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In this article, we obtain a representations for positive harmonic functions defined
outside a finite set in an infinite network X on the lines of the Martin integral
representation. This representation takes different forms depending on whether
the network is hyperbolic or parabolic.
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1. INTRODUCTION

The Bôcher’s theorem in Rn, n ≥ 2, is: “ Let Ω be an open set in Rn and
a ∈ Ω. If u is harmonic on Ω\{a} and positive near a, then there is a harmonic
function v on Ω and a constant b ≥ 0 such that u(x) = v(x)+b|x−a|2−n, n > 2

and u(x) = v(x) + b log
1

|x− a|
, n = 2, for all x ∈ Ω \ {a}.” By taking the

Kelvin transformation (see Axler et al. [3]) in Rn, we have also representations
for positive harmonic functions defined outside a compact set in Rn.

In the discrete potential theory, the well known Laurent decomposition
theorem for harmonic functions in annular domains in Rn can also be proved
for the harmonic functions in an infinite network (see [5]). As a consequence of
this decomposition in infinite networks, Bôcher’s theorem for harmonic func-
tions with a finite number of singular points in an infinite network has been
proved. We obtain also a representation for positive harmonic functions de-
fined outside a finite set in an infinite network X on the lines of the Martin
integral representation [4]. This representation takes different forms depending
on whether the network is hyperbolic or parabolic.

2. PRELIMINARIES

Let X be an infinite network with a countable number of vertices, con-
nected and without self loops. There is a collection of numbers t(x, y) ≥ 0,
called conductance such that t(x, y) > 0 if and only if x ∼ y (that is x and y
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are joined by an edge in which case x and y are called neighbours in X). For
any vertex x ∈ X, we write t(x) =

∑
y∈X

t(x, y). Since X is connected, t(x) > 0.

Note that we have not placed the restriction t(x, y) = t(y, x) for every pair
x, y ∈ X. Also we assume the locally finiteness condition, that is any vertex
x has only a finite number of neighbours. For any subset E of X, we write
◦
E = {x : x and all its neighbours are in E} and ∂E = E \

◦
E.

◦
E is referred to

as the interior of E and ∂E is referred to as the boundary of E.

If u is a real-valued function on E, the Laplacian of u at any x ∈
◦
E

is defined as ∆u(x) =
∑
y∼x

t(x, y)[u(y) − u(x)]. u is said to be superharmonic

(respectively harmonic, subharmonic) on E if ∆u(x) ≤ 0 (respectively ∆u(x) =

0, ∆u(x) ≥ 0) for every x ∈
◦
E.

Harnack property for superharmonic functions: Let F be a subset of X,

and E be a connected subset of
0
F . Let a and b be two vertices in E. Then,

there exist two constants α > 0 and β > 0 such that for any non-negative
superharmonic function u on F, αu(b) ≤ u(a) ≤ βu(b). Since E is connected,
there exists a path {a = a0, a1, ..., an = b} connecting a and b in E. Take any
non-negative superharmonic function u on F . Then, t(a)u(a) ≥

∑
x∼a

t(a, x)u(x).

In particular, t(a)u(a) ≥ t(a, a1)u(a1). Again t(a1)u(a1) ≥
∑
x∼a1

t(a1, x)u(x), so

that t(a1)u(a1) ≥ t(a1, a2)u(a2). Hence,

u(a) ≥ t(a, a1)

t(a)
× t(a1, a2)

t(a1)
u(a2).

Proceeding further, we arrive at the inequality

u(a) ≥ t(a, a1)

t(a)
× t(a1, a2)

t(a1)
× ...× t(an−1, an)

t(an−1)
u(b),

which is of the form u(a) ≥ αu(b). The other inequality u(a) ≤ βu(b) is proved
similarly.

A positive superharmonic function u ≥ 0 on E is called a potential if and
only if for any subharmonic function v on E such that v ≤ u, we have v ≤ 0.
If there exists a nonconstant positive superharmonic function on X, then X is
said to be a hyperbolic network. If it is not hyperbolic, then X is referred to
as a parabolic network. In the classical case R2 is parabolic and Rn, n ≥ 3 is
hyperbolic.

