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LetG be a simple connected graph with vertex set V (G), then the degree distance
of G, D′(G), is defined as

D′(G) =
∑

x∈V (G)

d(x)
∑

y∈V (G)

d(x, y) ,

where d(x) and d(x, y) are the degree of x and the distance between x and y,
respectively. In this paper, lower and upper bounds on D′(G) are obtained in
terms of various graphical parameters like first Zagreb index, order, size, diam-
eter, radius, minimum degree, and graphs for which these bounds are attained
are characterized.
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1. INTRODUCTION AND NOTATION

In the last few years, a large number of mathematical investigations were
reported on graph invariants originating from chemistry, and which have chem-
ical applications (see [5, 6, 10, 14]). Quite a few of these graph invariants are
based on vertex degrees and the distances between vertices. In this paper an
invariant of connected graphs called the degree distance is considered. Let G be
a connected graph of order n and V (G) be its vertex set. We denote the degree
of a vertex x ∈ V (G) by d(x) and the distance between vertices x, y ∈ V (G)
by d(x, y). The expression

∑
x∈V (G) d

2(x) is known as first Zagreb index of G,
denoted by Zg(G) [9]. The degree distance of G is defined as

D′(G) =
∑

x∈V (G)

d(x)
∑

y∈V (G)

d(x, y).

The degree distance was first considered by Dobrynin and Kochetova [7]
and by Gutman [8], who used a different name for it. The degree distance of
a vertex x ∈ V (G) is given by D′(x) = d(x)

∑
y∈V (G)

d(x, y); we get D′(G) =
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x∈V (G)

D′(x). Another molecular descriptor is the molecular topological index

of G, denoted by MTI(G) [13] and is defined by MTI(G) = Zg(G) +D′(G).
The eccentricity ecc(x) of a vertex x is ecc(x) = maxy∈V (G) d(x, y). If

diam(G) and rad(G) denote the diameter and radius of a connected graphG re-
spectively, then diam(G) = maxx∈V (G) ecc(x) and rad(G) = minx∈V (G) ecc(x).
Let Ni(x) = {y : d(x, y) = i} for every 0 ≤ i ≤ ecc(x). The minimum degree
and maximum degree of G are denoted by δ(G) and ∆(G), respectively. A
perfect matching of a graph G is a subset M of the edge set of G such that
(a) every two edges of M have no common end;
(b) every vertex of G is incident to an edge of M .

Note that if G has a perfect matching then its order is even. As usual,
we denote by Kn and Ka,b the complete graph on n vertices and the complete
bipartite graph on a+ b vertices with parts of size a and b.

In the mathematical literature D′(G) was investigated by many people.
In [17] it was shown that for n ≥ 2 in the class of connected graphs of order n,
minimum of D′(G) equals 3n2−7n+4 and the unique extremal graph is K1,n−1,
thus solving a conjecture proposed by Dobrynin and Kochetova [7]. In [2, 17,
18] several properties of the degree distance of connected graphs of fixed order
and size were determined. In [15] and [16] it was shown that in the class of
connected unicyclic graphs of order n the unique graph having minimum degree
distance is K1,n−1+e. An ordering of unicyclic graphs by their degree distance
was deduced in [3] and unicyclic graphs with maximum degree distance were
studied in [11]. In [20], authors presented an ordering of connected graphs
having small degree distances, by introducing six new members in the list
consisting of three graphs having minimum degree distance [19]. In [12], n-
vertex unicyclic graphs with girth k, having minimum and maximum degree
distance were characterized and was proved that the graph Bn, obtained from
two triangles linked by a path, is the unique graph having the maximum degree
distance among bicyclic graphs of order n.

