BÔCHER'S THEOREM IN AN INFINITE NETWORK

MADHU VENKATARAMAN

Communicated by Lucian Beznea

In this article, we obtain a representations for positive harmonic functions defined outside a finite set in an infinite network X on the lines of the Martin integral representation. This representation takes different forms depending on whether the network is hyperbolic or parabolic.

AMS 2010 Subject Classification: 31A30, 31C20.

Key words: Bôcher's theorem, Martin integral.

1. INTRODUCTION

The Bôcher's theorem in \mathbb{R}^n , $n \geq 2$, is: "Let Ω be an open set in \mathbb{R}^n and $a \in \Omega$. If u is harmonic on $\Omega \setminus \{a\}$ and positive near a, then there is a harmonic function v on Ω and a constant $b \geq 0$ such that $u(x) = v(x) + b|x - a|^{2-n}$, n > 2 and $u(x) = v(x) + b\log \frac{1}{|x - a|}$, n = 2, for all $x \in \Omega \setminus \{a\}$." By taking the Kelvin transformation (see Axler *et al.* [3]) in \mathbb{R}^n , we have also representations for positive harmonic functions defined outside a compact set in \mathbb{R}^n .

In the discrete potential theory, the well known Laurent decomposition theorem for harmonic functions in annular domains in \mathbb{R}^n can also be proved for the harmonic functions in an infinite network (see [5]). As a consequence of this decomposition in infinite networks, Bôcher's theorem for harmonic functions with a finite number of singular points in an infinite network has been proved. We obtain also a representation for positive harmonic functions defined outside a finite set in an infinite network X on the lines of the Martin integral representation [4]. This representation takes different forms depending on whether the network is hyperbolic or parabolic.

2. PRELIMINARIES

Let X be an infinite network with a countable number of vertices, connected and without self loops. There is a collection of numbers $t(x,y) \geq 0$, called conductance such that t(x,y) > 0 if and only if $x \sim y$ (that is x and y

are joined by an edge in which case x and y are called neighbours in X). For any vertex $x \in X$, we write $t(x) = \sum_{y \in X} t(x, y)$. Since X is connected, t(x) > 0.

Note that we have not placed the restriction t(x,y) = t(y,x) for every pair $x,y \in X$. Also we assume the locally finiteness condition, that is any vertex x has only a finite number of neighbours. For any subset E of X, we write $E = \{x : x \text{ and all its neighbours are in } E\}$ and $\partial E = E \setminus E$. E is referred to as the interior of E and E is referred to as the boundary of E.

If u is a real-valued function on E, the Laplacian of u at any $x \in E$ is defined as $\Delta u(x) = \sum_{y \sim x} t(x,y)[u(y)-u(x)]$. u is said to be superharmonic (respectively harmonic, subharmonic) on E if $\Delta u(x) \leq 0$ (respectively $\Delta u(x) = 0$, $\Delta u(x) \geq 0$) for every $x \in E$.

Harnack property for superharmonic functions: Let F be a subset of X, and E be a connected subset of F. Let a and b be two vertices in E. Then, there exist two constants $\alpha>0$ and $\beta>0$ such that for any non-negative superharmonic function u on F, $\alpha u(b) \leq u(a) \leq \beta u(b)$. Since E is connected, there exists a path $\{a=a_0,a_1,...,a_n=b\}$ connecting a and b in E. Take any non-negative superharmonic function u on F. Then, $t(a)u(a) \geq \sum\limits_{x \sim a_1} t(a,x)u(x)$. In particular, $t(a)u(a) \geq t(a,a_1)u(a_1)$. Again $t(a_1)u(a_1) \geq \sum\limits_{x \sim a_1} t(a_1,x)u(x)$, so that $t(a_1)u(a_1) \geq t(a_1,a_2)u(a_2)$. Hence,

$$u(a) \ge \frac{t(a, a_1)}{t(a)} \times \frac{t(a_1, a_2)}{t(a_1)} u(a_2).$$

Proceeding further, we arrive at the inequality

$$u(a) \ge \frac{t(a, a_1)}{t(a)} \times \frac{t(a_1, a_2)}{t(a_1)} \times \dots \times \frac{t(a_{n-1}, a_n)}{t(a_{n-1})} u(b),$$

which is of the form $u(a) \ge \alpha u(b)$. The other inequality $u(a) \le \beta u(b)$ is proved similarly.

A positive superharmonic function $u \geq 0$ on E is called a potential if and only if for any subharmonic function v on E such that $v \leq u$, we have $v \leq 0$. If there exists a nonconstant positive superharmonic function on X, then X is said to be a hyperbolic network. If it is not hyperbolic, then X is referred to as a parabolic network. In the classical case \mathbb{R}^2 is parabolic and \mathbb{R}^n , $n \geq 3$ is hyperbolic.

