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Let ω(G) be the set of element orders of G. For k ∈ ω(G) let sk be the number of
elements of order k in G. Let nse(G) = {sk

∣∣k ∈ ω(G)}. The group L4(2) ∼= A8

is uniquely determined by nse. In this paper, we prove that if G is a group such
that nse(G)=nse(L4(3)), then G ∼= L4(3).
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1. INTRODUCTION

A finite group G is called a simple Kn-group, if G is a simple group with
|π(G)| = n. Here π(G) denotes the set of prime divisors of |G|.

In 1987, J.G. Thompson posed a very interesting problem related to al-
gebraic number fields as follows (see [18]).

Thompson’s Problem. Let T (G) = {(n, sn)
∣∣n ∈ ω(G) and sn ∈nse(G)},

where sn is the number of elements with order n. Suppose that T (G) = T (H).
If G is a finite solvable group, is it true that H is also necessarily solvable?

It is easy to see that if G and H are of the same order type, then

nse(G) = nse(H), |G| = |H|.

Some groups may be characterized by their order and their nse. In this
respect we have the following result.

Theorem 1.1. Let G be a group and H be one of the following groups.
Then |G| = |H| and nse(G)=nse(H) if and only if G ∼= H.

(1) M is a simple Ki-group, where i = 3, 4 (see [15] and [14] respectively).
(2) A12 [11]; A13 [5].
(3) Sporadic simple groups [2].
(4) L2(2

m) where 2m + 1 is a prime or 2m − 1 is a prime (see [13]).

Not all groups can be determined by nse(G) and |G|. Let A,B be two
finite groups, let G := A o B denote the semidirect of A,B with A C G. For
instance J.G. Thompson in 1987 gave the following example. Let
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G1 = C2 × C2 × C2 × C2 oA7, G2 = L3(4)o C2,

where bothG1 andG2 are maximal subgroups ofM23. Then nse(G1)=nse(G2)={1,
435, 2240, 6300, 8064, 6720, 5040, 5760}, but G1 � G2.

In connection with Thompson’s problem, one may ask whether finite sim-
ple groups can be characterized by their nse. In this respect, we have the
following result.

Theorem 1.2. Let G be a group and H be one of the following groups.
Then nse(G)=nse(H) if and only if G ∼= H.

(1) L2(5) ∼= A5 [16]; L3(4), L3(5) [8, 9]; and L5(2) [10].

(2) A7, A8 (see [1]).

In this paper, it is shown that L4(3) also can be characterized by nse.

We will introduce some notations that will be used in this paper. For a
prime number r we will denote the number of the Sylow r-subgroups Pr of a
finite group G by nr(G) or by nr. Ln(q) denotes the projective special linear
group of degree n over finite fields of order q. Un(q) denotes the projective spe-
cial unitary group of degree n over finite fields of order q. The other notations
are standard (see [3], for instance).

2. SOME LEMMAS

Lemma 2.1 ([4]). Let G be a finite group and m be a positive integer
dividing |G|. If Lm(G) = {g ∈ G

∣∣gm = 1}, then m
∣∣|Lm(G)|.

Lemma 2.2 ([16]). Let G be a group containing more than two elements.
If the maximal number s of elements of the same order in G is finite, then G
is finite and |G| ≤ s(s2 − 1).

Lemma 2.3 ([12]). Let G be a finite group and p ∈ π(G) be odd. Suppose
that P is a Sylow p-subgroup of G and n = psm with (p,m) = 1. If P is not
cyclic and s > 1, then the number of elements of order n is always a multiple
of ps.

To prove that L4(3) can be determined by nse, we will also need the
structure of simple K4-groups.

Lemma 2.4 ([17]). Let G be a simple K4-group. Then G is isomorphic to
one of the following groups:

(1) A7, A8, A9 or A10.

(2) M11, M12 or J2.

(3) One of the following:
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(a) L2(r), where r is a prime and r2− 1 = 2a · 3b · vc with a ≥ 1, b ≥ 1,
c ≥ 1, and v is a prime greater than 3.

(b) L2(2
m), where 2m−1 = u, 2m+1 = 3tb with m ≥ 2, u, t are primes,

t > 3, b ≥ 1.

(c) L2(3
m), where 3m + 1 = 4t, 3m− 1 = 2uc or 3m + 1 = 4tb, 3m− 1 =

2u, with m ≥ 2, u, t are odd primes, b ≥ 1, c ≥ 1.

