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1. INTRODUCTION

Amongst various important applications, one important application of
nonlinear programming is to maximize or minimize the ratio of two functions,
commonly called fractional programming. The characteristics of fractional
programming problems have been investigated widely [1, 6, 10] and [13]. In
noneconomic situations, fractional programming problems arisen in informa-
tion theory, stochastic programming, numerical analysis, approximation the-
ory, cluster analysis, graph theory, multifacility location theory, decomposi-
tion of large-scale mathematical programming problems, goal programming
and among others. Recently, some biologists have been studying fractional
programming problems to improve the accuracy of melting temperature esti-
mations (cf. Leber et al. [15]).

The necessary and sufficient conditions for generalized minimax program-
ming were first developed by Schmitendorf [17]. Later, several authors consid-
ered these optimality and duality theorems for minimax fractional program-
ming problems, one can consult [2, 11, 16] and [20].

Antczak [4] proved optimality conditions for a class of generalized frac-
tional minimax programming problems involving B-(p,r)-invexity functions
and established duality theorems for various duality models. Later on, Ahmad
et al. [3] discussed sufficient optimality conditions and duality theorems for
a nondifferentiable minimax fractional programming problem with B-(p,r)-
invexity.
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Zalmai and Zhang [18, 19] introduce a new class of generalized (F, b, ¢, p, 0)-
univex functions and derived necessary optimality conditions, sufficient opti-
mality conditions and duality theorems for minimax fractional programming
problem and its different types of dual models.

In this paper, we are motivated by Zalmai and Zhang [18, 19], and Fer-
rara and Stefanescu [7] to discuss sufficient optimality conditions and dual-
ity theorems for a minimax fractional programming problem with (®, p)-invex
functions [5]. The remainder of the paper is organized as follows. In Section 2,
we recall some definitions and notations from the literature. In Section 3, we
are devoted to establish sufficient optimality conditions for a class of minimax
fractional programming problem involving (@, p)-invex functions. Moreover,
weak, strong and strict converse duality theorems for a dual model of minimax
fractional programming problem are discussed in Section 4. Finally, conclusion
and further development that might take in this direction is given in Section 5.

2. NOTATION AND PRELIMINARIES

Throughout the paper, let R be the n-dimensional Euclidean space and
" its non-negative orthant.
We consider now the following minmax fractional programming problem:

L. . f((E, )+||A( )x”a
(P) Minimize max m

yey
subject to
Gy(@) + 15 (@)ll, ;) < 0.5 € q, Hilw) =0, ker, z € X,

where X is a nonempty open convex subset of R, Y is a compact metrizable
topological space, f(.,y), 9(.,y), y €Y, G, 1€ q={1,2,...,q}, and Hy, k €
r = {1,2,...,r}, are real valued functions defined on X. For each y € Y
and j € ¢, A(y), B(y) and C; are respectively [ x n, m x n, and n; X n
matrices. |[.[|,, [/, and [|.||¢;) are arbitrary norms on R', R™, and R™,
respectively. It is assumed that for each y € Y and for all x satisfying the
constraints of (P), f(z,y) + ||A(y)z|, > 0 and g(z,y) — || B(y)z|, > 0. We
denote Jy(v) = {j € ¢ : v; > 0} for fixed v € R}, K.(w) = {k € r : wy, # 0}
for fixed w € R", and v = {y},12,...,77}.

Remark 2.1. The problem (P) considered here is a general prototype op-

timization model that contains a well-known nondifferentiable minimax frac-
tional programming problem studied by Lai et al. [14] as a special case.

In the next definition, an element of the (n+1)-dimensional Euclidean
space R"*! is represented as the ordered pair (y,r) withy € R" and r € R. Let
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p be a real number and ® a real-valued function defined on X x X x R"*! such
that ®(z, a,.) is convex on R"*! and ®(z,a, (0,7)) > 0 for every (z,a) € X x X
and r € Ri. Let ¢ : X C R" — R be a differentiable function and a € X.