In [4], Dankelmann, Gutman, Mukwembi and Swart gave an asymptoti-

cally sharp upper bound D′(G) ≤ 1
4nd(n−d)2+O(n

7
2 ) for graphs of order n and

diameter d and as a corollary they obtained the bound D′(G) ≤ 1
27n

4 +O(n
7
2 )

for graphs of order n; this essentially proves a conjecture proposed by Tomescu
[17]. In [21] Zhou and Trinajstić reported some properties of the reverse degree
distance, including its bounds for connected (molecular) graphs, expressed in
terms of other indices like first Zagreb index and Wiener index. For a con-
nected graph of order n, size m and diameter d, since reverse degree distance
rD′(G) and degree distance are related by

rD′(G) = 2(n− 1)md−D′(G),
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properties given in [21] give us some further information about relationship of
degree distance with other indices.

In this paper, we present upper and lower bounds for the degree distance
of simple connected graphs in terms of different graph invariants like first Za-
greb index, radius, diameter and minimum degree, and characterize graphs for
which these bounds are best possible.

2. BOUNDS ON DEGREE DISTANCE

Lemma 2.1. Let G be a connected graph of order n and x ∈ V (G) such
that ecc(x) = p. Then:

D′(x) ≥ d(x)(2n− d(x) +
p2 − 3p

2
− 1);(1)

D′(x) ≤ d(x)(d(x) + p(n− d(x))− p2 − p
2
− 1).(2)

Equality holds in (1) if and only if:

p = 1orp = 2orp ≥ 3and|N3(x)| = . . . = |Np(x)| = 1.

Equality holds in (2) if and only if: p = 1 or p = 2 or p ≥ 3 and
|N2(x)| = . . . = |Np−1(x)| = 1.

Proof. For p = 1 and p = 2 we have D′(x) = (n − 1)2 and D′(x) =
d(x)(2n− 2− d(x)), respectively, and both (1) and (2) are equalities.

Let p ≥ 3. The minimum value of D′(x) is reached only for |N2(x)| =
n − d(x) − p + 1 and |Ni(x)| = 1 for every 3 ≤ i ≤ p, thus giving D′(x) ≥
d(x)(d(x) + 2(n−d(x)−p+ 1) + 3 + 4 + . . .+p) = d(x)(2n−d(x) + p2−3p

2 −1).
The maximum value is attained only for |Np(x)| = n− d(x)− p+ 1 and

|Ni(x)| = 1 for every 2 ≤ i ≤ p− 1.
In this case D′(x) = d(x)(d(x)+2+3+ . . .+(p−1)+p(n−p−d(x)+1)) =

d(x)(d(x) + p(n− d(x))− p2−p
2 − 1). �

Note that inequality (1) was used in [19, 20]. Since in a shortest path
of length ecc(x) starting from x there are ecc(x) + 1 vertices, it follows that
ecc(x) + 1 + d(x)− 1 ≤ n, or

ecc(x) + d(x) ≤ n(3)

holds for every vertex x ∈ V (G). We need the following result.

Lemma 2.2. For any connected graph G of order n, we have

diam(G) + ∆(G) ≤ n+ 1.(4)
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Proof. Let x ∈ V (G) such that ∆(G) = d(x). Let diam(G) = d so there
exists at least one diametral path P in G of length d. We have the following
three possibilities for x:

(a) x is an end of P .

(b) x lies on P but is not an end.

(c) x does not lie on P .

(a) When x is an end of the diametral path P , then ecc(x) = d and since
in a shortest path of length d starting from x there are d+ 1 vertices, it follows
that d+ 1 + ∆(G)− 1 ≤ n or d+ ∆(G) ≤ n. So we are done in this case.

(b) In this case x lies on P but is not an end of P , so x is adjacent to
exactly two vertices on P as otherwise diameter d will decrease, so ∆(G) ≤
n− (d+ 1) + 2, or ∆(G) + d ≤ n+ 1, as desired.

(c) When x does not lie on P then it can only be adjacent to at most 3
(consecutive) vertices on P , so ∆(G) ≤ n − (d + 1 − 3) − 1, or ∆(G) + d ≤
n+ 1. �

Theorem 2.3. Let G be a connected graph of order n, size m and diam-
eter equal to d. We have

D′(G) ≤ (1− d)Zg(G) + 2mnd− (d2 − d+ 2)m.(5)

Equality holds if and only if G is Kn or a graph of diameter 2.

