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Let w(G) be the set of element orders of G. For k € w(G) let si be the number of
elements of order k in G. Let nse(G) = {sk|k € w(G)}. The group L4(2) = As
is uniquely determined by nse. In this paper, we prove that if G is a group such
that nse(G)=nse(L4(3)), then G = L4(3).
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1. INTRODUCTION

A finite group G is called a simple K, -group, if G is a simple group with
|7(G)| = n. Here m(G) denotes the set of prime divisors of |G].

In 1987, J.G. Thompson posed a very interesting problem related to al-
gebraic number fields as follows (see [18]).

Thompson’s Problem. Let T(G) = {(n, s,)|n € w(G) and s,, €nse(G)},
where s, is the number of elements with order n. Suppose that T(G) = T'(H).
If G is a finite solvable group, is it true that H is also necessarily solvable?

It is easy to see that if G and H are of the same order type, then
nse(G) = nse(H), |G| = |H].

Some groups may be characterized by their order and their nse. In this
respect we have the following result.

THEOREM 1.1. Let G be a group and H be one of the following groups.
Then |G| = |H| and nse(G)=nse(H) if and only if G = H.

(1) M is a simple K;-group, where i = 3,4 (see [15] and [14] respectively).

(2) A12 /11/, A13 /5/

(3) Sporadic simple groups [2].

(4) L2(2™) where 2™ + 1 is a prime or 2™ — 1 is a prime (see [13]).

Not all groups can be determined by nse(G) and |G|. Let A, B be two
finite groups, let G := A x B denote the semidirect of A, B with A < G. For
instance J.G. Thompson in 1987 gave the following example. Let
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G1:CQXCQXCQ><CQ>4A7, G2:L3(4)>402,

where both G; and G4 are maximal subgroups of Ma3. Then nse(G1)=nse(G2)={1,
435, 2240, 6300, 8064, 6720, 5040, 5760}, but G 2 Gs.

In connection with Thompson’s problem, one may ask whether finite sim-
ple groups can be characterized by their nse. In this respect, we have the
following result.

THEOREM 1.2. Let G be a group and H be one of the following groups.
Then nse(G)=nse(H) if and only if G = H.

(1) L2(5) = As [16]; L3(4), Ls(5) [8, 9]; and Ls(2) [10].

(2) A7, Ag (see [1]).

In this paper, it is shown that L4(3) also can be characterized by nse.

We will introduce some notations that will be used in this paper. For a
prime number r we will denote the number of the Sylow r-subgroups P, of a
finite group G by n,(G) or by n,. L,(q) denotes the projective special linear
group of degree n over finite fields of order q. U, (q) denotes the projective spe-
cial unitary group of degree n over finite fields of order ¢. The other notations
are standard (see [3], for instance).

2. SOME LEMMAS

LEMMA 2.1 ([4]). Let G be a finite group and m be a positive integer
dividing |G|. If Lin(G) = {g € G|g™ = 1}, then m||Ly(G)|.

LEMMA 2.2 ([16]). Let G be a group containing more than two elements.
If the mazimal number s of elements of the same order in G is finite, then G
is finite and |G| < s(s? — 1).

LEMMA 2.3 ([12]). Let G be a finite group and p € w(G) be odd. Suppose
that P is a Sylow p-subgroup of G and n = p’m with (p,m) = 1. If P is not
cyclic and s > 1, then the number of elements of order n is always a multiple
of p°.

To prove that L4(3) can be determined by nse, we will also need the
structure of simple K4-groups.

LEMMA 2.4 ([17]). Let G be a simple Ky4-group. Then G is isomorphic to
one of the following groups:
(1) A7, Ag, Ag or AlO-
(2) M11, M12 or JQ.
(8) One of the following:
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(a) Lo(r), where v is a prime and r? —1 =2%-3% . v¢ witha > 1, b > 1,
c>1, and v is a prime greater than 3.

(b) Lo(2™), where 2™ —1 = u, 2™ +1 = 3t® with m > 2, u, t are primes,
t>3,b>1.

(c) La(3™), where 3™ +1 =4t, 3™ —1=2u¢ or 3™ +1=4t", 3" — 1 =
2u, with m > 2, u, t are odd primes, b >1, ¢ > 1.