Definition 2.1 ([5]). The function ¢ is said to be (strictly) (®, p)-invex at
a € X, if for all z € X, we have

e(x) = pla)(>) 2 (x,a, (Ve(a), p).
In the sequel of the paper, we need the following result from Zalmai and

Zhang [18].

THEOREM 2.1 (Necessary conditions). Let z* be an optimal solution to
(P) and assume that the functions f(.,y) ,9(.,y), y € Y, Gj, j € q, and
Hy, k €1, are continuously differentiable at z*, and that any one of the con-
straint qualifications [8, 12] holds at x*. Then there exist \* € R, (p, 7", u*, o, B*)
eK, v*e Ri, w* € R", and v € RY, j € q, such that

p
Yo uH{VIE" Y+ Aly™) @ = N[Vt y™) - Bly™)T 8]}
=1

q

+Zv3‘ +CTy] +ZkaHk< ) =0,
k=1

w {f @y + (2™, Aly” z*> Ng(a®,y™) = (B, Bly™)a")]} = 0,i € p,
vj[Gj(a") + HCjw i) = 0,7 € ¢,

oI5 <

Hb<1z€p,

HFY*]HC(] =Lj €4

< a*i,A(y*i)w* > = HA(Z/*Z)J»’*Haa
< 5*i,B(y*i)m* > = HB(y*i)x*Hb,i € p,

where
K={p0uopB):1<p<n+1; 7=y .4, vy €Y; ue Ry
with
p . .
Zui =1; a=(a!,a? ...,of),a' € R, = (6,32 ...,8°),8 € R™}
i=1

LEMMA 2.1 ([9]). For each a,b € R™, {a,b) < ||la|" ||b].
LEMMA 2.2 ([18]). For each z € X,
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p
> wilf (z,9%) + | Aly)],]
R o e R s———
’ b e X wlg(ayh) — Byl

1

..
I

P
where U = {u € R : ;ul =1}.

3. SUFFICIENT OPTIMALITY CONDITIONS

In this section, we derive sufficient optimality conditions for (P) under
the assumption of (@, p)-invex functions introduced in the previous section.
Denote

O() = S ur Sy + (@™, Ay).) — Xlg(y™) — (87, Bly™). ).
i=1

THEOREM 3.1 (Sufficiency). Let x* be a feasible solution to (P) and let
N = @o(x*) > 0, and assume that the functions f(.,y),9(.,y),y €Y, Gj,j €
q and Hy,k € r, are differentiable at x* and there exist (p,y*,u*,a*, %) €
K, v* € RY, w* € R", and yIeER™,j¢€ q, satisfying

(31) D u{ViEty) + Ay o — X [Vg(a*,y) - B(y™)T 5]}
=1

q r
+) 0I[VG;(a*) + Cf ] + ) wipVH(a*) = 0,

(32) -
wH{F @y + (0 Ay™)e) — N g(aty) — (87, Bly™)a®)])} = 0,i € p,
(3.3) v Gj(a) + 1 Cja* ;)] = 0.5 € g,
(3.4) lo*[l; < 1,[|87], < Liep,
(3-5) H’Y*jH:(j) <ljeq

Furthermore, assume that the following conditions hold:
(i) for each i € p, f(.,y*) + {(a*, A(y™).) — X*[g(.,y*") — (B, B(y*).) is
(®,p;)- inver at x*,
(ii) for each j € Jy = Jy(v*), G;(.) 4+ (v*,Cj.) is (@, p;)- invex at ¥,
(iii) for each k € K, = K.(w*), Hg(.) is (P, p)- invex at x*,
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p q T
(iv) au;‘ pi + Zlvj pj —i—kzlw}: Pr = 0.
1= J= =

Then x* is an optimal solution to (P).

