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Let (Xn) be a sequence of independent and identically distributed random vari-
ables with common distribution function F . In this note, the universal form of
the possible limiting extreme value distributions under power normalization is
derived. We also discuss some relationships between Dl and Dp, the domains of
attraction under linear normalization and power normalization.
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1. INTRODUCTION

Let (Xn) be a sequence of independent and identically distributed
(i.i.d.) random variables with common distribution function (df) F . Let Mn

= max(X1, X2, . . . , Xn) denote the partial maximum. Limiting distributions
of extreme values under linear normalization have attracted considerable at-
tention, c.f. Resnick [18], de Haan and Ferreira [8] and Falk et al. [10]. The
notation F ∈ Dl(G) means that there exist some suitable normalizing constants
an > 0 and bn ∈ R such that

P {Mn ≤ anx+ bn} → G(x)

as n → ∞ for all continuity points x of G, where G is a non-degenerate df.
We call G(x) a max stable distribution under linear normalization or simply
a l-max stable distribution. It is well known that G(x) must belong to one
l-type of the following three classes of extreme value distributions:

Type I Gumbel:

Λ (x) = exp {− exp(−x)} , x ∈ R;

Type II Fréchet:

Φα(x) =

{
0, x < 0,
exp

{
−x−α

}
, x ≥ 0

for some α > 0;(1.1)

Type III Weibull:

Ψα (x) =

{
exp {− (−x)α} , x < 0,
1, x ≥ 0

for some α > 0.
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Here, two dfs H and K are of the same l-type if there exist A > 0 and
B∈R such that H(x)=K(Ax+B) for all x ∈ R. Moreover, the three classes of
extreme value distributions in (1.1) can be rewritten to take the same l-type as

G(x) = Gκ(x) = exp
{
−(1 + κx)−1/κ

}
, 1 + κx > 0(1.2)

for κ ∈ R. For details on necessary and sufficient conditions for F ∈ Dl(G) and
the choices of normalizing constants an and bn, see Resnick [18] and de Haan
and Ferreira [8].

Pancheva [16], Mohan and Ravi [13] and Pantcheva [17] extended the
above results to a kind of power normalization for Mn. A df F is said to
belong to the max domain of attraction of H(x) under power normalization if
there exist some suitable normalizing constants an > 0 and bn > 0 such that

P

{∣∣∣∣Mn

an

∣∣∣∣ 1
bn

sign (Mn) ≤ x

}
= Fn

(
an|x|bn sign(x)

)
→ H(x)(1.3)

weakly as n → ∞, where sign(x) = −1 if x < 0, sign(x) = 0 if x = 0, and
sign(x) = 1 if x > 0. In this case, we denote F ∈ Dp(H) and call H(x) a max
stable df under power normalization or simply a p-max stable df. Pancheva [16]
proved that H(x) belongs to one p-type of the following six classes of extreme
value distributions:

Type I) : H1,β(x) =

{
0,

exp
{
−(log x)−β

}
,

x ≤ 1,
x > 1

for some β > 0;

Type II) : H2,β(x) =


0,

exp
{
−(− log x)β

}
,

1,

x ≤ 0,
0 < x ≤ 1,
x > 1

for some β > 0;

Type III) : H3,β(x) =


0,

exp
{
− (− log(−x))−β

}
,

1,

x ≤ −1,
−1 < x≤ 0,
x > 0

for some β > 0;

Type IV) : H4,β(x) =

{
exp

{
− (log(−x))β

}
,

1,

x ≤ −1,
x > −1

for some β > 0;

Type V) : H5(x) =

{
0,

exp
(
−x−1

)
,

x ≤ 0,
x > 0;

Type VI) : H6(x) =

{
exp(x),
1,

x ≤ 0,
x > 0.
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Here, two dfs H and K are of the same p-type if there exist A > 0 and
B > 0 such that H(x) = K(A|x|B sign(x)) for all x ∈ R. The power max
stable or p-max stable df H means that there exist positive constants an and
bn such that

Hn
(
an|x|bn sign(x)

)
= H(x)

for all x ∈ R. The necessary and sufficient conditions for a df to belong to
Dp(H) for each of the six p-max stable laws were obtained by Mohan and Ravi
[13] and Subramanya [19]. Barakat and Nigm [1] studied the limiting distribu-
tion of extreme order statistics under power normalization and random index.
For other papers on power normalization, we mention Christoph and Falk [5],
Nigm [15], Barakat et al. [2], and Barakat and Omar [3]. In these papers, the
results of Gnedenko [12] and de Haan [7] concerning linear normalization were
extended to p-stable laws.