(4) One of the following 28 simple groups: L2(16), L2(25), L2(49), La(81),
L3(4), L3(5), Ls(7), L3(8), L3(17), La(3), Sa(4), Sa(5), Sa(7), S(9),
36(2); 08+(2)f G2(3)7 U3(4); U3(5); U3(7), U3(8)’ U3(9)7 U4(3)7 U5(2);
S2(8), Sz(32), 2D4(2) or 2Fy(2)’.

LEMMA 2.5 ([6], Theorem 9.3.1). Let G be a finite solvable group and

|G| = mn, where m = p{*---pdr, (m,n) = 1. Let m = {p1,--- ,pr} and hy,
be the number of Hall m-subgroups of G. Then h,, = qfl ---qfs satisfies the
following conditions for all i € {1,2,--- ,s}:

(1) ¢;" =1 (mod p;) for some p;.
(2) The order of some chief factor of G is divided by ¢ .

The following lemma is a key factor in the proof of our main theorem.

LEMMA 2.6. Let G be a simple K4-group with 5 | |G| | 27-3%-5-13. Then
G = L4(3).
Proof. Order consideration rules out the cases (1)(2) of Lemma 2.4.
So we consider Lemma 2.4(3). We distinguish the following cases.
e Case 1. G = Lo(r), where r € {3,5,13}.
* For r = 3, we have |7(r? — 1)| = 1, which contradicts the fact that
|T(r2 — 1) = 3.
* For r = 5, we have |r(r? — 1)| = 2, which contradicts again the fact
that |r(r? —1)| = 3.
* We can not have r = 13, since 7 | |L2(13)], while 71 |G|.
e Case 2. G = L9(2™), where u € {3,5,13}.
* We can not have u = 3, since this would imply m = 2, which further
gives 5 = 3t%, an equation that has no solution in N.
* For u = 5, we obtain 2™ — 1 = 5, which has no solution in N.
* For u = 13, the equation 2" — 1 = 13 has no solution in N.
e Case 3. G = Ly(3™)
We will consider the following two sub-cases.
* Subcase 3.1. 3™ + 1 =4t and 3™ — 1 = 2u°.
We can suppose that ¢ € {3,5,13}.
For t = 3,5, 13, the equation 3" + 1 = 4¢ has no solution in N.
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* Subcase 3.2. 3™ + 1 = 4t® and 3™ — 1 = 2u.
We can suppose that u € {3,5,13}.
For u = 3,5, 13, the equation 3™ — 1 = 2u has no solution in N.

In review of Lemma 2.4(4), we see that G = L4(3).
This completes the proof of the Lemma. [

3. MAIN THEOREM AND ITS PROOF

In this section, we will give the proof of the main theorem.

Let G be a group such that nse(G)=nse(L4(3)), and s,, be the number
of elements of order n. By Lemma 2.2 we have that G is finite. We note that
sn, = k¢(n), where k is the number of cyclic subgroups of order n. Also we
note that if n > 2, then ¢(n) is even. If m € w(G), then by Lemma 2.1 and
the above discussion, we have

O {¢<m> | 5m

m | Zd|m8d

THEOREM 3.1. Let G be a group. Then G = L4(3) if and only if nse(G) =
nse(L4(3)) = {1, 7371, 82160, 256932, 303264, 449280, 589680, 606528,
758160, 842400, 1866240} .

Proof. If G = L4(3), then from [3], nse(G)=nse(L4(3)).

So we assume that nse(G)=nse(L4(3)).

By (1), {2, 3, 5, 7, 13, 17, 53, 589681, 758161} C 7(G) and so = 7371, 2 €
7(G) since 7371 is the only odd number greater than 1 that appears in nse(G).
If 17 € 7(G), s17 € {82160, 842400}. If 2-17 € w(G), since (2-17) = $(17), we
deduce that s17 = s2.17. But by Lemma 2.1, 2-17 | 14 so+ s17 + $2.17(=171692,
1692172), a contradiction. Therefore 2 - 17 ¢ w(G). It follows that the Sylow
17-subgroup of G acts fixed point freely on the set of elements of order 2 and
|P17| | s2, a contradiction. So 17 ¢ m(G). Similarly we can rule out the primes
53, 589681, 758161, which can not belong to 7(G).