Proof. Suppose to the contrary that z* is not an optimal solution to (P).
Then there exists a feasible solution z to (P) such that
po(z) < po(z”) =A%,
equivalently,
* A *
s V) AW
veY g (z,y*) — [ B(y*)zl|,

Therefore for each i € p, we have

fley?) + A=, .,
. . @ <\
9@y — 1By, ~

(3.6) f (x,y*’) + HA(y*’)a:Ha — g (x,y*z) - HB(y“)be] <0, Vie€p.

Now,

= ui{f(a,y") + (", Aly™)a) = Ng(z, y*) — (87, Bly™)x)]}
=1

p
<D _ui{f Gy + oL 1A, = Mo,y = 187, [1BG&™)=]l,)}
i=1

(by Lemma 2.1)

P
SZU?{ z,y*)+|| A(y™) mH lg(z, y*")—||B(y*") xH (by (3.4))

=1

(by (3.2) & (3.6))

iS]

(3.7) O(z) —O(z") < 0.
From the (®, p;)-invexity of
{FCy™) + (™, Aly™).) = Xlg(y™) = (87 By™))l}

at x*, we have
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{f(z,y*") + (', A(y*)z) — X[g(z, y*") — (B, B(y*)z)]}
— {f(@*,y*) 4+ (@, A(y*")x*) — Mg(z*, y*') — (6%, B(y*)z*)]}
> ®(z, 2, (Vf(a*, )+ Aly™) o =N [Vg(a*, )~ B(y™)" %], i),

Viep.
Multiplying by u; and then summing over 4, we have
P . ' |
Z“? [y + (o™, Aly™)a) - N [gla.y™) — (8%, Bly™)a))}
i=1

p
> Z {0z, ", (V@ g™ )+ A o =X [Vg(a*, y™) - Bly™)' 5, 5i))},
i=1

Viep.

The above inequality together with (3.7), gives
(3.8)
P

S { @, (V (2", )+ AW =X [Vg(a*,y™)~B(y™) 87, pi))} <0.
=1

On the other hand, by using Lemma 2.1, feasibility of = to (P), (3.3) and
(3.5), for each j € J4, we obtain

Gj(x) + (v, Cjz) < Gj() + |75 1Cll ;)

< G(w) + | Cjal,
<0

= Gj(z*) + <y*j, ij*>
Therefore,

{Gj(@) + (v9,Cja)} = {Gj (") + (v7,Cja" ||} <0,
which by (@, g;)-invexity of G;(.) + (y*,C;.) at a* for each j € J, we have
O(z, 2", (VG(z") + Cf’y*jalfj)) < 0.

Since vj > 0 for each j € g and vj = 0 for each j € ¢ \ J4, multiplying %
and summing over j, the above inequality gives

(3.9) > v {@(x, 2%, (VG;(x*) + CTy, p;)} < 0.
j=1
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Similarly, by using the (®, p;)-invexity of Hy(.) at z*, for each k € K, =
K, (w*), we have

(3.10) > wi{®(x, 2, (VHy(2"), o))} < 0.
k=1
On adding (3.8),(3.9) and (3.10), we have
(3.11)

T

S w2t (V" y™) + A™) o™ = M ([Vg(a®,y™) — Bly™)' 5, 51))
=1

q T
i {®(,a" (VG (@) +CT 7, gD wif® (e, o, (VH ("), i)} <0.
Jj=1 k=1

Now we introduce the following notations:

U .
(3.12) Wy = > 7 : o ;L E D,
Z + v+ ) wp
i=1 7j=1 k=1
v*
uf + 0 v+ Y wy
i=1 j=1 k=1
* w*
(3.14) &= — —— ke K,.
doul 4+ > v+ > wy
i=1 j=1 k=1

Note that 0 < pf < 1,4 €p,0<n; <1,j€ J;,0<§ <1,ke€ K, and
moreover

p q r
(3.15) D> m+> &G=1
i=1 j=1 k=1
On combining (3.11)-(3.14), we have

T

S {2 (Vi y )+ A™) o =X [Vg(a®,y™) - Bly™) 87, i)}
i=1

+Z 77;{@(:6, 1,‘*, (VGj($*)+Cf’7*j’/jj))}+Z f/ﬁ{q’(%fﬁ*v (VHk(x*)vﬁk))} <0.