Proof. Denote

ϕ(z) = −z
2

2
+ z(n− d(x) +

1

2
)− 1.(6)

This function is strictly increasing for z ∈ [1, n − d(x) + 1
2 ]. For integer

values of z it takes two equal maximum values for z = n − d(x) and z =
n − d(x) + 1. Lemma 2.2 implies that for every vertex x we have d + d(x) ≤
d+ ∆(G) ≤ n+ 1, or d ≤ n− d(x) + 1 for all x ∈ V (G). Since ecc(x) ≤ d for
every x ∈ V (G) this gives us ϕ(ecc(x)) ≤ ϕ(d) for every vertex x ∈ V (G).

From (2) we get

D′(x) ≤ d(x)(d(x) + d(n− d(x))− d2 − d
2
− 1).(7)

Finally, from (7) we deduce

D′(G) =
∑

x∈V (G)

D′(x) ≤
∑

x∈V (G)

d2(x)(1− d) +
∑

x∈V (G)

d(x)(nd− d2 − d
2
− 1),

which implies (5) since
∑

x∈V (G) d(x) = 2m. Suppose that equality holds
in (5). Since (7) is an equality for every x ∈ V (G) it follows that vertices
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of G have equal eccentricities ecc(x) = d and by Lemma 2.1, if d ≥ 3 then
|N2(x)| = . . . = |Nd−1(x)| = 1 for every x ∈ V (G).

If d ≥ 4 consider a shortest path x1, x2, . . . , x5 inG. In this case d(x3, x1) =
d(x3, x5) = 2, hence |N2(x3)| ≥ 2, a contradiction. It follows that 1 ≤ d ≤ 3.
Suppose that d = 3 and let x1, x2, x3, x4 be a shortest path of length 3 in G.

Since N2(x1) = {x3}, it follows that ecc(x2) = 2, a contradiction. The
remaining cases are d = 1, when G is Kn or d = 2, when G is a graph of
diameter 2.

If d = 1 or 2 (7) is an equality for every x ∈ V (G), which implies that
(5) is also an equality. �

Corollary 2.4. Let G be a connected graph of order n, size m and
diameter d. Then

D′(G) ≤ 2mnd− (d− 1)
4m2

n
− (d2 − d+ 2)m.(8)

Equality holds if and only if G is Kn or a regular graph of diameter 2.

Proof. Since (5) holds, by the Cauchy- Schwarz inequality we have nZg(G)

= n
∑

x∈V (G) d
2(x) ≥ 4m2,i.e., Zg(G) ≥ 4m2

n . Since 1 − d ≤ 0 this implies

(1− d)Zg(G) ≤ (1− d)4m
2

n and (8) is proved.
Suppose that equality holds in (8). In this case the equality in the Cauchy-

Schwarz inequality holds if and only if G is regular. But from Theorem 2.3 G is
Kn, which is regular, or a graph of diameter 2 which must be also regular. �

Theorem 2.5. If G is a connected graph of order n, size m and minimum
degree δ(G) = δ, then

D′(G) ≤ m(n2 + n+ 2) + nδ(
δ2

2
− nδ +

δ

2
).(9)

Equality holds if and only if G is Kn or n is even and G is deduced from
Kn by deleting the edges of a perfect matching.

Proof. The maximum value of ϕ(z) defined by (6) for integer values of z
is equal to

ϕ(n− d(x)) =
n2

2
+
n

2
− 1 +

d2(x)

2
− nd(x)− d(x)

2
.

From (2) and (3) we get

D′(x) ≤ d(x)(
n2

2
+
n

2
− 1 +

d2(x)

2
− nd(x) +

d(x)

2
).(10)

Since the function

ψ(z) =
z3

2
− z2(n− 1

2
)
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is strictly decreasing for z ∈ [1, n− 1], it follows that

d(x)(
d2(x)

2
− nd(x) +

d(x)

2
) ≤ δ(δ

2

2
− nδ +

δ

2
)

for every x ∈ V (G). Finally, from (10) we deduce

D′(G) =
∑

D′(x) ≤ (
n2

2
+
n

2
− 1)

∑
x∈V (G)

d(x) + nδ(
δ2

2
− nδ +

δ

2
)

= m(n2 + n− 2) + nδ(
δ2

2
− nδ +

δ

2
).

