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In this paper, we define the non-centralizer graph associated to a finite group G,
as the graph whose vertices are the elements of G, and whose edges are obtained
by joining two distinct vertices if their centralizers are not equal. We denote
this graph by ΥG. The non-centralizer graph is used to study the properties of
the non-commuting graph of an AC-group. We prove that the non-centralizer
graphs associated to two isoclinic groups for which the order of their centers
are equal are isomorphic. Moreover, we observe that the converse holds for two
isomorphic 4-partite graphs. We finally prove that if ΥG

∼= ΥS , then G ∼= S,
where S is a simple group which is not Bn(q) or Cn(q).
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1. INTRODUCTION

Graphs play an important role in the mathematics, providing visual
means that help us to better understand other mathematical objects that they
are connected with, like algebraic structures, for instance. Associating a graph
to a group and using information on one of the two objects to solve a prob-
lem for the other is an interesting research topic. On the other hand, many
recent problems in group theory are related to the notion of commutativity,
like for instance the problem to determine the probability that two elements
of a group commute, or to find how many centralizers can a group have. For
results related to the problem of counting the centralizers of a group, we refer
the reader to the work of S.M. Belcastro and G.J. Sherman [8], A.R. Ashrafi
[5], A.R. Ashrafi and B. Taeri [6], A. Abdollahi, S.M. Jafarian Amiri, and
A. Mohammadi Hassanabadi [2], M. Zarrin [17] and S.J. Baishya [7]. The non-
commuting graph of a group G was first considered by Paul Erdös in 1975.
We denote this graph by ΓG, and recall that the vertices of ΓG are the el-
ements of G, and that two distinct vertices are joined by an edge whenever
they do not commute. Of course, there are some other ways to construct
a graph associated to a given group or semigroup. In this paper, we will
define the non-centralizer graph ΥG of the group G to be the graph whose
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vertices are the elements of G and whose edges are obtained by joining two
distinct vertices if their centralizers are not equal. The non-centralizer graph
and the non-commuting graph of a group G are closely related. By studying the
non-centralizer graph, one may describe the structure of the non-commuting
graph associated to large classes of groups.

We organize this paper in three parts. In the next section we discuss
general properties of the graph such as diameter, girth, domination number,
chromatic number and independent set. We prove that if ΥG has a vertex
of degree m and |Z(G)| = m, then G is nilpotent. Moreover, we observe
that the non-centralizer and the non-commuting graph associated to an AC-
group are isomorphic. Since the non-centralizer graph is a complete k-partite
graph, the non-commuting graph of an AC-group is completely determined.
In the third section we prove that two non-centralizer graphs associated to two
isoclinic groups such that the order of their centers are equal are isomorphic.
Furthermore, the converse holds if the graphs are 4-partite. Finally, we prove
that if ΥG

∼= ΥS , then G ∼= S, where S is a simple group not isomorphic to
Bn(q) or Cn(q).

Throughout the paper, graphs are simple and all the notations and ter-
minologies about the graphs are standard (for instance see [9, 10, 13]).

2. MAIN RESULTS

For a group G, CG(x) = {y ∈ G : xy = yx} is the centralizer of the
element x ∈ G. Let us start with the following definition.

Definition 2.1. Let G be a group. We construct a graph whose vertices
are the elements of G and whose edges are obtained by joining any two vertices
x and y whenever CG(x) 6= CG(y). We call this graph the non-centralizer graph
of G, and we denote it by ΥG.

If G is an abelian group, then ΥG is an empty graph. Therefore through-
out the paper all the groups are finite non-abelian unless otherwise mentioned.

It is clear that for a non-central element x we have deg(x) ≥ |G|−|CG(x)|
and deg(z) = |G| − |Z(G)| for a central element z.

If we consider the induced subgraph of ΥG associated to the non-abelian
group G with vertex set G \ Z(G), then we have non-central vertices with
degree deg(x) ≥ |G| − |CG(x)|. Let us denote this subgraph by ΥG\Z(G).

Clearly Aut(G) ⊆ Aut(ΥG). The converse inclusion does not generally
hold. Consider the non-centralizer graph of the symmetric group S3 and β
as the graph automorphism such that β((1 2)) = (2 3), β((2 3)) = (1 3),
β((1 3)) = (1 2), β((1 3 2)) = (1 2 3) and β((1 2 3)) = (1 3 2). Since
β((1 2)(2 3)) 6= β((1 2))β((2 3)), β is not a group automorphism.
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Theorem 2.2. Let ΥG be the non-centralizer graph of the non-abelian
group G. Then we conclude diam(ΥG) = diam(ΥG\Z(G)) = 2 and girth(ΥG) =
girth(ΥG\Z(G)) = 3.

