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In this article, we obtain a representations for positive harmonic functions defined
outside a finite set in an infinite network X on the lines of the Martin integral
representation. This representation takes different forms depending on whether
the network is hyperbolic or parabolic.
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1. INTRODUCTION

The Bocher’s theorem in R™, n > 2, is: “ Let €2 be an open set in R" and
a € Q. If u is harmonic on 2\ {a} and positive near a, then there is a harmonic
function v on  and a constant b > 0 such that u(z) = v(x)+blx—al?>~™, n > 2
and u(z) = v(z) + blog :L‘ia’ n = 2, for all z € Q\ {a}.” By taking the
Kelvin transformation (see Axler et al. [3]) in R", we have also representations
for positive harmonic functions defined outside a compact set in R"™.

In the discrete potential theory, the well known Laurent decomposition
theorem for harmonic functions in annular domains in R™ can also be proved
for the harmonic functions in an infinite network (see [5]). As a consequence of
this decomposition in infinite networks, Bocher’s theorem for harmonic func-
tions with a finite number of singular points in an infinite network has been
proved. We obtain also a representation for positive harmonic functions de-
fined outside a finite set in an infinite network X on the lines of the Martin
integral representation [4]. This representation takes different forms depending
on whether the network is hyperbolic or parabolic.

2. PRELIMINARIES

Let X be an infinite network with a countable number of vertices, con-
nected and without self loops. There is a collection of numbers t(x,y) > 0,
called conductance such that t(x,y) > 0 if and only if x ~ y (that is x and y
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are joined by an edge in which case x and y are called neighbours in X). For

any vertex = € X, we write t(x) = Y t(x,y). Since X is connected, t(z) > 0.
yeX

Note that we have not placed the restriction ¢(z,y) = t(y,x) for every pair

z,y € X. Also we assume the locally finiteness condition, that is any vertex

z has only a finite number of neighbours. For any subset E’ of X, we write

= {z : z and all its neighbours are in £} and 0F = E \ E. E is referred to
as the interior of F¥ and OF is referred to as the boundary of F.

[¢]
If u is a real-valued function on F, the Laplacian of v at any z € F

is defined as Au(z) = > t(z,y)[u(y) — u(z)]. v is said to be superharmonic
Yy~
(respectively harmonic, subharmonic) on E if Au(x) < 0 (respectively Au(z) =
0, Au(x) > 0) for every z € E.
Harnack property for superharmonic functions: Let F' be a subset of X,

and E be a connected subset of Jg. Let a and b be two vertices in E. Then,
there exist two constants a > 0 and S > 0 such that for any non-negative
superharmonic function u on F, au(b) < u(a) < fu(b). Since E is connected,
there exists a path {a = ag, a1, ...,a, = b} connecting a and b in E. Take any

non-negative superharmonic function v on F. Then, t(a)u(a) > > t(a,z)u(x).
xr~a
In particular, t(a)u(a) > t(a,ar)u(ar). Again t(aj)u(ar) > > t(ai,x)u(x), so
T~al

that t(a1)u(ar) > t(a1,az)u(az). Hence,
t(a,a1) y t(a1,az)

> .
M= Ty )
Proceeding further, we arrive at the inequality
U(CL) > t(aa al) t(alyaQ) t(anflaan)u(b)’
t(a) t(ay) t(an—1)

which is of the form u(a) > au(b). The other inequality u(a) < fu(b) is proved
similarly.

A positive superharmonic function u© > 0 on F is called a potential if and
only if for any subharmonic function v on F such that v < u, we have v < 0.
If there exists a nonconstant positive superharmonic function on X, then X is
said to be a hyperbolic network. If it is not hyperbolic, then X is referred to
as a parabolic network. In the classical case R? is parabolic and R", n > 3 is
hyperbolic.

We say that a superharmonic function v on X has the harmonic support
in E if Au(xz) =0 for every x € X \ E. If E is a finite set and if Au(z) = 0 for
every z € X \ E, then we say that u has finite harmonic support.
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3. HARMONIC SINGULARITY AT A VERTEX

The classical Bocher Theorem gives a representation for positive harmonic
functions with point singularity in R™, n > 2. In R, interpreting as usual
linearity as harmonicity, we have a representation analogous to the Bocher
Theorem: If u is a continuous function in (—1,1) and harmonic outside 0,
then there exist a constant o and a harmonic function v in (—1,1) such that
u(z) = v(x) + alz| for all x. This latter result has the following counter part
in an infinite network. Recall that if X is an infinite network and e is a vertex
in X, then there exists a unique function g¢(z) in X such that Ag.(x) = d.(x)
for all z in X (g.(x) is a potential if X is hyperbolic and is a pseudo-potential
[1] if X is parabolic).