(4) One of the following 28 simple groups: L2(16), L2(25), L2(49), L2(81),
L3(4), L3(5), L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9),
S6(2), O+

8 (2), G2(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3), U5(2),
Sz(8), Sz(32), 2D4(2) or 2F4(2)′.

Lemma 2.5 ([6], Theorem 9.3.1). Let G be a finite solvable group and
|G| = mn, where m = pα1

1 · · · pαr
r , (m,n) = 1. Let π = {p1, · · · , pr} and hm

be the number of Hall π-subgroups of G. Then hm = qβ11 · · · q
βs
s satisfies the

following conditions for all i ∈ {1, 2, · · · , s}:
(1) qβii ≡ 1 (mod pj) for some pj.

(2) The order of some chief factor of G is divided by qβii .

The following lemma is a key factor in the proof of our main theorem.

Lemma 2.6. Let G be a simple K4-group with 5 | |G| | 27 · 36 · 5 · 13. Then
G ∼= L4(3).

Proof. Order consideration rules out the cases (1)(2) of Lemma 2.4.
So we consider Lemma 2.4(3). We distinguish the following cases.

• Case 1. G ∼= L2(r), where r ∈ {3, 5, 13}.
* For r = 3, we have |π(r2 − 1)| = 1, which contradicts the fact that
|π(r2 − 1)| = 3.

* For r = 5, we have |π(r2 − 1)| = 2, which contradicts again the fact
that |π(r2 − 1)| = 3.

* We can not have r = 13, since 7 | |L2(13)|, while 7 - |G|.
• Case 2. G ∼= L2(2

m), where u ∈ {3, 5, 13}.
* We can not have u = 3, since this would imply m = 2, which further

gives 5 = 3tb, an equation that has no solution in N.

* For u = 5, we obtain 2m − 1 = 5, which has no solution in N.

* For u = 13, the equation 2m − 1 = 13 has no solution in N.

• Case 3. G ∼= L2(3
m)

We will consider the following two sub-cases.

* Subcase 3.1. 3m + 1 = 4t and 3m − 1 = 2uc.

We can suppose that t ∈ {3, 5, 13}.
For t = 3, 5, 13, the equation 3m + 1 = 4t has no solution in N.
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* Subcase 3.2. 3m + 1 = 4tb and 3m − 1 = 2u.

We can suppose that u ∈ {3, 5, 13}.
For u = 3, 5, 13, the equation 3m − 1 = 2u has no solution in N.

In review of Lemma 2.4(4), we see that G ∼= L4(3).
This completes the proof of the Lemma. �

3. MAIN THEOREM AND ITS PROOF

In this section, we will give the proof of the main theorem.
Let G be a group such that nse(G)=nse(L4(3)), and sn be the number

of elements of order n. By Lemma 2.2 we have that G is finite. We note that
sn = kφ(n), where k is the number of cyclic subgroups of order n. Also we
note that if n > 2, then φ(n) is even. If m ∈ ω(G), then by Lemma 2.1 and
the above discussion, we have

(1)

{
φ(m) | sm
m |

∑
d |m sd

Theorem 3.1. Let G be a group. Then G ∼= L4(3) if and only if nse(G) =
nse(L4(3)) = {1, 7371, 82160, 256932, 303264, 449280, 589680, 606528,
758160, 842400, 1866240}.

Proof. If G ∼= L4(3), then from [3], nse(G)=nse(L4(3)).
So we assume that nse(G)=nse(L4(3)).
By (1), {2, 3, 5, 7, 13, 17, 53, 589681, 758161} ⊆ π(G) and s2 = 7371, 2 ∈

π(G) since 7371 is the only odd number greater than 1 that appears in nse(G).
If 17 ∈ π(G), s17 ∈ {82160, 842400}. If 2 ·17 ∈ ω(G), since φ(2 ·17) = φ(17), we
deduce that s17 = s2·17. But by Lemma 2.1, 2 ·17 | 1+s2+s17+s2·17(=171692,
1692172), a contradiction. Therefore 2 · 17 6∈ ω(G). It follows that the Sylow
17-subgroup of G acts fixed point freely on the set of elements of order 2 and
|P17| | s2, a contradiction. So 17 6∈ π(G). Similarly we can rule out the primes
53, 589681, 758161, which can not belong to π(G).

Therefore {2, 3, 5, 7, 13} ⊆ π(G). If 3, 5, 7, 13 ∈ π(G), then by (1),
s3 = 82160, s5 = 303264, s7 ∈ {449280, 606528, 842400} and s13 = 1866240.