Therefore {2, 3, 5, 7, 13} C n(G). If 3,5,7,13 € ©(G), then by (1),
sg = 82160, s5 = 303264, sy € {449280, 606528, 842400} and s13 = 1866240.

If 2¢ € w(G), then 0 < a < 10. By Lemma 2.1, |Pa| | 1 4 s2 + ... + sq10
and so |Py| | 21°.

If 3% € w(G), then 0 < a < 7. By Lemma 2.1, |P3| | 1 4+ s3 + ... + s3: with
i=3,4,5,6,and | P3| | 3% (in this case, s3 = 82160, s32 = 256932, s43 = 449280,
534 = 303264, s35 = 842400, and s36 = 303264). We also see that 37 ¢ w(G).

If 22 - 3 € w(G), then by Lemma 2.3 of [13], s92.4 = 2 - 892 - t for some
integer t and sq2.5 = 606528 (when sy2 = 303264). Similarly, if 23 -3 € w(Q),
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then so3.3 = 606528 (when s9s = 303264). But by (1), we have a contradiction.
Therefore 23 - 3 ¢ w(G).

I£ 32 € w(G), then by (1), s € {256932, 303264, 449280, 589680, 606528,
758160, 842400, 1866240}.

Let 2-3%2 € w(@).

o If s32 € {256932, 449280, 589680, 606528, 758160, 842400, 1866240},
then sy 32 = s32.
o If s32 =303264, then then sy 32 € {303264,606528}.

By (1), we then obtain a contradiction, so 2 - 3% € w(G).

If 5 € w(G), then 0 < a < 3. If @ = 3, then by Lemma 2.1, 5% |
1+ 85+ 852 + 853, and 853 € w(G). Therefore |Ps| | 1+ s5 + s52 and |Ps]| | 52.

If 2.5 € w(G), then by (1), sa.5 = 303264.

If 2-52 € w(Q), then by Lemma 2.3 of [13], s9.52 = 852 -t for some integer ¢
and $9.52 = s52. But by Lemma 2.1, 2-52 | 1+4s9+55+ 552 +52.5+ 59.52 (=778220),
2130220), a contradiction. So 2 - 5% & w(G).

If 23 .5 € w(G), then sgs.5 = 4 - 593 - t for some integer ¢ but the equation
has no solution since sys.5 €nse(G). Therefore 22 -5 ¢ w(G).

If 3-5 € w(G), then s3.5 = 2 - s5 -t for some integer ¢ and s3.5 = 606528.
But by Lemma 2.1, 3-5 | 1 + s3 + s5 + $3.5(=991953), a contradiction. Hence
3-5Zw(q).

If 7% € w(G), then 0 < a < 2. If exp(P;) = 7%, then by Lemma 2.1,
72 | 1 + s7 + s72. But the equation has no solution in N since s;2 €nse(G). So
exp(Pr) =T.

e Let $7=449280. Then by Lemma 2.1, |P;| | 1 4 s7(=449281) and so

|P7| | 72

e Let s7=606528. Then by Lemma 2.1, |P;| | 1 + s7(=606529) and so
[Pl | 7.

e Let $7=842400. Then by Lemma 2.1, |P;| | 1 4 s7(=842401) and so
[Pl | 7.

If 2.7 € w(G), then by Lemma 1, so.7 = sy - t for some integer ¢ and so
S9.7 = s7. But by Lemma 1, 2-7 | 1 + s9 + s7 + s2.7 (€ {905932, 1220428,
1692172}), a contradiction. Similarly 37,57 € w(G).

If 13* € w(G), then 0 < a < 2. If a = 1, then |Pi3] | 1 + s13 and so
|P13| | 13. TIf 132 € w(G), then sy32 = 758160 and | P3| | 132.

If 213 € w(G), then sg.13 = s13 - t for some integer ¢ and s9.13 = $13.
By Lemma 2.1, 2- 13 | 1 + s2 + s13 + 82.13(=3814641), a contradiction. Hence
2-13 ¢ w(@). Similarly 3-13,5-13,7-13 € w(Q).

To remove the prime 7, we must show that 13 € 7(G).