(¢]
THEOREM 3.1. Let E be a subset in an infinite network, e € E. Let u be

o
a real-valued function on E, harmonic at every vertex in E \ {e}. Then there
exists a unique constant a such that uw(x) = v(x) + age(x) for x € E, where v
s harmonic in E.

Proof. Let Au(e) = a. Write v(x) = u(x) — age(x). Then for every x €

E\ {e}, Av(z) = 0 and Av(e) = a — a(1). Thus, Av(z) = 0 for every z € E,
that is v is harmonic in £. [

Remark:

i) The above representation is not so straight forward if the singular vertex
happens to be the vertex at infinity.

ii) The above theorem can also be regarded as a special case of the Laurent
Decomposition Theorem in an infinite network ([5, Theorem 3.4]) .

4. POSITIVE SUPERHARMONIC FUNCTIONS DEFINED OUTSIDE
A FINITE SET IN A HYPERBOLIC NETWORK

In this section, we obtain a Riesz-Martin representation for nonnegative
superharmonic functions in a neighbourhood of the vertex at infinity, that is
outside a finite set in a hyperbolic (infinite) network. This is a generalisation of
the Bocher representation of nonnegative harmonic functions defined outside
a compact set in a Riemannian manifold.

Let X be a hyperbolic network. Fix a vertex e in X. Let H (e) denote the
set of all non-negative functions h on X such that h(e) = 0 and Ah(z) = 0 for
each x # e. H" denotes the set of all non-negative harmonic functions on X.
Clearly H is a convex cone that is if u,v € H' then cu+ Bv € H' where o, 3
are any non-negative numbers. Let H; denote the class of positive harmonic
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functions on X taking the value 1 at the fixed vertex e. Let u € H{ (e). u
is said to be minimal if and only if any v € H*, 0 < v < u is of the form
v = Au for some constant A. Let A; be the set of minimal points in Hl+ LA
function u is said to be extremal if u is of the form u = Au; + (1 — A)uz
for some 0 < A < 1, then u = u; = uo. If u is extremal then it is minimal.
From the following propositions we can claim that H. fr is compact (vertexwise
convergence topology).

PROPOSITION 4.1 ([1] V. Anandam). Suppose {h,} is a sequence in H;
converging to h at each verter in X. Then h € Hfr

PRrROPOSITION 4.2 ([1] V. Anandam). Suppose {hy} is a sequence of har-
monic functions in Hf Then there exists a subsequence of {h,} converging to
a function h in H; .

In R?, 4.c., in a Riemmanian manifold, suppose h(z) is a harmonic func-
tion outside a disc, then h(x) can be written as h(z) = alog(z) + H(z) + b(x)
outside a disc where H(x) harmonic in R? and b(x) is bounded. In particular,
if h(xz) > 0, then h(x) = alog(x) + b(z).

In R3, suppose h(z) is harmonic outside a ball, then h(z) can be written
as h(x) = H(x) + b(x) where H(x) is harmonic in R? and b is bounded. In
particular, if A(z) > 0 outside, then H(z) > —b(x) = H(z) is constant.

V. Anandam proved that (see [2]), in a hyperbolic Riemmannian mani-
fold, suppose h(z) is harmonic outside a compact set, then there always exists
a harmonic function H and a potential p such that |h — H| < p outside a com-
pact set. This representation is unique. For, if |h — Hy| < p; is another such
representation, then |H — Hq| < p+p; outside a compact set. Since p+pj is po-
tential and |H — H;| is subharmonic and also majorized by the potential p+ p;
outside a compact set, hence |H — Hi| = 0, that is H = Hy. Suppose h > 0,
then h — p < H < h+ p outside a compact set = —p<h—p< H=-H<p
= —H < 0i.e., H>0. Then h(x) = H(x) + g(x) outside a compact set such

that |¢(z)] = |h — H| < potential, h(z) = /v(x)du(x) + ¢(z). Thus, in a

hyperbolic Riemannian manifold R, if A > 0 harmonic outside a compact set
then there exists a unique Radon measure @ on R with support & such that

h(z) — /v(:n)d,u(:n) < p(z) where p is a potential in R.
3
The following theorem can be regarded as a generalisation of the Bocher’s
theorem for positive harmonic functions outside a compact set in a Riemannian
manifold. It is actually a Riesz-Martin representation for positive superhar-
monic functions defined outside a finite set in a hyperbolic network X.
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THEOREM 4.3. Let X be a hyperbolic network. If uw > 0 is a superhar-
monic function outside a finite set in X, then u(x) can be written as u(x) =

/h(x)du(h) + Z Gy(x)v(y) where p is a measure with support in Ay, v is a
A1 yeX
real-valued function on X and Gy(x) is the Green function in X.