J=1
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Thus, by ®-convexity on R"*! and (3.15), we conclude that
(3.16)

®(z, 2", (Y pi{V (" y™) + Aly™) o = N ([Vg(a™,y™) - Bly™)" 571}
i=1

q
+> nVG;(a*)+CT Y] +Z£kVHk ZMM#Z%P#Z&%

j=1 k=1

On the other hand, using the hypothesis spemﬁed in (iv) and (3.1) to-
gether with (3.12)—(3.14), we get

p q r
S ur v+ m i+ Y & e =0,
i=1 j=1 k=1
and

p
Yo uVIEt g + A = N V(e y™) - Bly™)T 5}
i=1

q r
+) nVG;(*) + CTy I+ ) & VH(2*) = 0.
j=1 k=1

From the above two inequalities and the fact ®(z,z*, (0,r)) > 0,7 > 0,
it follows that

P
D(x, ", (Z PV @y + Ay o = X [Vg(a*, y*) — B(y*)T 8]}

q
+Y VG () +C ) +Z£kVHk Zﬂzpz+z77]f’]+25kpk

j=1 k=1

which contradicts (3.16). This completes the proof. [

4. DUALITY

In this section, we consider the following dual [19] for (P):

D max sup A
( ) (P.§u,0,8)€EK  (50,w,y,)\)EL
subject to
P
(4.1) D u{Vf(s,y') + A(y) o' = AMVg(s,y') — By') 5T}

=1
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ZUJ [VGj(s) + CT ikaHk(S) =

(4.2) ui{ f(s,y%) + <a Ay 5> Mg(s, ") — <ﬁz,B(yZ)S>]} > 0,1 €p,

(4.3) vi[Gi(s) + {77, Cjs)] > 0,5 € g,
(4.4) wpHy(s) > 0,k €,

(4.5) lo’ll; <1 8, <1 iep,
(4.6) Wl =1 Jeq
where

L= {(s,v,w,% )‘) 18 € Rnav € Rz-vw € RTW = (71a72a "'77q)7’7j € ana

JEeEgGIE R}
In this Section, we denote
O1() =Y _ul{f(y)+ (', Aly).) = Ng(, ") — (B B )+ D v51G5(.)
i=1 Jj=1

+ (77, CiN + Y wpHi(L).
k=1

Now, we derive the following weak, strong and strict converse duality
theorems.

THEOREM 4.1 (Weak duality). Let x and (p,u,y, o, 5;s,v,w,7, \) be the
feasible solutions to (P) and (D). Furthermore, assume that the following con-
ditions hold:

(i) for eachi € p, f(.,y")+ (', A(y").) — g — (B, B(y").)] is (P, p;)-

mver at s,

(ii) for each j € q, G;(.) + (47, C;}.) is (®, p;)- invex at s,
(iii) for each k E r, Hk( ) is (@, pk) invex at s,

() S B+ S vy py+ 3w e > 0.
i=1 j=1 k=1

Then @o > .
Proof. Suppose contrary to the result that

SOO(LU) < Aa
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equivalently,

[y + Az,
X ay) — Bwely, =

Therefore, for each i € p, we have

I (zy) + [|AG)ell,

o (y) — 1Bal, =7

or
flzy)+ ||JAW xH — Mg (z,y") — “B(yi)x‘}b} < 0, for each i € p.