If 2a ∈ ω(G), then 0 ≤ a ≤ 10. By Lemma 2.1, |P2| | 1 + s2 + ... + s210
and so |P2| | 210.

If 3a ∈ ω(G), then 0 ≤ a ≤ 7. By Lemma 2.1, |P3| | 1 + s3 + ...+ s3i with
i = 3, 4, 5, 6, and |P3| | 38 (in this case, s3 = 82160, s32 = 256932, s33 = 449280,
s34 = 303264, s35 = 842400, and s36 = 303264). We also see that 37 6∈ ω(G).

If 22 · 3 ∈ ω(G), then by Lemma 2.3 of [13], s22·3 = 2 · s22 · t for some
integer t and s22·3 = 606528 (when s22 = 303264). Similarly, if 23 · 3 ∈ ω(G),
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then s23·3 = 606528 (when s23 = 303264). But by (1), we have a contradiction.
Therefore 23 · 3 6∈ ω(G).

If 32 ∈ ω(G), then by (1), s32 ∈ {256932, 303264, 449280, 589680, 606528,
758160, 842400, 1866240}.

Let 2 · 32 ∈ ω(G).

• If s32 ∈ {256932, 449280, 589680, 606528, 758160, 842400, 1866240},
then s2.32 = s32 .

• If s32 =303264, then then s2.32 ∈ {303264, 606528}.
By (1), we then obtain a contradiction, so 2 · 32 6∈ ω(G).

If 5a ∈ ω(G), then 0 ≤ a ≤ 3. If a = 3, then by Lemma 2.1, 53 |
1 + s5 + s52 + s53 , and s53 6∈ ω(G). Therefore |P5| | 1 + s5 + s52 and |P5| | 52.

If 2 · 5 ∈ ω(G), then by (1), s2·5 = 303264.

If 2 ·52 ∈ ω(G), then by Lemma 2.3 of [13], s2·52 = s52 ·t for some integer t
and s2·52 = s52 . But by Lemma 2.1, 2·52 | 1+s2+s5+s52 +s2·5+s2·52(=778220,
2130220), a contradiction. So 2 · 52 6∈ ω(G).

If 23 · 5 ∈ ω(G), then s23·5 = 4 · s23 · t for some integer t but the equation
has no solution since s23·5 ∈nse(G). Therefore 23 · 5 6∈ ω(G).

If 3 · 5 ∈ ω(G), then s3·5 = 2 · s5 · t for some integer t and s3·5 = 606528.
But by Lemma 2.1, 3 · 5 | 1 + s3 + s5 + s3·5(=991953), a contradiction. Hence
3 · 5 6∈ ω(G).

If 7a ∈ ω(G), then 0 ≤ a ≤ 2. If exp(P7) = 72, then by Lemma 2.1,
72 | 1 + s7 + s72 . But the equation has no solution in N since s72 ∈nse(G). So
exp(P7) = 7.

• Let s7=449280. Then by Lemma 2.1, |P7| | 1 + s7(=449281) and so
|P7| | 72.
• Let s7=606528. Then by Lemma 2.1, |P7| | 1 + s7(=606529) and so
|P7| | 7.

• Let s7=842400. Then by Lemma 2.1, |P7| | 1 + s7(=842401) and so
|P7| | 7.

If 2 · 7 ∈ ω(G), then by Lemma 1, s2·7 = s7 · t for some integer t and so
s2·7 = s7. But by Lemma 1, 2 · 7 | 1 + s2 + s7 + s2·7 (∈ {905932, 1220428,
1692172}), a contradiction. Similarly 3 · 7, 5 · 7 6∈ ω(G).

If 13a ∈ ω(G), then 0 ≤ a ≤ 2. If a = 1, then |P13| | 1 + s13 and so
|P13| | 13. If 132 ∈ ω(G), then s132 = 758160 and |P13| | 132.

If 2 · 13 ∈ ω(G), then s2·13 = s13 · t for some integer t and s2·13 = s13.
By Lemma 2.1, 2 · 13 | 1 + s2 + s13 + s2·13(=3814641), a contradiction. Hence
2 · 13 6∈ ω(G). Similarly 3 · 13, 5 · 13, 7 · 13 6∈ ω(G).

To remove the prime 7, we must show that 13 ∈ π(G).

Assume that 13 6∈ π(G). If 3, 5, 7 6∈ π(G), then G is a 2-group and so
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6065280 + 82160k1 + 256932k2 + 303264k3 + 449280k4 + 589680k5 + 606528k6 +
758160k7 + 842400k8 + 1866240k9 = 2a, where k1, k2, ..., k9 and a are non-
negative integers. Since ω(G) ⊆ {1, 2, 22, ..., 210} and |nse(G)| = 11, then the
equation has no solution in N.