Proof. Let u be a superharmonic function outside a finite set. Then u can
be written as u = v+ p; — ps outside a finite set, where p; and p, are potentials
in X with point harmonic support and v is a superharmonic on X ([5]). If
u > 0 outside a finite set then v + p; — pa > 0 outside a finite set. Hence, we
get v > po — p1 > —p1 outside a finite set that is —v < p; outside a finite set.
As pp is a potential we have v > 0 on X. Then by the Riesz representation,
v can be written as the sum of a potential ¢ and a non-negative harmonic
function H, that is v = g+ H. Hence, u = H + g+ p1 — po.

We know that, in a hyperbolic network, if f is a potential then there exists
a real-valued function A(z) > 0 in X such that f(z) = > A(y)Gy(z) for all z €

X (see [1, p. 68]). Therefore q(z) + pi(x) — p2(z) = ZyGy(:c)y(y), where v(y)

is a real-valued function on X. Also H can be represented as a Martin integral

(see [1, p. 62]) H = /hdu(h). Hence, u = /hd,u(h) + Z Gy(z)v(z). O

Ay Ay yex

5. POSITIVE HARMONIC FUNCTIONS DEFINED OUTSIDE
A FINITE SET IN A PARABOLIC NETWORK

Let X be a parabolic network. Let e be a fixed vertex. For each e¢; ~ e, we
shall refer to the subset [e,e;] = {z : there exists a path joining x to e which
passes though e;} as the section determined by e and e;. [e, ;] is referred to as
an infinite section if there is an infinite number of vertices in it. Otherwise it
is a finite section. Since X is locally finite, note that there should be at least
one infinite section determined by e and one of its neighbours. If w; = e, e;],
then each z € w; \ {e} is an interior vertex of w;. e is the only common vertex

n

for all w;’s. We assume that e and e; belong to w;. Then X = [Jw;.
1

THEOREM 5.1. Let X be a parabolic network. If h > 0 is a harmonic
function defined outside a finite set in X, then h(x) can be written as h(x) =
u(z)dv(u)+ a bounded harmonic function outside a finite set, where v is a

Ay
measure on Aj.
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Proof. Let & be the family of non-negative harmonic functions h on X'\ {e}
such that h(e) = 0. We know that < is non-empty. For there should be at least
one infinite section w; = [e, ¢;] determined by e and there exists a function A > 0
on w; such that h(e) = 0, h(z) > 0 if z € w; \ {e} and Ah(z) = 0 at every
vertex « € w; \ {e} [1, Theorem 3.2.2]. Suppose w is a finite section determined
by e. If h € §, suppose h # 0 on w. If possible, let max h(z) = M > 0. Then

h(y) = M for y € w. As Ah(z) = 0 for each z € w \ {e}, h(z) = M at all
neighbours z of y. Since the vertex y is connected to the vertex e, we should
have h(e) = M > 0, which is a contradiction to the fact that h(e) = 0.

Let wi,wo,...,wy be the infinite sections determined by e, corresponding
to the neighbours e, eo,..., e, of e. Let &1 be the subfamily of & such that
u € ¥ if and only if v € & and u(e;) = 1 or 0 for each 4, 1 < i < k, and
u = 0 on each finite section. Clearly $7 is compact (by Proposition 4.2). If
u € §1, w Z 0 is minimal then v = 0 except in one infinite section w;. Hence,

k
if v € Qq, then v = > [ udp;(u) where Ay; denotes the set of all minimal
i=1
Ay

k
functions in w;. Let Ay = |JAy;. Let p be measure on A; such that p = p; on
1

each Ay;. Then we can write v = /ud,u(u).
A1

We know that [1, Lemma 3.4.2], if h is a harmonic function defined out-
side a finite set in X, then there exists a real-valued function hg on X such that
Ahg(xz) =0 if 2 # e and (hg — h) is bounded outside a finite set in X. Hence,
if h is a lower bounded harmonic function defined outside a finite set, then
there exists hg on X such that hg = A+ bounded function outside a finite set.
That is hg is lower bounded on X. Consequently, by the Minimum Principle
in a parabolic network [1, Theorem 3.4.1], ho(z) > ho(e) for all z € X. Then

k

replacing ho by ho — ho(e), we can suppose hg € S, so that ho(z) = > vi(x)

i=1
(@) 4 , ; .
where v;(x) = h(oi) (z) hg)(ei), hél)(m) = { go(m), li “ ; w? Note v; € 1 so
h$(es) , if © & w;.

ko ko
that v;(z) = /ud,ui(u). Write v = ;h(()l)(ei),ui, then ho(z) = Zlh%)(a:) =
Ag; B =
3 O (e)dpi(u) = v(u). Hence, h(z) = [ u(z)dv(u)+ a
% [ wem et = A/ wd(@)dv(u). Hence, hx) = A/ (@) () +

bounded harmonic function outside a finite set. O
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