It follows from u € R, with i u; = 1, that
i=1
@n)  wlf (') + AWz, = Mg (2.y") = [[BGH=[,]} <0,

with at least one strict inequality because u = (u1,ug, ..., up) # 0.
Now,

=Y wiff(z.y") + (o', Aly)z) = Ag(z.y") — (8", B(y")x)]}
=1

q
—1—22}] v,Cx +Zwka )
j=1 k=1

=

Z il (2,9 + o'l 1G], = Mg, y') = [|8'[l; [| B}

+ Zvi{G )+ H’y H ||C x|, ])} (by Lemma 2.1 and feasibility of z)

<Yl 1o )+ A )], Aot tf) ~ B

=1

+Zv,{a ) +11Cjll 5y} (by (4.5) and (4.6))

P
< Zul{f(m,yz)—i—HA H —\g(z, 9 —HB H (by feasibility of )
i=1

0<Zuz{fsy )+ (o', A(y")s) — Ag(s,y") — (8", B(y")s)]}

+Z vi[G(s)+(~, cjs>]+z wiHi(s) (by (4.2),(4.3),(4.4) and(4.7)) =©1(s).

k=1
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That is,
(4.8) O1(x) —O1(s) < 0.
From the (®, p;)-invexity of {f(.,y")+{a’, A(y").)—A*[g )—(B%, B(y"))}
at s, we obtain
{f@@.y") + (o, Aly")z) — Mg(x,y") — (8", B(y")=)]}
—{f(s.9") + (o', A(y")s) = Mg(s,y") — (8", B(y')s)]}
> ®(z,s, (V(s,5") + A(y) of = A\[Vg(s,5') — Bly) 87, 7)), Yi€p.

Multiplying by u; and then summing over i, we get

(4.9) Zui{f(:r,y") + (', A(y")x) — Ng(z, ') — (8", B(y")z)]}

= ui{ f(s,9') + (o', A(y)s) — Ag(s,y") — (8", B(y')s)]}
=1

P
i T i i iNT pip =
i=1
On the other hand, by using (®, g;)-invexity of G;(.)+ (7?,C;.) at s, for
each j € J; we have

G](.CC) + <7j7ij> - {G](S) + <’)/ij]'8>} > (I)(x737 (VG](S) + C]T’Vjﬁfj))'
Since v; > 0 for each j € ¢ and v; = 0 for each j € ¢\ J, multiplying v,
and summing over j, the above inequality gives
q

(4.10) D vi{Gj(@) + (v, Ciz)y = Y 0 {Gis) + (¥, Cys)}
j=1

j=1

q
> 0{®(w, 5, (VGi(s) + Cf 4, 57))}-
j=1
Similarly, by using the (®, p;)-invexity of Hy(.) at s, for each k € K, =
K, (w), we have

(4.11) Zwka Zwka > Zwk@ (z, 5, (VHi(s), i)}

k=1
On adding (4.9), (4.10) and (4.11), and by using (4.8), we have

(4.12) Zw{ws (VF(s,5') + Aly") o' = A[Vg(s,y") — By")' 57, 5:))}
=1
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q T
+ Y v{ @@, 5, (VGy(s) + C v, gi)} + Y wi{ @, s, (VHi(s), o))} < 0,
j=1 k=1
Now we introduce the following notations:

U; .
(4.13) pi = — i €D,
Z U; + Z v; + Z Wi
i=1 =1 k=1
(% .
(4.14) N = 7 ’ T J € Jy,
Z U; + Z v; + Z Wi
i=1 j=1 =1
(1.15) G- W ek,
Z u; + Z vj + Z Wi
i=1 j=1 k=1

Note that 0 < pu; < 1,i € p,0 <n; < 1,5 € J4,0 <& <1,k € K, and
moreover

(416) ZN@‘*‘ZTU"‘ng—l
7j=1

On combining (4.12)—(4.15), we have

S i ®(z, s, (Vf(s,9%) + Aly') o = AVg(s,y') — B 571,5:))}

=1
—i—ZT]j{(I)(JJ, S, (VG](S) +CJT'7j7 /5]))}+Z§k{@($, S, (VHk(LL’*), pvk))} < 0.
j=1 k=1

