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We characterize linear groups L2(q) by group order and the largest element
order, where q = pn < 125. This generalizes some results of [3].
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1. INTRODUCTION

Throughout this paper, all groups are finite and G is always a group. We
denote by π(G) the set of prime divisors of |G|, by πe(G) the set of element
orders of G. Besides, k(G) denotes the largest element in πe(G). G is called
a simple Kn-group if G is simple with |π(G)| = n. All further unexplained
notation is standard, readers may refer to [2].

It is an interesting topic to characterize simple groups by using the group
order and the set πe(G) of element orders. In 1987, Professor W.J. Shi posed
the following conjecture:

Conjecture. Let G be a group and M a simple group. Then G ∼= M if
and only if |G| = |M | and πe(G) = πe(M).

It is worth mentioning that this conjecture has been proved by A.V.
Vasil’ev, M.A. Grechkoseeva, and V.D. Mazurov in [8]. To continue this work,
some authors tried to characterize simple groups by using less conditions. For
instance, in [4], L.G. He and G.Y. Chen characterized simple K3-groups by
using the group orders and the largest and the second largest element orders.
Further, Q.L. Zhang and W.J. Shi ([9]) characterized all simple K3-groups and
some linear groups L2(p) by using the group order and the largest element
order, where p is a prime with p = 8n± 3 > 3. Recently, in [6] we gave a new
characterization of simple linear groups L2(q) by both the group order and the
largest element order, where either q is a prime or q = 2a such that 2a + 1 or
2a − 1 is a prime.
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Note that not all simple linear groups L2(q) with q < 125 a prime power
order can be characterized by its group order and its largest element order.
For instance, in [9, Theorem 3.3], Q.L. Zhang and W.J. Shi claimed that if
the group G is satisfying |G| = |L2(7)| and k(G) = k(L2(7)), then G is either
isomorphic to L2(7) or a 2-Frobenius group. Further, in [6, Theorem B], L2(p)
can not be determined by the group order and the largest element order if p is
a prime such that p+ 1 is a power of 2. The authors proved that if the group
G is satisfying |G| = |L2(p)| and k(G) = k(L2(p)), then G is either isomorphic
to L2(p) or a 2-Frobenius group.

Recall that L.G. He and G.Y. Chen showed in [3] that linear simple
groups L2(q) with q = pn < 125 may be characterized by group order, the
largest, the second largest and the third largest element orders. In this paper,
we generalize their result and prove that simple linear groups L2(q) can be
determined exactly by their group order and their largest element order, where
q < 125 is a prime power with q 6= 7, 31. Our main result is:

Theorem A. Let G be a group. Then G ∼= L2(q) if and only if |G| =
|L2(q)| and k(G) = k(L2(q)), where q 6= 7, 31 and q < 125 is a prime power.

Recall that L.G. He and G.Y. Chen proved that L2(q) can be determined
by its group order and its largest element order if q < 125 and q 6= 7, 31, 49
and 64. Hence, our task is to prove that:

Theorem B. Let G be a group. Then G ∼= L2(49) if and only if |G| =
|L2(49)| and k(G) = k(L2(49)).

Theorem C. Let G be a group. Then G ∼= L2(64) if and only if |G| =
|L2(64)| and k(G) = k(L2(64)).

We remark here that one may use the method employed in this paper, to
simplify the proofs of the main results in [3].

2. PRELIMINARIES

Before proceeding with the proof of our results, we first give some useful
results.

Lemma 2.1 ([5, Theorem 2]). Let G be a simple K3-group. Then G is
isomorphic to one of the following groups: A5, A6, L2(7), L2(8), L2(17), L3(3),
U3(3) or U4(2).

Lemma 2.2. Let G be a simple K4-group. If |G| | 24 · 3 · 52 · 72, then
G ∼= L2(49); if |G| | 26 · 32 · 5 · 7 · 13 and 13 | |G|, then G ∼= Sz(8) or L2(13).
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Proof. It follows immediately by [7, Theorem 2]. �

Lemma 2.3. Let G be a simple K5-group. If |G| | 26 · 32 · 5 · 7 · 13, then
G ∼= L2(64).

Proof. It is clear from [1, Theorem]. �

3. PROOF OF THEOREM B

Proof. It is obvious that the necessity holds. We only prove the sufficiency.
Suppose that |G| = |L2(49)| = 24 · 3 · 52 · 72 and k(G) = k(L2(49)) = 25. Let
N be a minimal normal subgroup of G.

Assume first that 7 | |N |. We show that 5 | |N |. Otherwise, we consider
the action of P5 on N by conjugation, where P5 is a Sylow 5-subgroup of G.
As the action is coprime, there is some P5-invariant Sylow 7-subgroup N7 of
N , yielding that N7P5 ≤ G. Note that |P5| = 52 and |N7| | 72. It follows by
Sylow’s Theorem that N7P5 = N7 × P5, indicating that 35 ∈ πe(G), contrary
to the fact that k(G) = 25. Hence, 5 | |N |. Further, by the minimality of
N , we see that N is unsolvable with {2, 5, 7} ⊆ π(N). If |π(N)| = 3, then
N is either a simple K3-group or a direct product of two isomorphic simple
K3-groups by considering its order. However, according to Lemma 2.1, there
is no such group whose order is divisible by 35. Hence, 3 ∈ π(N). Moreover,
3 ‖ |N | implies that N is a simple K4-group. Hence, it follows by Lemma 2.2
that N ∼= L2(49). Consequently, G = N ∼= L2(49), as required.

