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Let G be a finite p-group of order pn. It is known that |M(G)| = p
1
2
n(n−1)−t(G)

and t(G) ≥ 0. The structure of G for t(G) ≤ 4 was determined by several
authors. In this paper we will describe all the possible structures of G for
t(G) = 5.
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1. INTRODUCTION AND PRELIMINARIES

Let G be a finite p-group and let M(G) denote the Schur multiplier of

G. It is known that |M(G)| = p
1
2
n(n−1)−t(G), where t(G) ≥ 0 by the result of

Green in [8].
The structure of G for t(G) = 0, 1 was determined in [1]. In the case

t(G) = 2 and 3, Zhou in [18] and Ellis in [5] determined the structure of G,
respectively. Recently, the author described in [13] all the finite p-groups with
t(G) = 4. In the present paper, we will describe the structure of all finite
non-abelian p-groups G with t(G) = 5. Our method is quite different to that
of [1, 5, 18] and depends on the results of [11, 12]. We will use the notations
and the terminology in [5, 13]. In this paper, D8 and Q8 denote the dihedral
and quaternion group of order 8, E1 and E2 denote the extra special p-groups
of order p3 of exponent p and p2, respectively. E4 denotes the unique central
product of a cyclic group of order p2 and a non-abelian group of order p3. Also

Z(m)
pn denotes the direct product of m copies of the cyclic group of order pn.

We say that G has the property t(G) = 5 or briefly with t(G) = 5 if the order

of its Schur multiplier is equal to p
1
2
n(n−1)−5.

We will state without proof some theorems which play an important role
in the proof of our main result.

Theorem 1.1 (See [11], Main Theorem). Let G be a non-abelian finite
p-group of order pn. If |G′| = pk, then we have

|M(G)| ≤ p
1
2
(n+k−2)(n−k−1)+1.

MATH. REPORTS 17(67), 2 (2015), 249–254



250 Peyman Niroomand 2

In particular,

|M(G)| ≤ p
1
2
(n−1)(n−2)+1,

and the equality holds in this last bound if and only if G = E1×Z, where Z is
an elementary abelian p-group.

The following theorem is a consequence of ([12], Main Theorem).

Theorem 1.2. Let G be a non abelian p-group of order pn. Then |M(G)| =
p

1
2
(n−1)(n−2) if and only if G is isomorphic to one of the following groups.
(i) G ∼= D8 × Z, where Z is an elementary abelian p-group.

(ii) G ∼= Z(4)
p o Zp (p 6= 2).

Theorem 1.3 (See [10], Theorem 2.2.10). For every finite groups H and
K, we have

M(H ×K) ∼=M(H)×M(K)× H

H ′
⊗ K

K ′
.

Theorem 1.4 (See [10], Theorem 3.3.6). Let G be an extra special p-group
of order p2m+1. Then

(i) If m ≥ 2, then |M(G)| = p2m
2−m−1.

(ii) If m = 1, then the orders of the Schur multipliers of D8, Q8, E1 and E2

are equal to 2, 1, p2 and 1, respectively.

2. MAIN THEOREM

In this section, we will characterize all the finite non-abelian p-groups G
with the property t(G) = 5. In fact, we have

Theorem 2.1 (Main Theorem). Let G be a non-abelian p-group of order
pn. Then

|M(G)| = p
1
2
n(n−1)−5

if and only if G is isomorphic to one of the following groups.

(1) D8 × Z(3)
2 ,

(2) E1 × Z(4)
p ,

(3) E2 × Z(2)
p ,

(4) E4 × Zp,
(5) extra special p-group of order p5,
(6) 〈a, b | ap2 = 1, bp

2
= 1, [a, b, a] = [a, b, b] = 1, [a, b] = ap〉 (p 6= 2, 3),

(7) 〈a, b | ap2 = bp = 1, [a, b, a] = [a, b, b] = ap, [a, b, b, b] = 1〉 (p 6= 2, 3),
(8) 〈a, b | ap2 = bp = 1, [a, b, a] = 1, [a, b, b] = anp, [a, b, b, b] = 1〉, where n is

a fixed quadratic non-residue of p and (p 6= 2, 3),
(9) 〈a, b | a9 = 1, b3 = a3, [a, b, a] = 1, [a, b, b] = a6, [a, b, b, b] = 1〉,
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(10) 〈a, b | a9 = 1, b3 = a3, [a, b, a] = 1, [a, b, b] = a3, [a, b, b, b] = 1〉,
(11) 〈a, b | ap = 1, bp = [a, b, b], [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1〉 (p 6= 2),
(12) 〈a, b | ap = bp = 1, [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1〉 (p 6= 2), For

p = 3, (11) and (12) are isomorphic.
(13) D16,
(14) 〈a, b | a4 = b4 = 1, a−1ba = b−1〉,
(15) Q8 × Z(2)