We say that a superharmonic function u on X has the harmonic support in E if $\Delta u(x) = 0$ for every $x \in X \setminus E$. If E is a finite set and if $\Delta u(x) = 0$ for every $x \in X \setminus E$, then we say that u has finite harmonic support.

3. HARMONIC SINGULARITY AT A VERTEX

The classical Bôcher Theorem gives a representation for positive harmonic functions with point singularity in \mathbb{R}^n , $n \geq 2$. In \mathbb{R} , interpreting as usual linearity as harmonicity, we have a representation analogous to the Bôcher Theorem: If u is a continuous function in (-1,1) and harmonic outside 0, then there exist a constant α and a harmonic function v in (-1,1) such that $u(x) = v(x) + \alpha |x|$ for all x. This latter result has the following counter part in an infinite network. Recall that if X is an infinite network and e is a vertex in X, then there exists a unique function $q_e(x)$ in X such that $\Delta q_e(x) = \delta_e(x)$ for all x in X ($q_e(x)$ is a potential if X is hyperbolic and is a pseudo-potential [1] if X is parabolic).

THEOREM 3.1. Let E be a subset in an infinite network, $e \in E$. Let u be a real-valued function on E, harmonic at every vertex in $E \setminus \{e\}$. Then there exists a unique constant α such that $u(x) = v(x) + \alpha q_e(x)$ for $x \in E$, where v is harmonic in E.

Proof. Let $\Delta u(e) = \alpha$. Write $v(x) = u(x) - \alpha q_e(x)$. Then for every $x \in \stackrel{\circ}{E} \setminus \{e\}$, $\Delta v(x) = 0$ and $\Delta v(e) = \alpha - \alpha(1)$. Thus, $\Delta v(x) = 0$ for every $x \in \stackrel{\circ}{E}$, that is v is harmonic in E. \square

Remark:

- i) The above representation is not so straight forward if the singular vertex happens to be the vertex at infinity.
- ii) The above theorem can also be regarded as a special case of the Laurent Decomposition Theorem in an infinite network ([5, Theorem 3.4]).

4. POSITIVE SUPERHARMONIC FUNCTIONS DEFINED OUTSIDE A FINITE SET IN A HYPERBOLIC NETWORK

In this section, we obtain a Riesz-Martin representation for nonnegative superharmonic functions in a neighbourhood of the vertex at infinity, that is outside a finite set in a hyperbolic (infinite) network. This is a generalisation of the Bôcher representation of nonnegative harmonic functions defined outside a compact set in a Riemannian manifold.

Let X be a hyperbolic network. Fix a vertex e in X. Let $H_0^+(e)$ denote the set of all non-negative functions h on X such that h(e) = 0 and $\Delta h(x) = 0$ for each $x \neq e$. H^+ denotes the set of all non-negative harmonic functions on X. Clearly H^+ is a convex cone that is if $u, v \in H^+$ then $\alpha u + \beta v \in H^+$ where α, β are any non-negative numbers. Let H_1^+ denote the class of positive harmonic

functions on X taking the value 1 at the fixed vertex e. Let $u \in H_1^+(e)$. u is said to be minimal if and only if any $v \in H^+$, $0 \le v \le u$ is of the form $v = \lambda u$ for some constant λ . Let Λ_1 be the set of minimal points in H_1^+ . A function u is said to be extremal if u is of the form $u = \lambda u_1 + (1 - \lambda)u_2$ for some $0 \le \lambda \le 1$, then $u = u_1 = u_2$. If u is extremal then it is minimal. From the following propositions we can claim that H_1^+ is compact (vertexwise convergence topology).

PROPOSITION 4.1 ([1] V. Anandam). Suppose $\{h_n\}$ is a sequence in H_1^+ converging to h at each vertex in X. Then $h \in H_1^+$.

Proposition 4.2 ([1] V. Anandam). Suppose $\{h_n\}$ is a sequence of harmonic functions in H_1^+ . Then there exists a subsequence of $\{h_n\}$ converging to a function h in H_1^+ .

In \mathbb{R}^2 , *i.e.*, in a Riemmanian manifold, suppose h(x) is a harmonic function outside a disc, then h(x) can be written as $h(x) = \alpha \log(x) + H(x) + b(x)$ outside a disc where H(x) harmonic in \mathbb{R}^2 and b(x) is bounded. In particular, if h(x) > 0, then $h(x) = \alpha \log(x) + b(x)$.

In \mathbb{R}^3 , suppose h(x) is harmonic outside a ball, then h(x) can be written as h(x) = H(x) + b(x) where H(x) is harmonic in \mathbb{R}^3 and b is bounded. In particular, if $h(x) \ge 0$ outside, then $H(x) \ge -b(x) \Rightarrow H(x)$ is constant.

