is closed in Cβ(Y ).

Let g ∈ Cβ(Y ) \ p∗(Cλ(X)). Let us show that there exists y, y′ ∈ Y such
that g(y) 6= g(y′) and p(y) = p(y′). Assume the contrary. Then p(y) = p(y′)
implies g(y) = g(y′) for all y, y′ ∈ Y. Consider the function h : X → R defined
by h(x) = g(y), where y is an arbitrary element in p−1(x). This is well defined
since g is constant on p−1(x) for all x ∈ X. We have then g = h ◦ p. Let
W be an open subset of R, then p−1(h−1(W )) = g−1(W ). By continuity of g
and quotientness of h, it results that h−1(W ) is open in X and hence, h is
continuous. Since g = p∗(h), then g ∈ p∗(Cλ(X)) which is a contradiction.

Now, let y, y′ ∈ Y such that g(y) 6= g(y′) and p(y) = p(y′). Let U and
U ′ be disjoint open neighborhoods of g(y) and g(y′) in R, respectively. Then
g−1(U) and g−1(U ′) are open disjoint subsets of Y. Since β covers Y, there
are B,B′ members of β such that y ∈ B ∩ g−1(U) and y′ ∈ B′ ∩ g−1(U ′).
By admissibility of β, there exist B1, B

′
1 ∈ β such that y ∈ B1 ⊆ g−1(U) and

y′ ∈ B′1 ⊆ g−1(U ′). It is clear then that [B1, U1]∩ [B′1, U
′
1] is a neighborhood of

g in Cβ(Y ) with p∗(Cλ(X)) ∩ ([B1, U1] ∩ [B′1, U
′
1]) = ∅. This proves the claim.

Finally, since Cβ(Y ) is homeomorphic to the product
∏
{Cβ∩A′n(A′n) : n ∈ N}

of completely metrizable spaces, then p∗(Cλ(X)) is completely metrizable and
hence, Cλ(X) is completely metrizable. �

The forthcoming theorem is the main result of this section.

Theorem 11. Let X be a topological space, λ an admissible family of
compacts subsets of X. If each point of X admits a member of λ as a neigh-
borhood, then Cλ(X) is weakly α-favorable if and only if X is paracompact.

Proof. Suppose that Cλ(X) is weakly α-favorable. By Proposition 1,
player II has a winning strategy in the game Γ1

λ(X). Then, by Proposition 2,
player I has a winning strategy in the game G∗(X), which in turn is equivalent
to X being paracompact from Theorem 1.

Conversely, suppose that X is paracompact. First, we prove that X can
be written as a topological sum of λj-hemicompact λj-spaces, where λj are
subfamilies of λ that will be defined during the proof. For each x ∈ X, let Ωx

be an open subset of X, and Kx ∈ λ such that x ∈ Ωx ⊆ Kx. then {Ωx : x ∈ X}
is an open cover for X. Since X is paracompact, there is U = {Ui : i ∈ I} an
open locally finite refinement of {Ωx : x ∈ X}. We claim that every member
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of U meets only finitely many members of U . Indeed, let U0 ∈ U and Kx0 a
member of λ with U0 ⊆ Kx0 . Every point of Kx0 has an open neighborhood
meeting only finitely many members of U . Because Kx0 is compact, then it is
covered by a finite number of these neighborhoods. Then Kx0 , in particular U0,
intersects only finitely many members of U . Now, define on the set of indices I
an equivalence relation as follows: two elements i and j of I are equivalent if
and only if there exists a finite sequence of indices, i0 = i, i1, ..., in = j, such that
Uik∩Uik+1

6= ∅ for k = 0, ..., n−1. Let {Ij : j ∈ J } be the family of equivalence
classes under this relation. Each Ij is countable. Put Xj =

⋃
i∈Ij Ui. Since two

arbitrary sets Xj1 , Xj2 either coincide or are disjoint, then all sets Xj are open
and closed. Put λj = {A,A ∈ λ : A ⊆ Xj}, then we have λ = ∪{λj : j ∈ J }.
Thanks to disjointness of the spaces Xj , every family λj is admissible and each
point of Xj has a neighborhood from λj . Hence, each space Xj is λj-space by
Proposition 3, and is also λj-hemicompact . In fact, for every i ∈ Ij there is
Ki ∈ λ such that Ui ⊆ Ki. For n ∈ N, let An = ∪i≤nKi. It easy to see that
{An : n ∈ N} is an λj-cover of Xj .