Assume that 13 ¢ 7(G). If 3,5,7 ¢ 7(G), then G is a 2-group and so
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6065280 + 82160k + 256932ks + 303264 k3 + 449280k4 + 589680k5 + 606528k¢ +
758160k7 4+ 842400kg 4+ 1866240kg = 2%, where ki, ko, ..., kg and a are non-
negative integers. Since w(G) C {1,2,22,...,21°} and |nse(G)| = 11, then the
equation has no solution in N.

Let us assume that 7 € 7(G).
Let s7=449280.

— Let |P;| = 7. Then ny = s7/¢(7) =27-3%-5-13 and 13 € 7(G), a
contradiction.

— Let |P;| = 49. Then 6065280 + 82160k + 256932k, + 303264k3 +
449280k4+589680k5+606528k6+758160k7+842400ks+1866240kg =
2¢ .30 . 5¢. 72 where ki, kg, ..., kg, a,b,c are non-negative integers
and 0 < i ki < 13. But the equation has no solution in N.

i=1
Let s7=606528. Then n; = s7/¢(7) = 2°-3%-13 and 13 € 7(G), a
contradiction.
Let s7=842400. Then n; = s7/¢(7) = 2%-33.52.13 and 13 € 7(G), again
a contradiction.
Let us assume that 5 € 7(G). We know that exp(Ps) = 5, 5%.

Let exp(Ps) = 5. Then by Lemma 2.1, |Ps| | 1 + s5 and so |Ps| = 5.
Since n5 = s5/¢(5) = 2% - 3% .13, we see that 13 € 7(G), which is a
contradiction.

Let exp(P5s) = 52. Then by Lemma 2.1, |Ps| | 1 + s5 + s52 for s52 €
{82160, 758160}, and so | P5| = 52.

— If 552=82160 and n5 = sz2/¢(5%) = 22-13 - 79, then 13 € 7(G), a
contradiction.
— If s52=758160 and n5 = s52/¢(5%) = 22-35.13, then 13 € 7(G), also
a contradiction.
Let us assume that 3 € 7(G). We know that exp(Ps) = 3,32, ..., 3.
Let exp(P;) = 3. Then by Lemma 2.1, | P3| | 1+s3 and |Ps]| | 33. If | P3| =
3, then ng = s3/¢(2) = 23-5-13-79 and so 13 € 7(G), a contradiction.
If | P3| = 32, then 6065280 + 82160k 4 256932k 4 303264k3 4 449280k +
589680ks + 606528k¢ + 758160k 4 842400ks + 1866240kg = 2¢ - 32, where
9
ki, ka, ..., kg, a are non-negative integers and 0 < > k; < 2. Since
i=0
6065280 < |G| = 2% -9 < 6065280 + 2.1866240, then the equation has no
solution since a is at most ten. Also we can rule out the case | P3| = 33
as | P3| = 3%
Let exp(P3) = 32. Then by (1), s32 € {256932, 303264, 449280, 589680,
606528, 758160, 842400, 1866240}.
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If | P3| = 32, then 5,13 € n(G), a contradiction.

If | P3| > 32, then 6065280 + 82160k + 256932k + 303264k3 + 449280k4 +

589680ks + 606528k + 758160k7 + 842400ks + 1866240kg = 27 - 3°, where
9

ki, ko, ..., kg, a and b > 2 are non-negative integers and 0 < > k; < 3,
k=0
and the equation has no solution since «a is at most ten. Similarly we can

rule out this case as the case “exp(Ps;) = 3 and |Ps| = 32",

e The cases when exp(Ps) € {33,3% 3%, 35} may be ruled out in a manner

similar to that corresponding to the case exp(Ps) = 3.

Therefore 13 € 7(G).

Let 7 € n(G). If 7-13 € w(G), then by Lemma 2.1, 7-13 | 1457+ $13+ 8713
and so s7.13 ¢nse(G). It follows that the Sylow 7-subgroup of G acts fixed
point freely on the set of elements of order 13 and |P;| | s13(=1866240), a
contradiction. Hence 7 & 7(G).

Therefore {2,3,5,13} C n(G).

If 13 € 7(G) and exp(P13) = 13, then |Pi3| = 13 and ni3 = s13/¢(13),
3,5 € m(QG).

If 13 € 7(G) and exp(P13) = 132, then | P3| = 132 and n13 = s132/¢(132),
3,5 € m(QG).

So we consider the following cases: 7(G) = {2,13} and 7(G) = {2, 3, 5, 13}.