Proof. Let x and y be two non-central elements of the group which are
not adjacent in ΥG. It is clear that both are adjacent to the identity element.
Therefore d(x, y) = 2. It is obvious that central elements are not adjacent
but they join to a non-central element. Thus diam(ΥG) = 2. If g, h are two
adjacent vertices, then they are not central elements, so they join to a central
element. Hence girth(ΥG) = 3.

Let x and y be two non-adjacent vertices in ΥG\Z(G). Since x and y
are non-central there is an element t which does not commute with x and y.
Thus x and y joins t. Moreover, if g and h are adjacent, then {g, h, gh} is a
triangle. �

By Theorem 2.2 we deduce that ΥG and ΥG\Z(G) are connected.
Suppose Cent(G) = {CG(g)|g ∈ G}. A group G is called n-centralizer if
|Cent(G)| = n. It is clear that ΥG is a complete |Cent(G)|-partite graph.

Example 2.3. We provide here examples of non-centralizer graphs for non-
commutative groups of small order.

(i) Let D8 = 〈a, b : a4 = b2 = 1, ab = a−1〉 be the dihedral group of order 8.
Then ΥD8 is K2,2,2,2 such that {1, a2}, {a, a3}, {b, a2b} and {ab, a3b} are
its parts.

(ii) Let S3 be the symmetric group on three objects. Then ΥS3 is K1,1,1,1,2

such that {(1)}, {(1 2)}, {(2 3)}, {(1 3)} and {(1 2 3), (1 3 2)} are its
parts.

As we mentioned Erdös associated the non-commuting graph ΓG to the
group G, with vertex set the elements of G, and two vertices joined by an
edge whenever they do not commute. Let us denote the subgraph of the non-
commuting graph with the vertex set G \ Z(G) by ΓG\Z(G). For an edge
{x, y} in the non-centralizer graph we have CG(x) 6= CG(y) but not necessarily
[x, y] 6= 1. Thus the non-centralizer graph and the non-commuting graph are
in general not the same.

In the above example, we see that ΓD8\Z(D8)
∼= ΥD8\Z(D8) and ΓS3\Z(S3)

∼=
ΥS3\Z(S3). To see what particular property of these groups forces the above
isomorphisms, we recall that a group G all of whose centralizers are abelian is
called an AC-group. It is now easy to see that in view of Theorem 2.11, the
above isomorphism holds for the class of AC-groups.

A dominating set for a graph Γ is a subset D of V (Γ) such that every
vertex outside D is adjacent to at least one member of D. The domination
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number γ(Γ) is the size of the smallest dominating set of Γ.

Proposition 2.4. Let G be a non-abelian group. Then γ(ΥG) ≤ 2.

Proof. Suppose x is a non-central element of G. Thus {e, x} is the domi-
nating set for ΥG, where e is identity element of G. �

Proposition 2.5. If {x} is a dominating set for ΥG, then Z(G) = 1 and
x2 = 1.

Proof. Suppose 1 6= z ∈ Z(G). Thus xz is a vertex which is not adjacent
to x, which is a contradiction. Assume x 6= x−1. It is clear that if [x, t] = 1,
then [x−1, t] = [t, x]x

−1
= 1. This shows that CG(x) = CG(x−1), so x does not

join x−1, again a contradiction. �

It is clear that for an abelian group G, χ(ΥG) = 1 and for a non-abelian
group G we have χ(ΥG) ≤ |G| − |Z(G)|. We note that this upper bound is
sharp, since χ(ΥS3) = 5. It is obvious that the chromatic number of the non-
centralizer graph is equal to the number of its part. For instance χ(ΥD8) = 4.
We note here that for the groups PSL(2, q), where q is a prime-power, and for
Sz(q)(q = 22m+1,m > 0), |Cent(G)| was determined in [17], so for these groups
one can easily study their associated non-centralizer graphs.

For an element x of a group we define the set CG(x) = {y ∈ G : CG(y) =
CG(x)}. This notion can be generalized to an arbitrary set T of G by letting
CG(T ) = {y ∈ G : CG(y) = CG(t), for all t ∈ T}. Obviously CG(T ) ⊆ CG(T ).

Proposition 2.6. Let G be a non-abelian group and T ⊆ V (ΥG\Z(G)).
Then T is a dominating set if and only if CG(T ) ⊆ T ∪ Z(G).