We say that a superharmonic function u on X has the harmonic support
in E if ∆u(x) = 0 for every x ∈ X \E. If E is a finite set and if ∆u(x) = 0 for
every x ∈ X \ E, then we say that u has finite harmonic support.
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3. HARMONIC SINGULARITY AT A VERTEX

The classical Bôcher Theorem gives a representation for positive harmonic
functions with point singularity in Rn, n ≥ 2. In R, interpreting as usual
linearity as harmonicity, we have a representation analogous to the Bôcher
Theorem: If u is a continuous function in (−1, 1) and harmonic outside 0,
then there exist a constant α and a harmonic function v in (−1, 1) such that
u(x) = v(x) + α|x| for all x. This latter result has the following counter part
in an infinite network. Recall that if X is an infinite network and e is a vertex
in X, then there exists a unique function qe(x) in X such that ∆qe(x) = δe(x)
for all x in X (qe(x) is a potential if X is hyperbolic and is a pseudo-potential
[1] if X is parabolic).

Theorem 3.1. Let E be a subset in an infinite network, e ∈
◦
E. Let u be

a real-valued function on E, harmonic at every vertex in
◦
E \ {e}. Then there

exists a unique constant α such that u(x) = v(x) + αqe(x) for x ∈ E, where v
is harmonic in E.

Proof. Let ∆u(e) = α. Write v(x) = u(x) − αqe(x). Then for every x ∈
◦
E \ {e}, ∆v(x) = 0 and ∆v(e) = α − α(1). Thus, ∆v(x) = 0 for every x ∈

◦
E,

that is v is harmonic in E. �

Remark:

i) The above representation is not so straight forward if the singular vertex
happens to be the vertex at infinity.

ii) The above theorem can also be regarded as a special case of the Laurent
Decomposition Theorem in an infinite network ([5, Theorem 3.4]) .

4. POSITIVE SUPERHARMONIC FUNCTIONS DEFINED OUTSIDE
A FINITE SET IN A HYPERBOLIC NETWORK

In this section, we obtain a Riesz-Martin representation for nonnegative
superharmonic functions in a neighbourhood of the vertex at infinity, that is
outside a finite set in a hyperbolic (infinite) network. This is a generalisation of
the Bôcher representation of nonnegative harmonic functions defined outside
a compact set in a Riemannian manifold.

Let X be a hyperbolic network. Fix a vertex e in X. Let H+
0 (e) denote the

set of all non-negative functions h on X such that h(e) = 0 and ∆h(x) = 0 for
each x 6= e. H+ denotes the set of all non-negative harmonic functions on X.
Clearly H+ is a convex cone that is if u, v ∈ H+ then αu+βv ∈ H+ where α, β
are any non-negative numbers. Let H+

1 denote the class of positive harmonic
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functions on X taking the value 1 at the fixed vertex e. Let u ∈ H+
1 (e). u

is said to be minimal if and only if any v ∈ H+, 0 ≤ v ≤ u is of the form
v = λu for some constant λ. Let Λ1 be the set of minimal points in H+

1 . A
function u is said to be extremal if u is of the form u = λu1 + (1 − λ)u2

for some 0 ≤ λ ≤ 1, then u = u1 = u2. If u is extremal then it is minimal.
From the following propositions we can claim that H+

1 is compact (vertexwise
convergence topology).

Proposition 4.1 ([1] V. Anandam). Suppose {hn} is a sequence in H+
1

converging to h at each vertex in X. Then h ∈ H+
1 .

Proposition 4.2 ([1] V. Anandam). Suppose {hn} is a sequence of har-
monic functions in H+

1 . Then there exists a subsequence of {hn} converging to
a function h in H+

1 .