However, the universal form of extreme value distributions under power
normalization like (1.2) for linear normalization has not been studied. Nasri-
Roudsari [14] attempted to find a universal form, but their equation (5) is not
in universal form. This note derives a universal form by employing the the-
ory of general regularly varying functions (de Haan [6], Geluk and de Haan
[11], Bingham et al. [4], de Haan and Resnick [9]), see Theorem 2.2. More-
over, in the process of proving Theorem 2.2, equivalent results which are more
meaningful and simple are derived in Corollary 2.1. We build a significant
bridge between power normalization and general regularly varying functions.
Consequently, applying the universal formulation, we can easily find the rela-
tionship between l-max stable dfs and p-max stable dfs, see Theorems 3.1 and
3.2. The normalizing constants for power normalization can be easily found
through known results for linear normalization, see Corollary 3.1. We will see
that some of the results in Section 3 coincide with those in Mohan and Ravi
[13].

The contents of this note are organized as follows. In Section 2, we obtain
the universal form of extreme value distributions under power normalization.
In Section 3, we compare Dl(·) and Dp(·). Related proofs are provided in
Section 4. Finally, we provide some examples in Section 5.

2. LIMIT DISTRIBUTION OF MAXIMA
AND EQUIVALENT CONDITIONS

In this section, firstly, we obtain an alternative formulation of (1.3). Tak-
ing logarithms on both sides of (1.3), we have

lim
n→∞

n logF
(
an|x|bn sign(x)

)
= logH(x)(2.1)
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for each continuity point x for which 0 < H(x) < 1. Obviously, (2.1) is
equivalent to

lim
n→∞

n
(

1− F
(
an|x|bn sign(x)

))
= − logH(x).(2.2)

Define U(x) = (1/(1 − F ))←(x) = inf{y : 1
1−F (y) ≥ x} for x > 1. By

properties of the inverse function, (2.2) is equivalent to
lim
n→∞

−
(
−U(nx)

an

)1/bn

= H←
(
e−1/x

)
, if x(F ) ≤ 0,

lim
n→∞

(
U(nx)

an

)1/bn

= H←
(
e−1/x

)
, if x(F ) > 0

(2.3)

for each point x, where x(F ) = sup{x : F (x) < 1}. We are now going to make
(2.3) more explicit in the following sense:

Theorem 2.1. Suppose (Xn) is a sequence of i.i.d. random variables
with common df F and let an, bn > 0 be real sequences of constants and H a
non-degenerate df. The following statements are equivalent:

(1). For each continuity point x of H,

lim
n→∞

Fn
(
an|x|bn sign(x)

)
= H(x).

(2). For each continuity point x of H satisfying 0 < H(x) < 1,

lim
t→∞

t
(

1− F
(
a(t)|x|b(t) sign(x)

))
= − logH(x),

where a(t) := a[t] and b(t) := b[t] with [t] denoting the integer part of t.

(3). Let D(x) := H←(e−1/x) and a(t) := a[t], b(t) := b[t].

If x(F ) ≤ 0, lim
t→∞
−
(
−U(tx)

a(t)

)1/b(t)

= D(x);

If x(F ) > 0, lim
t=∞

(
U(tx)

a(t)

)1/b(t)

= D(x)

for each continuity point x of D(x).

(4). Let D(x) := H←(e−1/x) and a(t) := a[t], b(t) := b[t].

If x(F ) ≤ 0, lim
t→∞

log (−U(tx))− log a(t)

b(t)
= log (−D(x)) ;

If x(F ) > 0, lim
t→∞

logU(tx)− log a(t)

b(t)
= logD(x)

for each continuity point x of D(x).
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Remark 2.1. Theorem 2.1(4) shows that log |U(t)| is a general regularly
varying function at infinity on (0,+∞).