Proof. Suppose T is a dominating set and g ∈ CG(T ). Thus CG(g) =
CG(t) for all t ∈ T and so g is not adjacent to all elements of T . As T is a
dominating set g ∈ Z(G). The converse follows immediately. �

Proposition 2.7. Let T be the maximal independent set for the graph
ΥG\Z(G). Then T = CG(T )− Z(G).

Proof. Suppose x ∈ T . Since T is the maximal independent set, x does
not join to all the other vertices in T . Thus T ⊆ CG(T )− Z(G). Now assume
g ∈ CG(T ) − Z(G). Therefore CG(g) = CG(t), for all t ∈ T which means g is
not adjacent to all vertices of T . Thereby T ∪ {g} is an independent set and
since T is maximal independent set for the graph ΥG\Z(G) which shows that
g ∈ T and completes the proof. �

The above proposition implies that T ⊆ CG(T )− Z(G), for the maximal
independent set of ΥG\Z(G).
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Proposition 2.8. If ϕ is an isomorphism between the graphs ΥG, ΥH

and x∈G\Z(G) is a vertex of degree i, then ϕ(x)∈H\Z(H) and deg(ϕ(x)) = i,
where i = 1, 2, 3.

Proof. Suppose ϕ(x) ∈ Z(H). Therefore ϕ(x) is adjacent to all non-
central elements of H, deg(ϕ(x)) = |H| − |Z(H)| = i. Hence H is an abelian
group or S3 which both are contradiction. �

For a finite group G, let {n1, · · · , nr} be the set of integers each of which
is the index of the centralizer of some element of G. We may assume that
n1 > n2 > · · · > nr. Then the vector (n1, · · · , nr) is called the conjugate type
vector of G. Itô proved that any group of type (n1, 1) or (n1, n2, 1) is nilpotent
or soluble, respectively (see [15, 16] for more details).

Proposition 2.9. Let ΥG be the non-centralizer graph associated to the
non-abelian group G. Then we have

(i) There is no central vertex of degree 1, 2 or 3.

(ii) If ΥG has a non-central vertex of degree 1, then G is nilpotent with
Z(G) = 1.

(iii) If ΥG has a non-central vertex of degree 2 and |Z(G)| = 1, then G is a
solvable group.

(iv) If ΥG has a non-central vertex of degree 2 and |Z(G)| = 2, then G is a
nilpotent group.

(v) If |Z(G)| > n, then ΥG does not have any non-central vertex of degree n,
where n is a positive integer.

Proof. (i) It is easy.

(ii) Let x ∈ G\Z(G) be a vertex of degree one. Thus x is exactly adjacent
to the identity element of the group. Consequently the conjugate type vector
for G is (n, 1) which proves our assertion.

(iii) Suppose x is a non-central vertex of degree 2. Since |Z(G)| = 1,
x joins the identity element of the group and another non-central element y.
This means that the centralizer of x is equal to all other centralizers except
CG(y) and Z(G). It is clear that G has at most three conjugacy class sizes, so
the assertion is clear by Itô’s result.

(iv) The proof is similar to that of (ii).

(v) Since |Z(G)| > n the degree of the non-central vertices exeeds n. �

In a similar way, one may prove the following result.

Proposition 2.10. Let ΥG be the non-centralizer graph associated to the
group G and x a non-central vertex of degree m. Then

(i) If |Z(G)| = m, then G is a nilpotent group.
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(ii) If |Z(G)| = m− 1, then G is a soluble group.

(iii) If |Z(G)| = i and x is an element of minimum degree, then G has at
most m− i+ 2 conjugacy class sizes, where i < m.

Clearly if ΥG\Z(G) has a vertex of minimum degree m, then G has at most
m + 2 conjugacy class sizes. Thus for the non-centralizer induced subgraph
associated to the group G with a vertex of degree one we deduce G is soluble.

The non-commuting graph and the non-centralizer graph of a given group
are not isomorphic in general. In the following theorem we present a property
for the group such that its non-centralizer graph coincides to its non-commuting
graph.

Theorem 2.11. Let G be an AC-group. Then ΥG\Z(G)
∼= ΓG\Z(G).