Thus, by ®-convexity on R"! and (4.16), we conclude that

417)  @(z,s, O p{VI(s,0') + Aly) ' = A[Vg(s, ') — Bly") 8}

=1

q
+Y_0j[VGi(s) + Cf 7] +Z£kVHk Zuzpﬂer/}ﬂrZ&pk

j=1 k=1
On the other hand, using the hypothe51s Specn‘ied in (w) and (4.1) to-
gether with (4.13)—(4.15), we get

p q r
Mo piAY i b+ Y&k k>0,
i=1 j=1 k=1
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and

P

> wi{ Vs, y) + A) el = A[Vy(s,y') — Bly') B}

i=1

q
+> ni[VGi(s) + CTy] + kaVHk
j=1 k=1
From the above two inequalities and the fact ®(x,s, (0,7)) > 0,r > 0, it

follows that

Oz, s, O pdVI(s,0') + Al o' = A[Vg(s,y') — Bly") B}

i=1

q
+ 0i[VG;(s)+Cf ] +Z£kVHk ZumﬂerWrZ&pk

j=1 k=1
which contradicts (4.17). This completes the proof. O

THEOREM 4.2 (Strong Duality). Let x* be an optimal solution for (P) at
which a suitable constraint qualification is satisfied [19]. Furthermore, assume
that the weak duality Theorem 4.1 holds for all feasible of (D). Then there
exist (p*,y*,u*,a*, p*) € K, v* € Rz_,’y*j € R%,j €qand \* € Ry such
that z* = (p*, g*,u*, o™, B*; x*, v*, w*, v*, \*) is an optimal solution of (D) and
wo(x*) = A*.

Proof. Since x* is an optimal solution of (P), by Theorem (2.1), there
exist p* € n + 1, 7, u*, o™, ¥, i € p*,v*, w*, v, j € ¢, and \*(= po(x*)), as
specified above, such that z* is a feasible solution of (D). Since g(z*) = \*,
the optimality of z* for (D) follows from Theorem (4.1). O

 THEOREM 4.3 (Strict converse duality). Let 2* and (p, 7, @, &, 5; &, b, 0,
3, A) be an optimal solution for (P) and (D), respectively. Furthermore, assume
that the following conditions hold:

() {7 5@ AG).) = Mol i)~ (B BG).)) is strictly (®.7,)-invea
at T, for i € p,

(i) G;(.) + <:yj, Cj.> is strictly (®, pj)-invex at &, for j € g,

(iil) Hg(.) is strictly (®, pr)-invex at T, for k € r,
P q r

(iv) 22 pi+ X0 05 pj+ 22 Wk pr = 0.
i=1 j=1 k=1 ~
Then & = x*; that is, & is an optimal solution for P and ¢o(Z) = A.

Proof. Suppose to contrary that & # z*. From Theorem (4.2), we have
(4.18) wo(z*) = A
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Similar to the proof of Theorem (4.1), we have

P
(4.19) ©1(z*) — O1(F) > Z a{ @, 7, (VI(E§) + AG D) & - NVe(#, i)

“B@) 5} + D 0{@ (", (VGy(3) + CF 4, )}

+ Z ﬁjk{q)(‘r*? j? (VHk('CE)v pvk))}

k=1

Now we introduce the following notations:

U; .

(4.20) i = — i i€p,

i=1 j=1 k=1

/Z}.

(42]‘) 77] = P q : r 7] 6 J+7

DU+ Y, v+ > Wy

i=1 j=1 k=1
(4.22) £ = ke K,

Note that 0 < pu; < 1,i € p,0<n; < 1,5 € J4,0 <& < 1,k € Ky, and
moreover

(4.23) Zﬂz + Z nj + =
7j=1

On combining (4.19)—(4.22), we have

<

> @ (8, A ) =Ala(a 5= (5 B Y+ G (o)
- (B B >]}+Zm[ (&) + (7, 058)] + 3 & Hu(@)]

g Epl“i”’("’”’“ B (V@) +A@G D &~ NVg(@.7) — BG) 57, p:))}
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+ Z ni{®(=*, 2, (VG;(2) + CT 7, 6j)) } + Z §e{®(z", &, (VHi(Z), pr)) }-