Now we consider the case 7 - |N |. We will work to get a contradiction.
Let P7 ∈ Syl7(G). Then the action of P7 on N by conjugation is coprime.
We prove that 5 - |N |. Otherwise, there is a P7-invariant Sylow 5-subgroup
N5 of N . Hence, N5P7 ≤ G. Moreover, by Sylow’s Theorem, we obtain
that N5P7 = N5 × P7 as |N5| | 52 and |P7| = 72, leading to 35 ∈ πe(G), a
contradiction. As a result, 5 - |N |, yielding that π(N) ⊆ {2, 3}. Furthermore,
N is either a 2-group or 3-group since it is a minimal normal subgroup of G.

IfG/N is solvable, thenG/N has a Hall {5, 7}-subgroupH/N . By Sylow’s
Theorem, we have that H/N is nilpotent, which shows that 175 ∈ πe(G). This
contradiction shows that G/N is unsolvable. In particular, 4 | |G/N |. If N is
a 3-group, then |N | = 3. In this case, G/CG(N) ≤ C2. Hence, 52 | |CG(N)|.
Since k(G) = 25, we obtain that G has a cyclic Sylow 5-subgroup of order 25,
yielding that 75 ∈ πe(G), a contradiction. Thus, N is a 2-group. Moreover,
|N | | 4 since G/N is unsolvable. Hence, either |N | = 2 or |N | = 4. If the former
holds, then G/CG(N) ≤ Aut (N), yielding that N ≤ Z(G). As 25 ∈ πe(G), we
obtain that 50 ∈ πe(G), a contradiction to the fact k(G) = 25. Thus, |N | = 4.
Arguing as above, we derive a contradiction. This completes the proof. �
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4. PROOF OF THEOREM C

Proof. Assume that |G|= |L2(64)|=26 ·32 ·5·7·13 and k(G) = k(L2(64)) =
65. Let N be a minimal normal subgroup of G. Write D := CG(N).

Assume that 13 | |N |. Then we show that 7 | |N |. Otherwise, let P7 be a
Sylow 7-subgroup of G. It is clear that the action of P7 on N by conjugation
is coprime. Then there exists a P7-invariant Sylow 13-subgroup N13 of N .
Hence, N13P7 ≤ G. Moreover, by Sylow’s Theorem, we obtain that N13P7 =
N13×P7 as |N13| = 13 and |P7| = 7, leading to the fact that 91 ∈ πe(G). This
contradiction implies that 13 | |N | and 7 | |N |, leading to the fact that N is an
unsolvable simple group.

Moreover, Lemma 2.1 gives that N is not a simple K3-group since 7 · 13 |
|N |. Hence, 4 ≤ |π(N)| ≤ 5. If |π(N)| = 4, then N ∼= Sz(8) or L2(13)
according to Lemma 2.2. However, N � Sz(8) since, otherwise, we see that
65 ∈ πe(Sz(8)), a contradiction to [2]. Hence, N ∼= L2(13).

Since G/D ≤ Aut(N), we see that |G|/—Aut(N)| divides |D|, that is
23 · 3 · 5 | |D|. On the other hand, N ∩D = 1 and ND ≤ G. This shows that
|D| divides |G/N |. Thus, |D| | 24 · 3 · 5. As a consequence, |D| = 23 · 3 · 5
or |D| = 24 · 3 · 5. If D is solvable, then D has a Hall {3, 5}-subgroup T . By
Sylow’s Theorem, we have that T is nilpotent and thus 15 ∈ πe(D). Therefore,
15 · 13 ∈ πe(G), a contradiction to the fact that k(G) = 65.

Hence, D is unsolvable. According to Lemma 2.1, by considering its order,
it is clear that D is not a simple K3-group. Hence, there exists some minimal
normal subgroup D1 of G which is contained in D. If D1 is a non-abelian simple
group, then D1

∼= A5 by Lemma 2.1. Note that D/CD(D1) ≤ S5 and |D| =
23 ·3·5 or |D| = 24 ·3·5. We obtain that either CD(D1) ∼= C2 by the simplicity of
D1. Thus, 10 ∈ πe(G) and 10 ·13 ∈ πe(G), a contradiction. This shows that D1

is an elementary abelian p-group with p ∈ {2, 3, 5}. Furthermore, |D1| = 2 or 4
as D/D1 is unsolvable. If |D1| = 2, then D1 ≤ Z(G), yielding that 130 ∈ πe(G)
since 65 ∈ πe(G), a contradiction. If |D1| = 4, then G/CG(D1) ≤ Aut(D1).
Note that —Aut(D1)| | 6, we have that 65 | |CG(D1)|. Hence, 130 ∈ πe(G),
again a contradiction. Therefore, N is a simple K5-group. By Lemma 2.3, we
have that N ∼= L2(64). Consequently, G = N ∼= L2(64), as needed.