2 ,
(16) (D8 × Z2) o Z2,
(17) (Q8 × Z2) o Z2,
(18) Z2 × 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉.

We separate the proof of it into several steps as follows.

Lemma 2.2. Let G be a p-group of order pn and |G′| = pk(k ≥ 2) with
t(G) = 5. Then n ≤ 4 unless k = 2, in this case n ≤ 6.

Proof. By virtue of Theorem 1.1, we have

1

2
(n2 − n− 10) ≤ 1

2
(n + k − 2)(n− k − 1) + 1 ≤ 1

2
n(n− 3) + 1,

and the conclusion follows. �

Theorem 2.3. Let G be a non-abelian finite p-group of order pn with
t(G) = 5. Then |G| ≤ p7. In the case that n = 6 and n = 7, G is isomorphic
to

D8 × Z(3)
2 and E1 × Z(4)

p ,
respectively.

Proof. One can easily check that n ≤ 7 by using Theorem 1.1.
In the case n = 7, Lemma 2.2 shows that |G′| = p. Since |M(G)| = p16

and equality holds in Theorem 1.1, we should have G ∼= E1 × Z(4)
p . When

n = 6, |M(G)| = p10 and by a consequence of ([12], Main Theorem), we have

G ∼= D8 × Z(3)
2 . �

As mentioned in Lemma 2.2 and Theorem 2.3, we may assume that n ≤ 5.
First assume that p 6= 2.

Theorem 2.4. Let |G| = p5 (p 6= 2) and |G′| ≥ p2. Then there is no such
group G with t(G) = 5.

Proof. Using Lemma 2.2, we may assume that |G′| = p2.
For each central subgroup K of order p, ([10], Theorem 4.1) implies that

p5 = |M(G)| ≤ p2 |M(G/K)|.
If for every central subgroup K, |M(G/K)| = p4 the proof of ([12], Main

Theorem) shows that G ∼= Z(4)
p o Zp and hence, |M(G)| = p6, which is a
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contradiction. Thus, there exists a central subgroup K such that |M(G/K)| ≤
p3. Since p 6= 2 and |G/K| = p4, Theorem 1.2 shows that |M(G/K)| ≤ p2,
and so |M(G)| ≤ p4, which contradicts the assumption. �

Theorem 2.5. Let |G| = p5 (p 6= 2) and |Z(G)| = p3 with t(G) = 5.
Then G is isomorphic to

E2 × Z(2)
p or E4 × Zp.

Proof. It is known by ([10], Theorem 4.1) that,

|M(G)||G′| ≤ |M(G/G′)||M(G′)||G′ ⊗G/Z(G)|.

We know that |G′| = p by Theorem 2. Now, if G/G′ is not elementary
abelian, then |M(G/G′)| ≤ p3, and so |M(G)| ≤ p4, which is impossible.
Therefore, G/G′ is elementary abelian. On the other hand, ([9], Theorem
2.2) implies that Z(G) is of exponent at most p2. Thus, two cases may be
considered.

Case I. First suppose that Z(G) is of exponent p. By ([11], Lemma 2.1),

we should have G ∼= H × Z(2)
p , where H is extra special of order p3. Since

|M(G)| = p5, Theorems 1.3 and 1.4 imply that H ∼= E2.
Case II. In the case that Z(G) is of exponent p2, as in pervious part one

can see that G ∼= H×Zp2 , where H is extra special of order p3 or G ∼= E4×Zp.
By invoking Theorems 1.3 and 1.4, the order of the Schur multiplier of H×Zp2 is
at most p4, and hence, does not have the property t(G) = 5. On the other hand,
by ([13], Lemma 2.8) and Theorem 1.3, we should have |M(E4×Zp)| = p5, as
required. �

Theorem 2.6. Let |G| = p5 (p 6= 2) and |Z(G)| = p2. Then there is no
such group G with t(G) = 5.