Next, using general regularly varying functions (Bingham et al. [4]), the
six power extreme value distribution classes in Section 1 can be written in a
universal form.

Theorem 2.2. Let (Xn) be a sequence of i.i.d. random variables with
common df F . If there exist constants an, bn > 0 such that

lim
n→∞

Fn
(
an|x|bn sign(x)

)
= H(x)

as n → ∞ for some non-degenerate df H(x) then H(x) must be of the same
p-type as one of the following two classes:

(1). for x(F ) ≤ 0,

Hγ(x) = exp
{
− (1− γ log(−x))−1/γ

}
, x < 0 and 1− γ log(−x) > 0,

(2). for x(F ) > 0,

Hγ(x) = exp
{
− (1 + γ log x)−1/γ

}
, x > 0 and 1 + γ log x > 0,

where γ is real.

For γ = 0, the right hand sides of (1) and (2) should be interpreted as
exp{x}, x ≤ 0 and exp{−x−1}, x > 0 for x(F ) ≤ 0 and x(F ) > 0, respectively.

Remark 2.2. From the proof of Theorem 2.2, one can obtain the following
results:

(i). For x(F ) ≤ 0, let W (t) = log(−U(t)), then −W (t) ∈ GRV (γ, b(t)); that
is, −W (t) is a general regularly varying function with parameters γ and
b(t). Additionally, x(F ) < 0 if γ < 0, and x(F ) = 0 if γ > 0.

(ii). For x(F ) > 0, let W ∗(t) = logU(t), then W ∗(t) ∈ GRV (γ, b(t)). Addi-
tionally, 0 < x(F ) <∞ if γ < 0, and x(F ) =∞ if γ > 0.

The following remark links Hγ in Theorem 2.2 with the H1 and H2 given
by equation (5) in Nasri-Roudsari [14].

Remark 2.3. For x > 0 and 1+γ(log x−a)/b > 0, H1(x) = Hγ

(
e−a/bx1/b

)
;

For x < 0 and 1 − γ(log(−x) − a)/b > 0, H2(x) = Hγ

(
−e−a/b(−x)1/b

)
. The

p-max dfs, H1 and H2, are defined by

H1(x) = exp
{
− [1 + γ(log x− a)/b]−1/γ

}
for x > 0 and 1 + γ (log x− a) /b > 0;

H2(x) = exp
{
− [1− γ (log(−x)− a) /b]−1/γ

}
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for x < 0 and 1 + γ (log(−x)− a) /b > 0,

respectively.

Considering the sign of γ and x(F ), we obtain the following six extreme
value distribution classes.

Corollary 2.1. Under the conditions of Theorem 2.2, F ∈ Dp(·) if and
only if

lim
t→∞

log |U(tx)| − log |U(t)|
b̂(t)

= sign (x(F ))
xγ − 1

γ
, γ ∈ R

for x > 0, where b̂(t)/b(t)→ c > 0 as t→∞. Moreover,

(1). For x(F ) < 0 and γ < 0, F ∈ Dp(H4,β) with β = −1/γ;

(2). For x(F ) ≤ 0 and γ = 0, F ∈ Dp(H6);

(3). For x(F ) = 0 and γ > 0, F ∈ Dp(H3,β) with β = 1/γ;

(4). For x(F ) ∈ (0,∞) and γ < 0, F ∈ Dp(H2,β) with β = −1/γ;

(5). For 0 < x(F ) ≤ ∞ and γ = 0, F ∈ Dp(H5);

(6). For x(F ) =∞ and γ > 0, F ∈ Dp(H1,β) with β = 1/γ.

Applying the properties of general regularly varying functions (Bingham
et al. [4]), we obtain more general results.

Corollary 2.2. Under the conditions of Theorem 2.2, F ∈ Dp(·) if and

only if log |U(t)| ∈ GRV (̂b(t), ϕ), i.e.,

lim
t→∞

log |U(tx)| − log |U(t)|
b̂(t)

= ϕ(x)

holds for all x > 0 with ϕ not constant, where b̂(t)/b(t) → c > 0 as t → ∞.
Moreover, ϕ(x) is decreasing if and only if x(F ) ≤ 0, and ϕ(x) is increasing if
and only if x(F ) > 0.