V. Anandam proved that (see [2]), in a hyperbolic Riemmannian manifold, suppose h(x) is harmonic outside a compact set, then there always exists a harmonic function H and a potential p such that $|h-H| \leq p$ outside a compact set. This representation is unique. For, if $|h - H_1| \le p_1$ is another such representation, then $|H-H_1| \le p+p_1$ outside a compact set. Since $p+p_1$ is potential and $|H - H_1|$ is subharmonic and also majorized by the potential $p + p_1$ outside a compact set, hence $|H - H_1| \equiv 0$, that is $H = H_1$. Suppose $h \geq 0$, then $h - p \le H \le h + p$ outside a compact set $\Rightarrow -p \le h - p \le H \Rightarrow -H \le p$ $\Rightarrow -H \leq 0$ i.e., $H \geq 0$. Then h(x) = H(x) + q(x) outside a compact set such that $|q(x)| = |h - H| \le \text{potential}, \ h(x) = \int v(x) d\mu(x) + q(x)$. Thus, in a

hyperbolic Riemannian manifold R, if $h \geq 0$ harmonic outside a compact set then there exists a unique Radon measure μ on R with support ξ such that

$$\left| h(x) - \int_{\xi} v(x) d\mu(x) \right| \le p(x)$$
 where p is a potential in R .

The following theorem can be regarded as a generalisation of the Bôcher's theorem for positive harmonic functions outside a compact set in a Riemannian manifold. It is actually a Riesz-Martin representation for positive superharmonic functions defined outside a finite set in a hyperbolic network X.

THEOREM 4.3. Let X be a hyperbolic network. If $u \ge 0$ is a superharmonic function outside a finite set in X, then u(x) can be written as $u(x) = \int_{\Lambda_1} h(x) d\mu(h) + \sum_{y \in X} G_y(x)\nu(y)$ where μ is a measure with support in Λ_1 , ν is a real-valued function on X and $G_u(x)$ is the Green function in X.

Proof. Let u be a superharmonic function outside a finite set. Then u can be written as $u=v+p_1-p_2$ outside a finite set, where p_1 and p_2 are potentials in X with point harmonic support and v is a superharmonic on X ([5]). If $u \geq 0$ outside a finite set then $v+p_1-p_2 \geq 0$ outside a finite set. Hence, we get $v \geq p_2-p_1 \geq -p_1$ outside a finite set that is $-v \leq p_1$ outside a finite set. As p_1 is a potential we have $v \geq 0$ on X. Then by the Riesz representation, v can be written as the sum of a potential q and a non-negative harmonic function H, that is v=q+H. Hence, $u=H+q+p_1-p_2$.

We know that, in a hyperbolic network, if f is a potential then there exists a real-valued function $\lambda(x) \geq 0$ in X such that $f(x) = \sum_y \lambda(y) G_y(x)$ for all $x \in X$ (see [1, p. 68]). Therefore $q(x) + p_1(x) - p_2(x) = \sum_y G_y(x) \nu(y)$, where $\nu(y)$ is a real-valued function on X. Also H can be represented as a Martin integral (see [1, p. 62]) $H = \int_{\Lambda_1} h \mathrm{d}\mu(h)$. Hence, $u = \int_{\Lambda_1} h \mathrm{d}\mu(h) + \sum_{y \in X} G_y(x) \nu(x)$. \square

5. POSITIVE HARMONIC FUNCTIONS DEFINED OUTSIDE A FINITE SET IN A PARABOLIC NETWORK

Let X be a parabolic network. Let e be a fixed vertex. For each $e_i \sim e$, we shall refer to the subset $[e, e_i] = \{x : \text{there exists a path joining } x \text{ to } e \text{ which passes though } e_i\}$ as the section determined by e and e_i . $[e, e_i]$ is referred to as an infinite section if there is an infinite number of vertices in it. Otherwise it is a finite section. Since X is locally finite, note that there should be at least one infinite section determined by e and one of its neighbours. If $\omega_i = [e, e_i]$, then each $x \in \omega_i \setminus \{e\}$ is an interior vertex of ω_i . e is the only common vertex for all ω_i 's. We assume that e and e_i belong to ω_i . Then $X = \bigcup_{i=1}^n \omega_i$.

Theorem 5.1. Let X be a parabolic network. If $h \geq 0$ is a harmonic function defined outside a finite set in X, then h(x) can be written as $h(x) = \int u(x) d\nu(u) + a$ bounded harmonic function outside a finite set, where ν is a measure on Λ_1 .