To complete the proof of the theorem, according to Theorem 10, Xj is
weakly α-favorable space for every j ∈ J . Since Cλ(X) is homeomorphic to
the product space

∏
{Cλj (Xj) : j ∈ J } and a product of weakly α-favorable

spaces is weakly α-favorable, then Cλ(X) is weakly α-favorable. �

Corollary 2. Let X be a topological space, and let λ be an admissible
family of compact subsets of X verifying the property that any point of X
admits a member of λ as a neighborhood. Then the following are equivalent.
(1) Cλ(X) is completely metrizable;
(2) Cλ(X) is weakly α-favorable;
(3) X is paracompact;
(4) X is λ-hemicompact.

Proof. (1)⇒ (2) is immediate.
(2)⇒ (3) follows from Theorem 11.
(4)⇒ (1) follows from Theorem 10.
(3) ⇒ (4) If X is a paracompact space, then it is a topological sum of spaces
Xj , j ∈ J , as it is shown above. Each space Xj is λj-hemicompact, where λ
is the disjoint union of the families λj . Clearly X is λ-hemicompact. �

The problem of finding a property P of X such that Cλ(X) is a Baire
space if and only if X has P appears very difficult. Now we apply the above
results to obtain a characterization for Baireness of Cλ(X) in the special case
when X is paracompact q-space. The following theorem, in which the proof is
essentially the same to the one in ([11], Theorem 7), gives a necessary condition
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for Cλ(X) to be a Baire space when X is a q-space. Before stating this result
we recall that a space X is a q-space if for each point x ∈ X there is a sequence
{Un : n ∈ N} of open neighborhoods of x such that whenever xn ∈ Un for each
n, the set {xn : n ∈ N} has a cluster point.

Theorem 12. Let X be a q-space, and let λ be an admissible family of
compact subsets of X such that ∪{K : K ∈ λ} = X. If Cλ(X) is a Baire space,
then each point of X has a neighborhood from λ.

Proof. It is proved in ([11], Theorem 5) that if Cλ(X) is a Baire space,
then each compact subset of X is contained in a member of λ. Therefore it is
enough to show that each point of X has a compact neighborhood. Let x ∈ X,
{Un : n ∈ N} be a sequence of open neighborhoods of x, with Un+1 ⊆ Un,
such that whenever xn ∈ Un for each n, the sequence {xn : n ∈ N} has a
cluster point, and suppose that x has no compact neighborhood. For each n,
let An = Un \ Un+1. Suppose that each An is compact and let {xn : n ∈ N}
be a sequence in U0. If {xn : n ∈ N} is contained in the union of finitely many
An, then it will have a cluster point. Otherwise there will exist a subsequence
{xni : i ∈ N} such that xni ∈ Ui, for every i ∈ N. This subsequence converges
to x. Thus, the sequence {xn : n ∈ N} would have a cluster point and then
it follows that U0 is pseudocompact. Since Cλ(X) is a Baire space then, from
([11], Theorem 5), U0 is compact. This gives a contradition, so there is n0 ∈ N
such that An0 is not compact. With the same reasoning we obtain by recurrence
a subsequence {Ank : k ∈ N} of the sequence {An : n ∈ N} such that Ank is
not compact for each k ∈ N. Now for each k, we set Gk = ∪{[A, ]k, k + 1[] :
A ∈ λ with A ∩ Ank 6= ∅} which is open and dense in Cλ(X). Since Cλ(X)
is a Baire space, there exists an g ∈ ∩{Gk : k ∈ N}. Then for each k, there
exists ak ∈ Ank such that g(ak) ∈]k, k + 1[. The sequence {ak : k ∈ N}
converges to x, but {g(ak) : k ∈ N} diverges which contradicts the fact that
g is continuous. Hence, x admits a compact neighborhood. This finishes the
proof of the theorem. �

The next result is an immediate consequence of Theorem 11 coupled with
Theorem 12.

Corollary 3. Let X be a paracompact q-space, and let λ be an admissi-
ble family of compact subsets of X such that ∪{K : K ∈ λ} = X. Then Cλ(X)
is a Baire space if and only if each point of X has a neighborhood from λ.
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