Case a. 7(G) = {2, 13}.

If exp(P13) = 13, then |Pi3| = 13 and nji3 = s13/¢(13), 3,5 € 7(G), a
contradiction.

If exp(P13) = 132, then | P3| = 132 and n13 = s152/¢(13%), 3,5 € n(G), a
contradiction.

Case b. 7(G) ={2,3,5,13}.

Since 5-13 € w(G), it follows that the Sylow 5-subgroup Ps of G acts fixed
point freely on the set of elements of order 13, |Ps| | s13 and so |Ps| = 5. We
also have | P3| = 13. Similarly we have that 2-13,3 - 13 € w(G) and |P»| | 2°,
|Ps| | 3°.

Therefore we can assume that |G| = 2%-3%-5-13. Since 6065280 = 27-36.
5-13 < |G|, then (a,b) € {(7,6),(8,6),(9,6)}. So we have |G| =27-3%-5-13,
|G| =2%-3%.5-13,0or |G| =2°-3%-5-13.

In the following we prove that there is no group such that |G| = 28.3%.5.13
and nse(G)=nse(L4(3)).

We will first prove that G is insoluble. Assume that G is soluble. Since
s13 = 1866240 and |Py3| = 13, then nj3 = 1866240/12 = 27 - 3° . 5. By Lemma
2.5, we then obtain 5 = 1 (mod 13), a contradiction. Hence G is insoluble.

Therefore there is a normal series 1 < K < L <G such that L/K is a
simple K;-group with ¢ = 3, 4.
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If L/K is isomorphic to a simple Kj3-group, we deduce from [7] that
L/K is isomorphic to one of the groups As, Ag, Us(2). Let L/K = As. Then
IG/L| | 2°-3%-13. Let A/K := Cg/(L/K). Then A/KNL/K = 1. It is
easy to see that (G/K)/(A/K) SAut(L/K) = S5 and so G/A < S5. Since
A/K,L/K < G/K, A/JK x L/K < G/K. Therefore |L/K| | |G/A| and so
G/K = As or Ss. ie., |A] = 26.3%.13 or 2°-3°-13. By Sylow’s theorem,
niz(A) € {1,27,144,3888}. Since A<G, we have that n13(A4) = n13(G), and so
s13(G) € {12,351,1872,50544}, which contradicts s;3(G) €nse(G). Similarly
we can rule out the other cases “L/K = Ag and L/K = Uy(2)” as the case
“L/K = Ay

If L/K is isomorphic to a simple Ky-group, then by Lemma 2.6, L/ K =
L4(3). So G/A = L4(3), G/A = ZQ.L4(3) or G/A = Z22.L4(3).

If G/A = L4(3), then |A] =4 and A = Z(G). It follows that there exists
an element of order 4 - 13, a contradiction (Similarly as the argument above,
S413 = 12 - s4 - t for some integer t, but the equation has no solution since
s4.13 €nse(G)).

If G/A = Z5.L4(3), then |A| = 2. It follows that A is a normal subgroup
generated by a 2-central element and so there is an element of order 2 - 13, a
contradiction since 2 - 13 € w(G).

If G/A = Zy2.L4(3), then A = 1. But nse(G) #nse(Zy2.L4(3)).

Similarly, we can rule out the case “|G|=2%3%5-13 and nse(G)=nse(L4(3))".

So we have that |G| = 27-35.5.13 = |L4(3)|. By assumption, nse(G)=
nse(L4(3)). Then by [14], G = L4(3).

This completes the proof. [

4. SOME APPLICATIONS

On Thompson’s conjecture, if G and H are of the same order type, then
nse(G) =nse(H)and |G| = |H|. It is easy to get the following result.

COROLLARY 4.1. Let G is a group and p > 5 is a prime. Then G = L4(3)
if and only if nse(G)=nse(L4(3)) and |G| = |L4(3)|.

Shi gave the following conjecture.

CONJECTURE ([18]). Let G be a group and H a finite simple group. Then
G = H if and only if (a) w(G) =w(H) and (b) |G| = |H]|.

Then we have the following corollary.

COROLLARY 4.2. Let G is a group and p > 5 is a prime. Then G = L4(3)
if and only if w(G) = w(L4(3)) and |G| = |L4(3)]|.
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