Suppose that equality holds in (9). In this case d(x) = δ for every x ∈
V (G) i.e., G is δ-regular and ecc(x) = n− d(x), or ecc(x) + d(x) = n for every
vertex x ∈ V (G). It follows that vertices of G have equal eccentricities ecc(x) =
p = n − δ and by Lemma 2.1 if p ≥ 3 then |N2(x)| = . . . = |Np−1(x)| = 1 for
every x ∈ V (G).

If p ≥ 4 consider a shortest path x1, x2, . . . , x5 inG. In this case d(x3, x1) =
d(x3, x5) = 2, hence |N2(x3)| ≥ 2, a contradiction. It follows that 1 ≤ p ≤ 3.
Suppose that p = 3 and let x1, x2, x3, x4 be a shortest path of length 3 in G.

Since N2(x1) = {x3} it follows that ecc(x2) = 2 < p, a contradiction. The
remaining cases are p = 1, when G is Kn or p = 2. In the last case it follows
that d(x) = n − 2 for every x ∈ V (G), which implies that n is even and G is
deduced from Kn by deleting the edges of a perfect matching. �

If G is a connected graph of order n, size m and diameter d = 2, then
D′(G) = 2m(2n− 2)− Zg(G) and Corollary 2.4 yields

D′(G) ≤ 2m(2n− 2)− 4m2

n
.(11)

Equality holds in (11) if and only if G is a regular graph.

Since almost all graphs of order n have diameter equal to 2 as n → ∞
[1], the following corollary holds.

Corollary 2.6. For almost all connected graphs G of order n and size
m the following inequality holds as n→∞: D′(G) ≤ 2m(2n− 2)− 4m2

n .

Theorem 2.7. Let G be a connected graph of order n, size m and radius
equal to r. We have

D′(G) ≥ m(2n− 2 + r2 − r).

Equality holds if and only if G is Kn or n is even and G is obtained from
Kn by deleting the edges of a perfect matching.
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Proof. Since (3) holds it follows that n− d(x) ≥ ecc(x), and from (1) we
deduce that D′(x) ≥ d(x)(n−1+(ecc(x)2−ecc(x))/2) ≥ d(x)(n−1+(r2−r)/2),
thus implying D′(G) ≥ m(2n− 2 + r2 − r).

Suppose that equality holds in (12). It follows that equality holds in (1),
or n − d(x) = ecc(x) and also ecc(x) = r for every x ∈ V (G), i. e., G is
regular of degree n − r and has diameter equal to r. Moreover, if r ≥ 3 then
|N3(x)| = . . . = |Nr(x)| = 1 holds for every x ∈ V (G). We also have |N2(x)| =
n− r− d(x) + 1 = 1 for every x ∈ V (G). By an argument similar to that used
in the proof of Theorem 2.3 we deduce that r ≤ 3. If r = 3 let x, u1, u2, u3 be
a shortest path in G. It follows that N2(x) = {u2}, N3(x) = {u3}. As above,
we get ecc(u1) = 2, a contradiction.

Finally, we have r = 1 or r = 2. For r = 1 G is Kn and for r = 2 G is
(n − 2)-regular, hence n is even and G may be obtained from Kn by deleting
the edges of a perfect matching. �
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[9] I. Gutman and N. Trinajstić, Graph theory and molecular orbitals III. Total π − electron
energy of alternant hydrocarbons. Chem. Phys. Lett. 17 (1972), 535–538.

[10] I. Gutman and B. Furtula (Eds.), Novel Molecular Structure Descriptors − Theory and
Applications. I–II, Univ. Kragujevac, Kragujevac, 2010.

[11] Y. Hou and A. Chang, The unicyclic graphs with maximum degree distance. J. Math.
Study 39 (2006), 18–24.
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