In R2, i.e., in a Riemmanian manifold, suppose h(x) is a harmonic func-
tion outside a disc, then h(x) can be written as h(x) = α log(x) +H(x) + b(x)
outside a disc where H(x) harmonic in R2 and b(x) is bounded. In particular,
if h(x) ≥ 0, then h(x) = α log(x) + b(x).

In R3, suppose h(x) is harmonic outside a ball, then h(x) can be written
as h(x) = H(x) + b(x) where H(x) is harmonic in R3 and b is bounded. In
particular, if h(x) ≥ 0 outside, then H(x) ≥ −b(x)⇒ H(x) is constant.

V. Anandam proved that (see [2]), in a hyperbolic Riemmannian mani-
fold, suppose h(x) is harmonic outside a compact set, then there always exists
a harmonic function H and a potential p such that |h−H| ≤ p outside a com-
pact set. This representation is unique. For, if |h −H1| ≤ p1 is another such
representation, then |H−H1| ≤ p+p1 outside a compact set. Since p+p1 is po-
tential and |H−H1| is subharmonic and also majorized by the potential p+p1

outside a compact set, hence |H −H1| ≡ 0, that is H = H1. Suppose h ≥ 0,
then h− p ≤ H ≤ h+ p outside a compact set ⇒ −p ≤ h− p ≤ H ⇒ −H ≤ p
⇒ −H ≤ 0 i.e., H ≥ 0. Then h(x) = H(x) + q(x) outside a compact set such

that |q(x)| = |h − H| ≤ potential, h(x) =

∫
ξ

v(x)dµ(x) + q(x). Thus, in a

hyperbolic Riemannian manifold R, if h ≥ 0 harmonic outside a compact set
then there exists a unique Radon measure µ on R with support ξ such that∣∣∣∣∣∣∣h(x)−

∫
ξ

v(x)dµ(x)

∣∣∣∣∣∣∣ ≤ p(x) where p is a potential in R.

The following theorem can be regarded as a generalisation of the Bôcher’s
theorem for positive harmonic functions outside a compact set in a Riemannian
manifold. It is actually a Riesz-Martin representation for positive superhar-
monic functions defined outside a finite set in a hyperbolic network X.
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Theorem 4.3. Let X be a hyperbolic network. If u ≥ 0 is a superhar-
monic function outside a finite set in X, then u(x) can be written as u(x) =∫
Λ1

h(x)dµ(h) +
∑
y∈X

Gy(x)ν(y) where µ is a measure with support in Λ1, ν is a

real-valued function on X and Gy(x) is the Green function in X.

Proof. Let u be a superharmonic function outside a finite set. Then u can
be written as u = v+p1−p2 outside a finite set, where p1 and p2 are potentials
in X with point harmonic support and v is a superharmonic on X ([5]). If
u ≥ 0 outside a finite set then v + p1 − p2 ≥ 0 outside a finite set. Hence, we
get v ≥ p2 − p1 ≥ −p1 outside a finite set that is −v ≤ p1 outside a finite set.
As p1 is a potential we have v ≥ 0 on X. Then by the Riesz representation,
v can be written as the sum of a potential q and a non-negative harmonic
function H, that is v = q +H. Hence, u = H + q + p1 − p2.

We know that, in a hyperbolic network, if f is a potential then there exists
a real-valued function λ(x) ≥ 0 in X such that f(x) =

∑
y
λ(y)Gy(x) for all x ∈

X (see [1, p. 68]). Therefore q(x) + p1(x)− p2(x) =
∑
y
Gy(x)ν(y), where ν(y)

is a real-valued function on X. Also H can be represented as a Martin integral

(see [1, p. 62]) H =

∫
Λ1

hdµ(h). Hence, u =

∫
Λ1

hdµ(h) +
∑
y∈X

Gy(x)ν(x). �

5. POSITIVE HARMONIC FUNCTIONS DEFINED OUTSIDE
A FINITE SET IN A PARABOLIC NETWORK

Let X be a parabolic network. Let e be a fixed vertex. For each ei ∼ e, we
shall refer to the subset [e, ei] = {x : there exists a path joining x to e which
passes though ei} as the section determined by e and ei. [e, ei] is referred to as
an infinite section if there is an infinite number of vertices in it. Otherwise it
is a finite section. Since X is locally finite, note that there should be at least
one infinite section determined by e and one of its neighbours. If ωi = [e, ei],
then each x ∈ ωi \ {e} is an interior vertex of ωi. e is the only common vertex

for all ωi’s. We assume that e and ei belong to ωi. Then X =
n⋃
1
ωi.