3. RELATIONSHIPS BETWEEN Dl(G) AND Dp(H)

In this section, results coinciding with those obtained by Mohan and
Ravi [13] are given. All proofs are given in Section 4 by the equivalence of
Corollary 2.1.

Theorem 3.1. Suppose (Xn) is a sequence of i.i.d. random variables
with common df F . Let F1(x) = F (− exp(−x)) for x < 0, and let F2(x) =
F (exp(x)) for x > 0.
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(1). For x(F ) ≤ 0 and γ < 0, F ∈ Dp(·) if and only if F1 ∈ Dl(·) with
α = β = −1/γ; For x(F ) ≤ 0 and γ > 0, F ∈ Dp(·) if and only if
F1 ∈ Dl(·) with α = β = 1/γ; For x(F ) ≤ 0 and γ = 0, F ∈ Dp(H6) if
and only if F1 ∈ Dl(Λ).

(2). For x(F ) > 0 and γ < 0, F ∈ Dp(·) if and only if F2 ∈ Dl(·) with
α = β = −1/γ; For x(F ) > 0 and γ > 0, F ∈ Dp(·) if and only if
F2 ∈ Dl(·) with α = β = 1/γ; For x(F ) > 0 and γ = 0, F ∈ Dp(H5) if
and only if F2 ∈ Dl(Λ).

In view of the derived results on Dl(·), the normalizing constants under
power normalization can be obtained.

Corollary 3.1. Under the conditions of Corollary 2.1,

(1). For x(F ) < 0 and γ < 0, we have F ∈ Dp(H4,β), β = −1/γ with normal-
izing constants an = −x(F ), bn = log(F←(1− 1

n)/x(F ));

(2). For x(F ) ≤ 0 and γ = 0, we have F ∈ Dp(H6) with normalizing con-

stants an = −F←(1 − 1
n) and bn = f(−an), where f(t) = −

∫ x(F )
t (1 −

F (s))1sds/(1− F (t));

(3). For x(F ) = 0 and γ > 0, we have F ∈ Dp(H3,β), β = 1/γ with normalizing
constants an = 1, bn = − log(−F←((1− 1

n)));

(4). For x(F ) ∈ (0,∞) and γ < 0, we have F ∈ Dp(H2,β), β = −1/γ with
normalizing constants an = x(F ), bn = log(x(F )/F←(1− 1

n));

(5). For 0 < x(F ) ≤ ∞ and γ = 0, we have F ∈ Dp(H5) with normalizing

constants an = F←(1 − 1
n) and bn = f(an), where f(t) =

∫ x(F )
t (1 −

F (s))1sds/(1− F (t));

(6). For x(F ) = ∞ and γ > 0, we have F ∈ Dp(H1,β), β = 1/γ with normal-
izing constants an = 1, bn = logF←(1− 1

n).

Considering the extreme value distributions under linear normalization,
Φα, Ψα and Λα, we have the following result.

Theorem 3.2. Suppose (Xn) is a sequence of i.i.d. random variables with
common df F .

(1). If F ∈ Dl(Λ) then we have F ∈ Dp(H6) for x(F ) ≤ 0 and F ∈ Dp(H5)
for 0 < x(F ) ≤ ∞;

(2). If F ∈ Dl(Φα) then F ∈ Dp(H5);

(3). If F ∈ Dl(Ψα) then we have F ∈ Dp(H4,β) with β = 1/α for x(F ) < 0,
F ∈ Dp(H6) for x(F ) = 0 and F ∈ Dp(H2,β) with β = 1/α for x(F ) > 0.



284 Zuoxiang Peng, Qin Jiang and Saralees Nadarajah 8

4. PROOFS

In this section, we prove results provided in Section 2 and Section 3. The
convergence-type theorem from Subramanya [19] is needed.