Let us assume that 7 ∈ π(G).

• Let s7=449280.

– Let |P7| = 7. Then n7 = s7/φ(7) = 27 · 32 · 5 · 13 and 13 ∈ π(G), a
contradiction.

– Let |P7| = 49. Then 6065280 + 82160k1 + 256932k2 + 303264k3 +
449280k4+589680k5+606528k6+758160k7+842400k8+1866240k9 =
2a · 3b · 5c · 72, where k1, k2, ..., k9, a, b, c are non-negative integers

and 0 ≤
9∑
i=1

ki ≤ 13. But the equation has no solution in N.

• Let s7=606528. Then n7 = s7/φ(7) = 25 · 35 · 13 and 13 ∈ π(G), a
contradiction.

• Let s7=842400. Then n7 = s7/φ(7) = 24 ·33 ·52 ·13 and 13 ∈ π(G), again
a contradiction.

Let us assume that 5 ∈ π(G). We know that exp(P5) = 5, 52.

• Let exp(P5) = 5. Then by Lemma 2.1, |P5| | 1 + s5 and so |P5| = 5.
Since n5 = s5/φ(5) = 23 · 36 · 13, we see that 13 ∈ π(G), which is a
contradiction.

• Let exp(P5) = 52. Then by Lemma 2.1, |P5| | 1 + s5 + s52 for s52 ∈
{82160, 758160}, and so |P5| = 52.

– If s52=82160 and n5 = s52/φ(52) = 22 · 13 · 79, then 13 ∈ π(G), a
contradiction.

– If s52=758160 and n5 = s52/φ(52) = 22 ·36 ·13, then 13 ∈ π(G), also
a contradiction.

Let us assume that 3 ∈ π(G). We know that exp(P3) = 3, 32, ..., 36.

• Let exp(P3) = 3. Then by Lemma 2.1, |P3| | 1+s3 and |P3| | 33. If |P3| =
3, then n3 = s3/φ(2) = 23 · 5 · 13 · 79 and so 13 ∈ π(G), a contradiction.
If |P3| = 32, then 6065280+82160k1 +256932k2 +303264k3 +449280k4 +
589680k5 + 606528k6 + 758160k7 + 842400k8 + 1866240k9 = 2a · 32, where

k1, k2, ..., k9, a are non-negative integers and 0 ≤
9∑
i=0

ki ≤ 2. Since

6065280 ≤ |G| = 2a · 9 ≤ 6065280 + 2.1866240, then the equation has no
solution since a is at most ten. Also we can rule out the case |P3| = 33

as |P3| = 32.

• Let exp(P3) = 32. Then by (1), s32 ∈ {256932, 303264, 449280, 589680,
606528, 758160, 842400, 1866240}.
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If |P3| = 32, then 5, 13 ∈ π(G), a contradiction.

If |P3| > 32, then 6065280+82160k1 +256932k2 +303264k3 +449280k4 +
589680k5 + 606528k6 + 758160k7 + 842400k8 + 1866240k9 = 2a · 3b, where

k1, k2, ..., k9, a and b > 2 are non-negative integers and 0 ≤
9∑

k=0

ki ≤ 3,

and the equation has no solution since a is at most ten. Similarly we can
rule out this case as the case “exp(P3) = 3 and |P3| = 32”.

• The cases when exp(P3) ∈ {33, 34, 35, 36} may be ruled out in a manner
similar to that corresponding to the case exp(P3) = 3.

Therefore 13 ∈ π(G).

Let 7 ∈ π(G). If 7·13 ∈ ω(G), then by Lemma 2.1, 7·13 | 1+s7+s13+s7·13
and so s7·13 6∈nse(G). It follows that the Sylow 7-subgroup of G acts fixed
point freely on the set of elements of order 13 and |P7| | s13(=1866240), a
contradiction. Hence 7 6∈ π(G).

Therefore {2, 3, 5, 13} ⊆ π(G).

If 13 ∈ π(G) and exp(P13) = 13, then |P13| = 13 and n13 = s13/φ(13),
3, 5 ∈ π(G).

If 13 ∈ π(G) and exp(P13) = 132, then |P13| = 132 and n13 = s132/φ(132),
3, 5 ∈ π(G).

So we consider the following cases: π(G) = {2, 13} and π(G) = {2, 3, 5, 13}.
Case a. π(G) = {2, 13}.
If exp(P13) = 13, then |P13| = 13 and n13 = s13/φ(13), 3, 5 ∈ π(G), a

contradiction.