Proof. Suppose {x, y} is an edge of ΥG\Z(G). Therefore CG(x) 6= CG(y).
We claim [x, y] 6= 1, because if x and y commutes, then [y, t] = 1 for all
t ∈ CG(x) as G is an AC-group. Thus the elements of CG(x) lie inside CG(y),
which implies CG(x) = CG(y), a contradiction. Hence {x, y} is an edge of ΓG.
We also immediately deduce that if {x, y} is an edge of ΓG\Z(G), then it is an
edge of ΥG\Z(G). �

By the above result and the non-centralizer induced subgraph definition,
we deduce that non-commuting graph ΓG\Z(G) associated to a non-abelian AC-
group is a complete |Cent(G)|-partite graph. Furthermore, all the results which
were proved in [1] for the non-commuting induced subgraph of an AC-group is
valid for the non-centralizer induced subgraph.

Proposition 2.12. Assume that ΥG is the non-centralizer graph associ-
ated to the group G. Then we have

(i) If the central factor of G is of order p2, then ΥG is a complete (p + 2)-
partite graph.

(ii) Let p be the smallest prime dividing |G|. If |G : Z(G)| = p3, then ΥG is
complete (p2 + p+ 2)-partite or (p2 + 2)-partite graph.

Proof. (i) Belcastro and Sherman proved that if |G : Z(G)| = p2, then
|Cent(G)| = p+ 2 (see [8]). Therefore (i) immediately follows.

(ii) It is clear by [7, Proposition 2.2]. �

Theorem 2.13. Let G be a group which satisfies one of the hypothesis
(i) or (ii) of Proposition 2.12. Then ΓG is either a (p + 2)-partite graph or a
(p2 + p+ 2)-partite, or a (p2 + 2)-partite graph, respectively.

Proof. By [7, Lemma 2.1] we see that a group whose central factor is of
order pqr, where p, q, r are primes not necessarily distinct, is an AC-group.
The proof follows now by Theorem 2.11 and Proposition 2.12. �
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Let G be a non-abelian group such that |Z(G)| ≥ 3. Then ΥG is not pla-
nar. Since by x, xz1, xz2, e, z1, z2 we can make a K3,3 as the induced subgraph
of ΥG, where e, z1 and z2 are three distinct elements of the center of the group
and x ∈ V (ΥG) is a non-central element of G.

In the following example we observe that non-abelian groups with small
center exist such that their non-centralizer graph is not planar.

Example 2.14. Let D2n = 〈a, b : an = b2 = 1, ab = a−1〉 be the dihedral
group of order 2n and n ≥ 4. Then

(i) ΥD2n is a complete (n/2 + 2)-partite or (n+ 2)-partite graph, where n is
an even or an odd number, respectively (see [5] for more details).

(ii) ΥD2n is not planar for odd numbers n. The vertices 1, a, b, aib, ajb form
the complete graph K5, where i, j are distinct, 1 ≤ i, j ≤ n− 1.

(iii) If n ≥ 4 is an even number, then ΥD2n is not planar.

(iv) ΥSn is not a planar graph for n ≥ 4, since {(1 2), (2 3), (1 3), (1 4), (2 4)}
is complete induced subgraph of ΥAn , it is not a planar graph, where
n ≥ 4.

We are interested to find a general result about the planarity of the graph.
If {x, y} is an edge in ΓG, then [x, y] 6= 1. Thus x 6∈ CG(y) and {x, y} is an edge
in ΥG. Hence ΓG\Z(G) ⊆ ΓG ⊆ ΥG. As we have seen in [1], the non-commuting
graph ΓG\Z(G) is planar whenever G is isomorphic to S3 or D8 or Q8.

Theorem 2.15. ΥG is planar, if and only if G is an abelian group.

Proof. It is clear that the non-centralizer graph of an abelian group is
planar. Suppose ΥG is the non-centralizer graph associated to a non-abelian
group G, and assume that it is a planar graph. Then by the above discussion
ΓG\Z(G) is planar so G ∼= S3 or D8 or Q8. Since ΥS3 , ΥD8 and ΥQ8 have
K3,3 as their induced subgraphs, they are not planar. �

The following corollary is direct result of the above discussion.

Corollary 2.16. ΥG\Z(G) is planar if and only if G ∼= S3, D8 or Q8.

Theorem 2.17. Let G be a group. Then

(i) ΥG is not a 4-regular graph.

(ii) ΥG is a 6-regular graph if and only if G ∼= D8 or Q8.

(iii) ΥG is not a 8-regular graph.

(iv) ΥG is not a p-regular graph, where p = 5, 7, 11, 13, 17.