Lemma 4.1. Suppose U(x) and V (x) are non-degenerate dfs on R. For
n ≥ 1, let Fn be a df on R such that for all continuity points x of U and V

lim
n→∞

Fn

(
an|x|bn sign(x)

)
= U(x),

lim
n→∞

Fn

(
αn|x|βn sign(x)

)
= V (x),(4.1)

where an, bn, αn and βn are positive for all n. Then, there exist A > 0 and
B > 0 such that

lim
n→∞

βn
bn

= B, lim
n→∞

(
αn
an

)1/bn

= A(4.2)

and

V (x) = U
(
A|x|B sign(x)

)
.(4.3)

Also, if (4.2) holds then either of the two relations in (4.1) implies the
other and (4.3) is true.

Proof of Theorem 2.1. The equivalence of (2) and (3) follows by virtue
of Lemma 1.1.1 in de Haan and Ferreira [8]. It is clear that (3) and (4) are
equivalent by taking logarithms. Here, we only need to show that (1) is equiv-
alent to (3). We have already checked that (1) is equivalent to (2.3). So, it is
sufficient to prove that (2.3) implies (3). Let x be a continuity point of D. For
t ≥ 1, we have

−
(
−U ([t]x)

a[t]

)1/b[t]

≤ −
(
−U(tx)

a[t]

)1/b[t]

≤ −
(
−U ([t]x (1 + 1/[t]))

a[t]

)1/b[t]

if x(F ) ≤ 0. The right-hand side is eventually less than D(x′) for any continuity
point x′ > x with D(x′) > D(x). Since D is continuous at x, we obtain

lim
t→∞
−
(
−U(tx)

a(t)

) 1
b(t)

= D(x).

If x(F ) > 0, the proof is similar. The proof is complete. �

Proof of Theorem 2.2. We consider two cases.
(i) Consider the case of x(F ) ≤ 0.

For x > 0 and any an, bn > 0, obviously

Fn
(
an|x|bn sign(x)

)
= P

{
Mn ≤ anxbn

}
= 1.
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For x = 0, large n and all x′ < 0,

Fn
(
an
∣∣x′∣∣bn sign(x)

)
= Fn

(
−an

∣∣x′∣∣bn) ≤ Fn (0) ≤ H(z)

for arbitrary z > 0. We must have Fn(0) → 1 as n → ∞ since H is non-
degenerate. So, H(x) ≡ 1 for x ≥ 0 and we only need to consider x < 0.

Let us consider the class of limit functions D in (4) of Theorem 2.1. First,
we suppose 1 is a continuity point of D. Then note that for continuing points
x > 0,

(4.4)
log (−U(tx))− log (−U(t))

b(t)
→ log (−D(x))− log (−D(1)) =: E(x)

as t→∞. Setting log(−U(t)) = W (t), we obtain

W (tx)−W (t)

b(t)
→ E(x)

as t→∞. By arguments similar to the proof of Theorem 1.1.3 in de Haan and
Ferreira [8], we obtain

E(x) = H ′(0)
xγ − 1

γ
, γ ∈ R,

where H(x) := E(ex) (E(x) should be interpreted as H ′(0) log x if γ = 0). Note
by (4.4) that E is decreasing and cannot be constant since H is non-degenerate,
so H ′(0) < 0. So, by (4.4), we conclude that

D(x) = D(1) exp

{
H ′(0) · x

γ − 1

γ

}
.

So,

D←(x) =

{
1− γ log (x/D(1))

−H ′(0)

}1/γ

> 0,(4.5)

where D(1) < 0 and H ′(0) < 0. Note that D(x) = H←(e−1/x), implying

D←(x) =
1

− logH(x)
.(4.6)

Combining with (4.5) and (4.6), we have

H(x) = exp
{
− (1− γ log(−x))−1/γ

}
with x < 0 and 1− γ log(−x) > 0.

If 1 is not a continuity point of D, we follow the proof with the function
U(tx0), where x0 is a continuity point of D. In this case, we have

W (tx)−W (tx0)

b(t)
→ log (−D(x))− log (−D (x0)) =: Q(x).
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So,

W (tx)−W (tx0)

b (tx0)
=
W (tx)−W (tx0)

b(t)

b(t)

b (tx0)

and

W (tx)−W (tx0)

b (tx0)
→ Q(x)

A (x0)
=: P (x)

since A(x0) cannot be zero: F cannot be constant because G is non-degenerate.
It follows that

W (txy)−W (tx0)

b (tx0)
=
W (txy)−W (tyx0)

b (tyx0)
· b (tyx0)

b (tx0)
+
W (tx0y)−W (tx0)

b (tx0)
.