If exp(P13) = 132, then |P13| = 132 and n13 = s132/φ(132), 3, 5 ∈ π(G), a
contradiction.

Case b. π(G) = {2, 3, 5, 13}.
Since 5·13 6∈ ω(G), it follows that the Sylow 5-subgroup P5 of G acts fixed

point freely on the set of elements of order 13, |P5| | s13 and so |P5| = 5. We
also have |P13| = 13. Similarly we have that 2 · 13, 3 · 13 6∈ ω(G) and |P2| | 29,
|P3| | 36.

Therefore we can assume that |G| = 2a ·3b ·5 ·13. Since 6065280 = 27 ·36 ·
5 · 13 ≤ |G|, then (a, b) ∈ {(7, 6), (8, 6), (9, 6)}. So we have |G| = 27 · 36 · 5 · 13,
|G| = 28 · 36 · 5 · 13, or |G| = 29 · 36 · 5 · 13.

In the following we prove that there is no group such that |G| = 28·36·5·13
and nse(G)=nse(L4(3)).

We will first prove that G is insoluble. Assume that G is soluble. Since
s13 = 1866240 and |P13| = 13, then n13 = 1866240/12 = 27 · 35 · 5. By Lemma
2.5, we then obtain 5 ≡ 1 (mod 13), a contradiction. Hence G is insoluble.

Therefore there is a normal series 1 E K E L E G such that L/K is a
simple Ki-group with i = 3, 4.
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If L/K is isomorphic to a simple K3-group, we deduce from [7] that
L/K is isomorphic to one of the groups A5, A6, U4(2). Let L/K ∼= A5. Then
|G/L| | 26 · 35 · 13. Let A/K := CG/K(L/K). Then A/K ∩ L/K = 1. It is
easy to see that (G/K)/(A/K) .Aut(L/K) = S5 and so G/A . S5. Since
A/K,L/K C G/K, A/K × L/K ≤ G/K. Therefore |L/K| | |G/A| and so
G/K ∼= A5 or S5. i.e., |A| = 26 · 35 · 13 or 25 · 35 · 13. By Sylow’s theorem,
n13(A) ∈ {1, 27, 144, 3888}. Since ACG, we have that n13(A) = n13(G), and so
s13(G) ∈ {12, 351, 1872, 50544}, which contradicts s13(G) ∈nse(G). Similarly
we can rule out the other cases “L/K ∼= A6 and L/K ∼= U4(2)” as the case
“L/K ∼= A5”.

If L/K is isomorphic to a simple K4-group, then by Lemma 2.6, L/K ∼=
L4(3). So G/A ∼= L4(3), G/A ∼= Z2.L4(3) or G/A ∼= Z22 .L4(3).

If G/A ∼= L4(3), then |A| = 4 and A = Z(G). It follows that there exists
an element of order 4 · 13, a contradiction (Similarly as the argument above,
s4·13 = 12 · s4 · t for some integer t, but the equation has no solution since
s4·13 ∈nse(G)).

If G/A ∼= Z2.L4(3), then |A| = 2. It follows that A is a normal subgroup
generated by a 2-central element and so there is an element of order 2 · 13, a
contradiction since 2 · 13 6∈ ω(G).

If G/A ∼= Z22 .L4(3), then A = 1. But nse(G) 6=nse(Z22 .L4(3)).
Similarly, we can rule out the case “|G|=29·36·5·13 and nse(G)=nse(L4(3))”.
So we have that |G| = 27 · 36 · 5 · 13 = |L4(3)|. By assumption, nse(G)=

nse(L4(3)). Then by [14], G ∼= L4(3).
This completes the proof. �

4. SOME APPLICATIONS

On Thompson’s conjecture, if G and H are of the same order type, then
nse(G) =nse(H) and |G| = |H|. It is easy to get the following result.

Corollary 4.1. Let G is a group and p ≥ 5 is a prime. Then G ∼= L4(3)
if and only if nse(G)=nse(L4(3)) and |G| = |L4(3)|.

Shi gave the following conjecture.

Conjecture ([18]). Let G be a group and H a finite simple group. Then
G ∼= H if and only if (a) ω(G) = ω(H) and (b) |G| = |H|.

Then we have the following corollary.

Corollary 4.2. Let G is a group and p ≥ 5 is a prime. Then G ∼= L4(3)
if and only if ω(G) = ω(L4(3)) and |G| = |L4(3)|.
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