Theorem 5.1. Let X be a parabolic network. If h ≥ 0 is a harmonic
function defined outside a finite set in X, then h(x) can be written as h(x) =∫
Λ1

u(x)dν(u)+ a bounded harmonic function outside a finite set, where ν is a

measure on Λ1.
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Proof. Let = be the family of non-negative harmonic functions h onX\{e}
such that h(e) = 0. We know that = is non-empty. For there should be at least
one infinite section ωi = [e, ei] determined by e and there exists a function h ≥ 0
on ωi such that h(e) = 0, h(x) > 0 if x ∈ ωi \ {e} and ∆h(x) = 0 at every
vertex x ∈ ωi \{e} [1, Theorem 3.2.2]. Suppose ω is a finite section determined
by e. If h ∈ =, suppose h 6= 0 on ω. If possible, let max

x∈ω
h(x) = M > 0. Then

h(y) = M for y ∈ ω. As ∆h(x) = 0 for each x ∈ ω \ {e}, h(z) = M at all
neighbours z of y. Since the vertex y is connected to the vertex e, we should
have h(e) = M > 0, which is a contradiction to the fact that h(e) = 0.

Let ω1, ω2, . . . , ωk be the infinite sections determined by e, corresponding
to the neighbours e1, e2, . . . , ek of e. Let =1 be the subfamily of = such that
u ∈ =1 if and only if u ∈ = and u(ei) = 1 or 0 for each i, 1 ≤ i ≤ k, and
u = 0 on each finite section. Clearly =1 is compact (by Proposition 4.2). If
u ∈ =1, u 6≡ 0 is minimal then u = 0 except in one infinite section ωi. Hence,

if v ∈ =1, then v =
k∑
i=1

∫
Λ1i

udµi(u) where Λ1i denotes the set of all minimal

functions in ωi. Let Λ1 =
k⋃
1

Λ1i. Let µ be measure on Λ1 such that µ = µi on

each Λ1i. Then we can write v =

∫
Λ1

udµ(u).

We know that [1, Lemma 3.4.2], if h is a harmonic function defined out-
side a finite set in X, then there exists a real-valued function h0 on X such that
∆h0(x) = 0 if x 6= e and (h0 − h) is bounded outside a finite set in X. Hence,
if h is a lower bounded harmonic function defined outside a finite set, then
there exists h0 on X such that h0 = h+ bounded function outside a finite set.
That is h0 is lower bounded on X. Consequently, by the Minimum Principle
in a parabolic network [1, Theorem 3.4.1], h0(x) ≥ h0(e) for all x ∈ X. Then

replacing h0 by h0 − h0(e), we can suppose h0 ∈ =, so that h0(x) =
k∑
i=1

vi(x)

where vi(x) =
h

(i)
0 (x)

h
(i)
0 (ei)

h
(i)
0 (ei), h

(i)
0 (x) =

{
h0(x), if x ∈ ωi
0, if x 6∈ ωi.

Note vi ∈ =1 so

that vi(x) =

∫
Λ1i

udµi(u). Write ν =
k∑
i=1

h
(i)
0 (ei)µi, then h0(x) =

k∑
i=1

hi0(x) =

k∑
i=1

∫
Λ1i

u(x)h
(i)
0 (ei)dµi(u) =

∫
Λ1

ud(x)dν(u). Hence, h(x) =

∫
Λ1

u(x)dν(u)+ a

bounded harmonic function outside a finite set. �
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