So,

P (xy) = P (x) ·A(y) + P (y).

The else proof is similar to the case that 1 is a continuity point of D. The
details are omitted here.
(ii) Consider the case of x(F ) > 0. By a similar method, we obtain

logU(tx)− logU(t)

b(t)
→ logD(x)− logD(1) =: E∗(x).

Putting logU(t) = W ∗(t), we see that

W ∗(tx)−W ∗(t)
b(t)

→ E∗(x)

for x > 0. Similarly, we obtain

E∗(x) = H∗′(0)
xγ − 1

γ
, γ ∈ R,

where H∗(x) := E∗(ex) (E∗(x) should be interpreted as H∗′(0) log x if γ = 0).
Note that E∗ is increasing and cannot be constant since H∗ is non-degenerate.
So, H∗′(0) > 0. So,

D←(x) =

{
1 + γ

log (x/D(1))

H∗′(0)

}1/γ

> 0,

where D(1) > 0 and H∗′(0) > 0. Equation (4.6) and transformations similar
to those in (i) imply that

H(x) = exp
{
− (1 + γ log(x))−1/γ

}
with x > 0 and 1 + γ log x > 0. If 1 is not a continuity point of D, we obtain
the desired result by a similar proof to the case above that 1 is a continuity
point of D. The details are omitted here. �
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Proof of Corollary 2.1. The proof follows directly from the equivalence of
(1) and (4) in Theorem 2.1, Theorem 2.2 and Remark 2.2. �

Proof of Theorem 3.1. We only prove the necessity of the case x(F ) ≤ 0
since others are similar.

If x(F ) ≤ 0, Theorem 2.2 implies that Fn(an|x|bn sign(x)) = 1 for any
x ≥ 0, and

Fn
(
−an(−x)bn

)
= Fn

(
an|x|bn sign(x)

)
→ exp

{
− (1− γ log(−x))−1/γ

}
weakly for x < 0. Note that F (−an(−x)bn) = F (− exp(log an + bn log(−x))
and let y = − log(−x). We obtain

Fn1 (bny − log an)→ exp
{
−(1 + γy)−1/γ

}
weakly. So,

(i). If γ < 0, it is easy to conclude that F1 ∈ Dl(Ψα) with α = −1/γ and the
normalizing constants{

− log an = x (F1) ;
bn = x (F1)− (1/ (1− F1))

← (n).

(ii). If γ = 0 then F1 ∈ Dl(Λ) and the normalizing constants satisfy{
− log an = (1/ (1− F1))

← (n);
bn = f (− log an) ,

where f1(t) =
∫ x(F1)
t (1− F1(s))ds/(1− F1(t)).

(iii). If γ > 0 then F1 ∈ Dl(Φα) with α = 1/γ and the normalizing constants{
− log an = 1;

bn = (1/ (1− F1))
← (n).

The proof is complete. �

Proof of Corollary 3.1. From the proof of Theorem 3.1, we can see that
x(F1) = − log(−x(F )), where x(F1) = sup{x : F1(x) < 1} and (1/(1 −
F1))

←(n) = − log(−1/(1− F ))←(n)). Moreover,

f1(t) =

∫ x(F1)

t
(1− F1(s)) ds/ (1− F1(t))

= −
∫ x(F )

− exp(−t)
(1− F (y)) /ydy/ (1− F (− exp(−t))) .

So, (1), (2) and (3) hold. Also, (4), (5) and (6) can be obtained by
applying the result that F2 ∈ Dl(·). So,



288 Zuoxiang Peng, Qin Jiang and Saralees Nadarajah 12

(i). If γ < 0, we have{
log an = x (F2) ;

bn = x (F2)− (1/ (1− F2))
← (n).

(ii). If γ = 0, we have {
log an = (1/ (1− F2))

← (n);
bn = f (log an) ,

where f2(t) =
∫ x(F2)
t (1− F2(s))ds/(1− F2(t)).

(iii). If γ > 0, we have {
log an = 1;

bn = (1/ (1− F2))
← (n).