Proof. (i) Suppose ΥG is 4-regular, and recall that ΥG is a k-partite graph.
Let each part have ai vertices and let xi be the representative of the i-th part,
1 ≤ i ≤ k. Thus deg(xi) = a1 + a2 + · · · + ai−1 + ai+1 + · · · + ak = 4 =
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deg(xi+1) = a1 + · · · + ai + ai+2 + · · · + ak, so we must have ai = ai+1. Since
the degree of the vertices are all equal we conclude that all the parts have an
equal number of vertices, say a. Thus deg(xi) = (k − 1)a, and we distinguish
three cases. If k = 3 and a = 2, then G ∼= S3, which is not regular. If k = 5
and a = 1, then G must be an abelian group, which is a contradiction. If k = 2
and a = 4, then G ∼= D8 or G ∼= Q8, groups whose associated non-centralizer
graphs are 6-regular graphs.

(ii) Let ΥG be a 6-regular graph. Similarly we deduce (k − 1)a = 6,
where k is the number of parts, each part having a vertices. Therefore we have
(k = 3, a = 3), (k = 4, a = 2), (k = 2, a = 6) or (k = 7, a = 1). The first
and the last cases imply that G is an abelian group, which can not hold. If
(k = 2, a = 6), then G is isomorphic to A4, to D12 or to T = 〈a, b : a6 =
1, b2 = a3, ab = a−1〉 whose non-centralizer graphs are not regular. Finally, if
(k = 4, a = 2), then |G| = 8 and the result follows.

(iii) Suppose (k − 1)a = 8. Similarly |G| = 9, 10, 12 or 16. Clearly, the
first three cases are not possible. If |G| = 16, (k = 2, a = 8), then ΥG is a
regular graph whenever |Z(G)| = 8. But there is no group of order 16 with
center of order 8.

(iv) If ΥG is a p-regular graph, then G is a non-abelian group and the
degree of the identity element of G is p. This means deg(e) = |G|−|Z(G)| = p.
Therefore |Z(G)| = 1 or p. It is not possible that |Z(G)| = p, because G ∼= D2p

whose center is trivial. Therefore assume |Z(G)| = 1 so |G| = p+ 1. It is clear
that degree of each vertices are complete. Similarly we deduce (k − 1)a = p,
where k is the number of parts, each part having a vertices. Thus k − 1 = 1
or a = 1. If k = 2, then we have a contradiction since degree of vertices are
complete. Thus we have p+ 1 parts with one vertex in each of them. If p = 5,
p = 7, p = 11 or p = 13, then G ∼= S3, G ∼= D8, Q8, G ∼= T, D12, A4 or
G ∼= D14 which is a contradiction. Moreover for p = 17, there are two groups
of order 18 such that their centers are trivial but their associate non-centralizer
graphs are not regular. �

We guess there is no group of order p + 1 such that its non-centralizer
graph is p-regular, where p is a prime number. Thus we have the following
conjecture.

Conjecture. ΥG is not a p-regular graph, where p is a prime number.

Proposition 2.18. Let G be a group. Then

(i) There is no complete bipartite and 3-partite non-centralizer graph.

(ii) The non-centralizer graph ΥG is complete 4-partite if and only if G/Z(G)
∼= C2 × C2.
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(iii) The non-centralizer graph ΥG is complete 5-partite if and only if G/Z(G)
∼= C3 × C3 or S3.

(iv) If the non-centralizer graph ΥG is complete 6-partite, then G/Z(G)
∼= D8, A4, C2 × C2 × C2 or C2 × C2 × C2 × C2.

(v) The non-centralizer graph ΥG is complete 7-partite if and only if G/Z(G)
∼= C5 × C5, D10 or 〈x, y|x5 = y4 = 1, y−1xy = x3〉.

(vi) If the non-centralizer graph ΥG is complete 8-partite, then G/Z(G)
∼= C2 × C2 × C2, A4 or D12.

(vii) If |G| is odd, then ΥG is complete 9-partite if and only if G/Z(G)
∼= C7 o C3 or C7 × C7.

(viii) If G/Z(G) ∼= A5, then ΥG is complete 22-partite or 32-partite.

Proof. The proof follows by using the results in [2, 5–8]. �

Abdollahi et al. proved that for a finite group G such that G/Z(G) ∼= D2n

with n ≥ 2, |Cent(G)| = n + 2 (see [2]). Therefore we deduce the following
result.

Proposition 2.19. If G is a finite group such that G/Z(G) ∼= D2n, then
ΥG is complete (n+ 2)-partite.

3. GROUPS WITH THE SAME GRAPHS

In this section, we try to find conditions under which two graphs are
isomorphic.