Thus, by ®-convexity on R"*! and (4.23), we conclude that
(4.24)
P

> {73 + (& AG)a) = Mgl ) = (5, B@)a" )]} + 3 mylC(a")

+(¥, ij*>]+kél Eka($*)—[§:1 il (@, 5+ (a0, AF)E) —Alg(&,7)

— (BB} + X mlGy(@) + (3,C12)] + - 6@
2

k=1

> @0, &, (3 w{ V(& ) + AG )& - V(e §) - BB}

i=1

+ an{VG )+ CI 7} + ZﬁkVHk Zuzpz + Zmpg + kapk

7j=1 k=1

On the other hand, using the hypothesis spec1ﬁed in (iv) and (4.1) to-
gether with (4.20)—(4.22), we get

P q T
Do Py mipi+ Y &k k>0,
i=1 =1 k=1

and

Z p{ V(@ F) + AG D & - AV 7) - BE)"

+an{vc: +CT7}+Z£kVHk) 0.

7=1 k=1
From the above two inequalities and the fact ®(z*, z, (0,r)) > 0,7 > 0,

it follows that

R Qo VI )+ AG )6 - AV )~ B F)

"‘Z ni{VG;(z +CT J}‘*‘kaVHk ZMPH’Z UJPJ+Z§kPk

k=1
Therefore, from (4.24), we conclude that

> il fa )+ (6 AG ) =M™, 51— (8, BEH2" )+ ns(Gya)
i=1 J=1
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+ (77, O] + kaﬂm*) - [Z wil f(@,§) + (&', A@)E) = Mg (&, §'

< (7' >}+Zm (7, CiE) + > & Hy (@

which together with the feasibility of Z yields

> il F@t 5 + (@A) = Mg, 5) - (B B@)e" )1}
=1

+ > milGy(a") + (3, Cia" ) + Y & Hi(a™) > 0
j=1 k=1

The above inequality along with (4.20)—(4.22) gives

iﬂ{f o) = Ng(a*, 7') = (B, B )1}

0<Zul{f (@, A" = Ag(a”,5) = (5 B@)a" )]}
ifa 7, Cja*)) —l—;wka ¥)

gilai{f(x*,@%!\ &' 4@, - Mo, 5 — ||
+Jilﬁi{Gj )+ 17115 1 50}

(by Lemma 2.1 and feasibility of z*)

< Zai{ﬂx*,gi) + | A@)2* ||, = Mg, 3) — || B@)2"||,)}

+ ZUZ{G )+ Cja* (|} (by (4.5) and (4.6))

+ Zf)j[Gj(aZ*) + <’~}/j, ij*>] + Zﬂ)kﬂk(x

~4

7,1}
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p
Zﬂ {9+ A@)2"|| ,~Alg(a™, §")— || B(7")*||,]} (by feasibility of 2).
That is,
p — —_ ~
Yo wd @5 + JA@) ||, = Mo, §) — | B@)a*|,]} > 0.
Using Lemma 2.2 and above inequality, we see that

af (5, 9) + |A@)z",

R

>

N
T
_

M~

uig (z*, ') = [|1B@)=*|l,
1

<.
Il

i aGlf (@5 + A

< max max — = po(x*
~ pentl deU #ola”),

jiey Zd[ (z*,5") — [1B(7)a*[|,]

which contradicts (4.18). This completes the proof. [

5. CONCLUSIONS

In this paper, we have discussed the sufficient optimality conditions and
duality theorems for a class of minimax fractional programming problem under
the assumptions of (®, p)-invexity. It will be interesting to see whether or not
the second and higher order duality results developed in this paper hold. This
would be task of some of our forthcoming works.
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