Note that x(F2) = log x(F ), where x(F2) = sup{x : F2(x) < 1} and
(1/(1− F2))

←(n) = log(1/(1− F ))←(n). Additionally,

f2(t)=

∫ x(F2)

t
(1− F2(s)) ds/ (1− F2(t))=

∫ x(F )

exp(t)
(1−F (y)) /ydy/ (1−F (exp(t))).

The proof is complete. �

Proof of Theorem 3.2. (i) When F ∈ Dl(Λ), we consider two cases. It is

known that there exists a positive function α(t) such that U(tx)−U(t)
α(t) → log x

as t→∞. So,

U(tx)

U(t)
= 1 +

α(t)

U(t)
log x (1 + o(1))

as t→∞. Note that U(tx)/U(t)→ 1 also holds for x > 0 as t→∞. So,

log
U(tx)

U(t)
∼
U(tx)

U(t)
− 1 =

α(t)

U(t)
log x (1 + o(1))

as t→∞.
If x(F ) ≤ 0, letting b̂3(t) = − α(t)

U(t) > 0 for sufficiently large t, we obtain

log U(tx)
U(t)

b̂3(t)
→ − log x

as t→∞. So, Theorem 2.2 with x(F ) ≤ 0 and γ = 0 implies F ∈ Dp(H6).

If 0 < x(F ) ≤ ∞, letting b̂3(t) = α(t)
U(t) > 0 for sufficiently large t, we

obtain

log U(tx)
U(t)

b̂3(t)
→ log x
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as t→∞. So, Theorem 2.2 with 0 < x(F ) ≤ ∞ and γ = 0 implies F ∈ Dp(H5).

(ii) When F ∈ Dl(Φα), we have U ∈ RV1/α, that is to say for x > 0

U(tx)

U(t)
→ x1/α

as t→∞. So, for x > 0

log U(tx)
U(t)

1/α
→ log x

as t → ∞. Applying Theorem 2.2 with x(F ) = ∞ and γ = 0, we have
F ∈ Dp(H5).

(iii) For the case F ∈ Dl(Ψα), we have x(F ) <∞. We discuss three cases.

If x(F ) = 0, using x(F )− U(t) ∈ RV−1/α, we obtain

log U(tx)
U(t)

1/α
→ − log x

as t → ∞. Applying Theorem 2.2 with x(F ) = 0 and γ = 0, we have F ∈
Dp(H6).

If x(F ) < 0, we obtain for x > 0

x(F )− U(tx)

x(F )− U(t)
→ x−1/α

as t→∞. So, for x > 0

U(tx)

U(t)
=
x(F )

U(t)
− x−1/α

(
x(F )

U(t)
− 1

)
(1 + o(1))

as t→∞. Note that U(tx)/U(t)→ 1 holds as t→∞ and x(F )
U(t) is increasing.

So,

log
U(tx)

U(t)
∼
U(tx)

U(t)
− 1 =

x(F )

U(t)
− 1− x−1/α

(
x(F )

U(t)
− 1

)
(1 + o(1))

as t→∞. Let b̂1(t) = − 1
α(x(F )

U(t) − 1) > 0 for sufficiently large t. We obtain

log U(tx)
U(t)

b̂1(t)
→ −x

−1/α − 1

−1/α

as t→∞. Applying Theorem 2.2 with x(F ) < 0 and γ = −1/α < 0, we have
F ∈ Dp(H4,β) with β = α.
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If x(F ) > 0, note that U(tx)/U(t) → 1 holds as t → ∞ and x(F )
U(t) is

decreasing. So, putting b̂2(t) = 1
α(x(F )

U(t) − 1) > 0, we obtain

log U(tx)
U(t)

b̂2(t)
→ x−1/α − 1

−1/α

as t → ∞. Applying Theorem 2.2 with x(F ) ∈ (0,∞) and γ = −1/α < 0, we
conclude that F ∈ Dp(H2,β) with β = α.

The proof is complete. �

5. EXAMPLES

In this section, some examples are given. Examples 1, 2, 3 and 7 are also
considered in Christoph and Falk [5]. Corollary 2.2 and Corollary 3.1 are very
useful for us to show whether a df F belongs to power attraction domains or
not and to identify the power attraction domain.