Proof. Theorem implies |G′| = p. Now we may assume that G/G′ is not
elementary abelian by using ([11], Lemma 2.1). Using ([6], Proposition 1),
we have p |M(G)| ≤ |M(G/G′)||G′ ⊗G/Z(G)|, and so p6 ≤ |M(G/G′)||G′ ⊗
G/Z(G)|. Thus, we should have G/Z(G) ∼= Z(3)

p and G/G′ ∼= Zp2×Z
(2)
p . Hence,

Z(G) and the Frattini subgroup coincide, and so ([6], Proposition 1) (see also
[4], Proposition 5 (i) and (ii)) shows that

p2|M(G)| ≤ |M(G/G′)||G′ ⊗G/Z(G)| ≤ p6.

Thus, |M(G)| ≤ p4, which is a contradiction. �

Lemma 2.7. Every extra special p-group of order p5 has the property
t(G) = 5.

Proof. It is straightforward by Theorem 1.4. �
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Theorem 2.8. Let |G| = p4 (p 6= 2) and |G′| = p with t(G) = 5. Then G
is isomorphic to

〈a, b | ap2 = 1, bp
2

= 1, [a, b, a] = [a, b, b] = 1, [a, b] = ap〉.

Proof. First suppose that G/G′ is elementary. By ([11], Lemma 2.1), we
have G ∼= H×Zp or G ∼= E4. The order of Schur multipliers of both of them is
at least p2 by using ([13], Lemma 2.8) and Theorem 1.4. Thus, G/G′ can not
be elementary abelian. Since Gp and G′ are contained in Z(G), we consider
two cases.

Case I. Assuming first that G′ ∩ Gp = 1, then G/Gp ∼= E1, and so
|M(G)| ≥ |M(E1)| = p2 directly by using ([10], Corollary 2.5.3 (i)), which
contradicts t(G) = 5.

Case II. In this case, we have two possibilities for Z(G). The first
possibility is Z(G) = Gp ∼= Zp2 , thus, G is of exponent p3 and similar to the
proof of ([13], Lemma 2.8), we have |M(G)| = 1. The second possibility is
Z(G) = Gp ∼= Zp×G′. By ([2], pp. 87–88), there is a unique group of order p4

with this properties, which is isomorphic to

〈a, b | ap2 = 1, bp
2

= 1, [a, b, a] = [a, b, b] = 1, [a, b] = ap〉. �

Lemma 2.9. Let |G| = p4 (p 6= 2) and |G′| = p2 with t(G) = 5. Then G
is isomorphic to

〈a, b | ap2 = bp = 1, [a, b, a] = [a, b, b] = ap, [a, b, b, b] = 1〉,

〈a, b | ap2 = bp = 1, [a, b, a] = 1, [a, b, b] = anp, [a, b, b, b] = 1〉,

where n is a fixed quadratic non-residue of p and p 6= 3,

〈a, b | a9 = 1, b3 = a3, [a, b, a] = 1, [a, b, b] = a6, [a, b, b, b] = 1〉,

〈a, b | a9 = 1, b3 = a3, [a, b, a] = 1, [a, b, b] = a3, [a, b, b, b] = 1〉,
〈a, b | ap = bp = 1, [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1〉.

〈a, b | ap = 1, bp = [a, b, b], [a, b, a] = [a, b, b, a] = [a, b, b, b] = 1〉.

For p = 3, the last two groups are isomorphic.

Proof. The result is obtained from ([5], pp. 4177) and ([2], pp. 88), see
also [16], pp. 196–198. �

Lemma 2.10. Let G be a p-group of order 16 with t(G) = 5. Then G is
isomorphic to

D16 or 〈a, b | a4 = b4 = 1, a−1ba = b−1〉.

Proof. See table I on [14]. �
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Lemma 2.11. Let G be a p-group of order 32 with t(G) = 5. Then G is
isomorphic to

Q8 × Z(2)
2 , (D8 × Z2) o Z2, (Q8 × Z2) o Z2 or

Z2 × 〈a, b, c | a2 = b2 = c2 = 1, abc = bca = cab〉.
Proof. These groups are obtained by using the HAP package [7] of

GAP [17]. �
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