Proof. Let \Im be the family of non-negative harmonic functions h on $X \setminus \{e\}$ such that h(e) = 0. We know that \Im is non-empty. For there should be at least one infinite section $\omega_i = [e, e_i]$ determined by e and there exists a function $h \geq 0$ on ω_i such that h(e) = 0, h(x) > 0 if $x \in \omega_i \setminus \{e\}$ and $\Delta h(x) = 0$ at every vertex $x \in \omega_i \setminus \{e\}$ [1, Theorem 3.2.2]. Suppose ω is a finite section determined by e. If $h \in \Im$, suppose $h \neq 0$ on ω . If possible, let $\max_{x \in \omega} h(x) = M > 0$. Then h(y) = M for $y \in \omega$. As $\Delta h(x) = 0$ for each $x \in \omega \setminus \{e\}$, h(z) = M at all neighbours z of y. Since the vertex y is connected to the vertex e, we should have h(e) = M > 0, which is a contradiction to the fact that h(e) = 0.

Let $\omega_1, \omega_2, \ldots, \omega_k$ be the infinite sections determined by e, corresponding to the neighbours e_1, e_2, \ldots, e_k of e. Let \Im_1 be the subfamily of \Im such that $u \in \Im_1$ if and only if $u \in \Im$ and $u(e_i) = 1$ or 0 for each i, $1 \le i \le k$, and u = 0 on each finite section. Clearly \Im_1 is compact (by Proposition 4.2). If $u \in \Im_1$, $u \not\equiv 0$ is minimal then u = 0 except in one infinite section ω_i . Hence, if $v \in \Im_1$, then $v = \sum_{i=1}^k \int\limits_{\Lambda_{1i}} u \mathrm{d}\mu_i(u)$ where Λ_{1i} denotes the set of all minimal

functions in ω_i . Let $\Lambda_1 = \bigcup_{i=1}^{\kappa} \Lambda_{1i}$. Let μ be measure on Λ_1 such that $\mu = \mu_i$ on each Λ_{1i} . Then we can write $u = \int u d\mu(u)$

each Λ_{1i} . Then we can write $v = \int_{\Lambda_1} u d\mu(u)$.

We know that [1, Lemma 3.4.2], if h is a harmonic function defined outside a finite set in X, then there exists a real-valued function h_0 on X such that $\Delta h_0(x) = 0$ if $x \neq e$ and $(h_0 - h)$ is bounded outside a finite set in X. Hence, if h is a lower bounded harmonic function defined outside a finite set, then there exists h_0 on X such that $h_0 = h$ + bounded function outside a finite set. That is h_0 is lower bounded on X. Consequently, by the Minimum Principle in a parabolic network [1, Theorem 3.4.1], $h_0(x) \geq h_0(e)$ for all $x \in X$. Then replacing h_0 by $h_0 - h_0(e)$, we can suppose $h_0 \in \mathfrak{F}$, so that $h_0(x) = \sum_{i=1}^k v_i(x)$

where $v_i(x) = \frac{h_0^{(i)}(x)}{h_0^{(i)}(e_i)} h_0^{(i)}(e_i), h_0^{(i)}(x) = \begin{cases} h_0(x), & \text{if } x \in \omega_i \\ 0, & \text{if } x \notin \omega_i. \end{cases}$ Note $v_i \in \mathfrak{I}_1$ so that $v_i(x) = \int u d\mu_i(u)$. Write $\nu = \sum_{i=1}^k h_0^{(i)}(e_i)\mu_i$, then $h_0(x) = \sum_{i=1}^k h_0^i(x) = \sum_{i=1}^k h_0^i(x)$

$$\sum_{i=1}^{k} \int_{\Lambda_{1i}} u(x) h_0^{(i)}(e_i) d\mu_i(u) = \int_{\Lambda_1} u d(x) d\nu(u). \text{ Hence, } h(x) = \int_{\Lambda_1} u(x) d\nu(u) + a$$

bounded harmonic function outside a finite set. \Box

REFERENCES

- [1] V. Anandam, Harmonic functions and potentials on finite or infinite networks. UMI Lecture Notes 12, Springer, 2011.
- [2] V. Anandam, Espaces harmoniques sans potentiel positif. Ann. Inst. Fourier 22 (1972), 7–12.
- [3] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory. Springer-Verlag, 2001.
- [4] M. Brelot, Axiomatique des fonctions harmoniques. Les Presses de l'Université, Montréal, 1965.
- [5] Madhu Venkataraman, Laurent Decomposition for Harmonic and Biharmonic Functions in an Infinite Network. Hokkaido Mathematical Journal, 42 (2013), 345–356.

Received 25 October 2012

VIT University, School of Advanced Sciences, Vellore - 632014, India madhusoothanan_82@yahoo.com