Example 1. If F is the uniform df on (−1, 0) then F ∈ Dp(H6) with the
normalizing constants an = 1

n and bn = 1.

Proof. Obviously, x(F ) = 0. It is easy to see that U(x) = (1/(1 −
F ))←(x) = −1/x for x > 1. So,

log
U(tx)

U(t)
∼ − log x, x > 0

as t→∞. Let b̂(t) = 1. By Corollary 2.1 and Corollary 3.1 with x(F ) = γ = 0,
we obtain the desired result. �

Example 2. If F is the uniform df on (−1 + ε, ε), where 0 < ε ≤ 1, then
F ∈ Dp(H2,β) with β = 1 and the normalizing constants an = ε and bn = 1

nε .

Proof. Obviously, x(F ) = ε > 0. It is easy to see that U(x) = (1/(1 −
F ))←(x) = ε− 1/x for x > 1. So,

log
U(tx)

U(t)
∼ 1− x−1

tε
, x > 0

as t→∞. Let b̂(t) = 1/(tε). By Corollary 2.1 and Corollary 3.1 with x(F ) > 0,
γ = −1 < 0, we obtain the desired result. �

Note that Example 1 is the particular case of Example 2 for ε→ 0.

Example 3. If F is the uniform df on (−2,−1) then F ∈ Dp(H4,β) with
β = 1 and the normalizing constants an = 1 and bn = 1

n .
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Proof. Obviously, x(F ) = −1 < 0. It is easy to see that U(x) = −1/x− 1
for x > 1. So,

log
U(tx)

U(t)
∼ x−1 − 1

t
, x > 0

as t→∞. Let b̂(t) = 1/t. By Corollary 2.1 and Corollary 3.1 with x(F ) < 0,
γ = −1 < 0, we obtain the desired result. �

Example 4. If F = Φα then F ∈ Dp(H5) with the normalizing constants
an = n1/α and bn = 1/α for sufficiently large n.

Proof. Obviously, x(F ) = ∞. It is easy to see that U(x) = (− log(1 −
x−1))−1/α for x > 1. So,

log
U(tx)

U(t)
= −1/α log

1 +
log 1−(tx)−1

1−t−1

log (1− t−1)

 ∼ 1/α log x, x > 0

as t→∞. Let b̂(t) = 1/α. By Corollary 2.1 and Corollary 3.1 with x(F ) =∞,
γ = 0, we obtain the desired result. �

Example 5. If

F (x) =

{
0, if x ≤ e,
1− (log x)−α, if e ≤ x

for α > 0 then F ∈ Dp(H1,β) with β = α and the normalizing constants an = 1
and bn = n1/α.

Proof. Obviously, x(F ) = ∞. It is easy to see that U(x) = − exp(x1/α)
for x > 1. So,

log U(tx)
U(t)

α−1t−1/α
∼ x1/α − 1

1/α
, x > 0

as t → ∞. Let b̂(t) = α−1t−1/α. By Corollary 2.1 and Corollary 3.1 with
x(F ) =∞, γ = 1/α > 0, we obtain the desired result. �

Example 6. If

F (x) =


0, if x < −e−1,
1− [− log(−x)]−α , if − e−1 ≤ x < 0,
1, ifx ≥ 0

for α > 0 then F ∈ Dp(H3,β) with β = α and the normalizing constants an = 1
and bn = n1/α.
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Proof. Obviously, x(F ) = 0. It is easy to see that U(x) = − exp(−x−1/α)
for x > 1. So,

log U(tx)
U(t)

α−1t1/α
∼ −x

1/α − 1

1/α
, x > 0

as t → ∞. Let b̂(t) = α−1t1/α. By Corollary 2.1 and Corollary 3.1 with
x(F ) = 0, γ = 1/α > 0, we obtain the desired result. �

Finally, we provide an example which does not belong to any class of
Dp(·).

Example 7. If

F (x) =

{
1− (log log x)−1, if x ≥ exp(e),
0, otherwise

then F does not belong to any of Dp(·) since U(x) = (1/(1−F ))←(x) = exp(ex)
for x > 1, and logU(t) = exp(x) is not a general regularly varying function.
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