Proposition 3.1. If G1
∼= G2, then ΥG1

∼= ΥG2.

Proof. Suppose ϕ is the isomorphism between two groups. Let {x, y} be
an edge in ΥG1 . Therefore CG1(x) 6= CG1(y). Without loss of generality we
may assume that there is an element g ∈ CG1(x) which does not belong to
CG1(y). Thus [ϕ(g), ϕ(y)] 6= 1, [ϕ(g), ϕ(x)] = 1 and so {ϕ(x), ϕ(y)} is an edge
of ΥG2 . �

The converse of the above result is not valid. For instance ΥZ4
∼= ΥZ2×Z2

but Z4 6∼= Z2 × Z2 or ΥG
∼= ΥD8 implies G ∼= D8 or Q8.

Proposition 3.2. Let G and H be two groups with |Z(G)| = |Z(H)|. If
ΥG\Z(G)

∼= ΥH\Z(H), then ΥG
∼= ΥH .

Proof. Suppose that ψ is an isomorphism between graphs ΥG\Z(G) and
ΥH\Z(H) and θ is a bijection between the centers of the groups. Define ϕ :
G→ H such that a non-central element x maps to ψ(x), and a central element
y maps to θ(y). It is clear that ϕ preserves edges. �
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P. Hall defined in 1939 an equivalence relation called isoclinism, in order
to classify p-groups (see [14] for more details). Let us recall the definition of
this notion.

Definition 3.3. Let G and H. Then the pair (α, β) is called a isoclinism
from G to H whenever

(i) α is an isomorphism from G/Z(G) to H/Z(H).

(ii) β is an isomorphism from G′ to H ′, with the law [g1, g2] 7→ [h1, h2] in
which hi ∈ α(giZ(G)), i = 1, 2.

If there is such a pair (α, β) with the above properties, then we say that
G and H are isoclinic, fact denoted by G ∼ H.

Theorem 3.4. If G and H are two isoclinic groups such that the order
of their centers are equal, then ΥG

∼= ΥH .

Proof. Suppose α : G/Z(G) → H/Z(H) and β : G′ → H ′ are isomor-
phisms that satisfy the isoclinism definition. Let α(giZ(G)) = hiZ(H). It
is clear that |G| = |H|. Assume θ : Z(G) → Z(H) is a bijection. We de-
fine ϕ : V (ΥG) → V (ΥH) which maps giz to hiθ(z). The fact that the map
ϕ is a bijection which preserve edges follows by using the properties of the
isomorphisms α and β. �

The following proposition presents circumstance such that the converse
of the above theorem is valid.

Proposition 3.5. Let G and H be groups such that ΥG
∼= ΥH , and

assume that ΥG and ΥH are 4-partite graphs. Then G and H are isoclinic.

Proof. The proof follows by Proposition 2.18. �

Lemma 3.6. If ΥG
∼= ΥH , then N(G) = N(H), where N(X) is the set

{n ∈ N| X has a conjugacy class C, such that |C| = n} and X is a group.

Proof. Since ΥG
∼= ΥH we conclude that Cent(G) = Cent(H). Hence the

result follows. �

We also note that if ΥG
∼= ΥH and G is an abelian group, then H is an

abelian group.

Proposition 3.7. Let G be a group.

(i) If ΥG
∼= ΥS3, then G ∼= S3.

(ii) If ΥG
∼= ΥAn, G is a simple group and n ≥ 5, then G ∼= An.

(iii) If ΥG
∼= ΥH , G 6= Bn(q) or Cn(q) is a simple group, then G ∼= H.

Proof. (i) It is clear.
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(ii) Suppose ΥG
∼= ΥAn , G is a simple group and n ≥ 5, n 6= 8. Since

|G| = |An|, the assertion follows by [11, Corollary 2.4]. Now assume ΥG
∼= ΥA8 .

Thus |G| = 8!/2 and G ∼= A8 or G ∼= L3(4). By Lemma 3.6 we have N(G) =
N(A8) = {1, 210, 105, 112, 1680, 1120, 2520, 1260, 1344, 1344, 1344, 3360, 2880,
2880} and N(L3(4)) = {1, 4032, 4032, 2240, 1260, 315, 1260, 1260, 2880, 2880}
by group theory package GAP [12]. Hence G ∼= A8.

(iii) The proof follows by using the results of E. Artin in [3, 4] and the
classification of finite simple groups. �

We end by noting that by the second part of the above proposition we
deduce ΥG

∼= ΥL3(4) implies G ∼= L3(4).
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