Now we assume that 13 - |N |. If we apply an argument similar to that in
the second paragraph, we will obtain that 7 - |N |. Hence, π(N) ⊆ {2, 3, 5}. If
N is unsolvable, then in view of Lemma 2.3 we deduce that N ∼= A5 or N∼=A6.

Suppose first that N ∼= A5. Then it is clear that |G/N | = 24 · 3 · 7 ·
13. Suppose that G/N is solvable, then G/N has a Hall {7, 13}-subgroup
F . By Sylow’s Theorem, F is nilpotent, which leads to that 91 ∈ πe(G), a
contradiction. As a result, G/N is unsolvable.



5 Characterization of some L2(q) by the largest element orders 357

Notice that G/D ≤ S5. It follows that 23 · 3 · 7 · 13 | |D|. On the other
hand, D ∩N = 1 and DN = D×N ≤ G, which implies that |D| | 24 · 3 · 7 · 13.
As a consequence, |D| = 23 · 3 · 7 · 13 or 24 · 3 · 7 · 13. It follows easily that D is
unsolvable, or otherwise, we would obtain 91 ∈ πe(G), a contradiction.

Let D1 be a minimal normal subgroup of G, which is contained in D.
Then D1 is either a simple group or an elementary abelian p-group with p ∈
{2, 3, 7, 13}. If the former holds, then D1

∼= L2(7) or L2(13) by [2]. Assume
first that D1

∼= L2(13). Then D/CD(D1) ≤ Aut(D1). As |D| = 23 · 3 · 7 · 13
or 24 · 3 · 7 · 13, and —Aut(D1)|=—Aut(L2(13))| = 23 · 3 · 7 · 13, we obtain
that either CD(D1) = 1 or CD(D1) ∼= C2. If the latter holds, then 26 ∈ πe(D)
and thus 26 · 5 ∈ πe(G). This contradiction shows that D =Aut(L2(13))
which shows that 14 ∈ πe(D) and thus 14 · 5 ∈ πe(G), also contrary to the
fact that k(G) = 65. Hence, D1

∼= L2(7). Moreover, D/CD(D1) ≤Aut(D1)
implies that 13 | |CD(D1)| and thus 13 · 7 ∈ πe(G), again a contradiction.
Consequently, D1 is an elementary abelian p-group with p ∈ {2, 3, 7, 13}. If D1

is a 7-group, then we consider the action of P13 onD1 by conjugation, where P13

is a Sylow 13-subgroup of G. By Sylow’s Theorem, we obtain that 91 ∈ πe(G),
a contradiction. Similarly, if D1 is a 13-group, then we consider the action of
P7 on D1 by conjugation, where P7 is a Sylow 7-subgroup of G. We also obtain
that 91 ∈ πe(G), the same contradiction. Hence, D1 is either a 2-group or a
3-group. Suppose that D1 is a 3-group. As |D| = 23 · 3 · 7 · 13 or 24 · 3 · 7 · 13,
we see that |D1| = 3. Further, D/CD(D1) ≤ C2 implies that 3 · 65 ∈ πe(G).
This contradiction shows that D1 is an elementary abelian 2-group. Note that
D is unsolvable. We obtain that the order of D1 is either 2 or 4. If |D1| = 2,
then D1 ≤ Z(G), yielding that 130 ∈ πe(G) since 65 ∈ πe(G), a contradiction.
If |D1| = 4, then G/CG(D1) ≤ Aut(D1). Note that —Aut(D1)| | 6, we have
that 65 | |CG(D1)|. Hence, 130 ∈ πe(G), again a contradiction.

Now we consider the case N ∼= A6. Since G/D ≤ S6, we see that 22 ·7·13 |
|D|. On the other hand, N ∩D = 1 and ND ≤ G, we get |D| | 23 ·7 ·13. Thus,
|D| = 22 · 7 · 13 or 23 · 7 · 13. We claim that D is unsolvable, since, otherwise,
91 ∈ πe(G), a contradiction. Let D1 be a minimal normal subgroup of G
contained in D. Further, by Lemma 2.1 D1 is an elementary abelian p-group
with p ∈ {2, 7, 13}. Assume first that D1 is a 7-group. Then D/CD(D1) ≤ C2,
which implies that 91 ∈ πe(G), a contradiction. On the other hand, if D1

is a 13-group, then D/CD(D1) ≤ C12, which also indicates that 91 ∈ πe(G),
again a contradiction. Therefore, D1 is an elementary abelian 2-group. Note
that D is unsolvable. We obtain that either |D1| = 2 or |D1| = 4, which by
an argument similar to that in the previous paragraph, is impossible. This
completes the proof of the theorem. �
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