ON PATH-SUNFLOWER RAMSEY NUMBERS

KASHIF ALI, IOAN TOMESCU and IMRAN JAVAID

Communicated by Vasile Brînzănescu

For given graphs G and H, the Ramsey number $R(G, H)$ is the least natural number n such that for every graph F of order n the following condition holds: either F contains G or the complement of F contains H. In this paper, we determine the Ramsey number of path P_n versus sunflower graph SF_m when n grows at least as a quadratic function of m. In this case $R(P_n, SF_m) = 3n - 2$ if m is odd and $2n + \frac{m}{2} - 2$ otherwise.

AMS 2010 Subject Classification: 05C55.

Key words: Ramsey number, path, sunflower graph.

1. INTRODUCTION

Let $G(V, E)$ be a graph with the vertex-set $V(G)$ and edge-set $E(G)$. If $xy \in E(G)$ then x is called adjacent to y, and y is a neighbor of x and vice versa. For any $A \subseteq V(G)$, we use $N_A(x)$ to denote the set of all neighbors of x in A, namely $N_A(x) = \{y \in A : xy \in E(G)\}$. Let P_n be a path with n vertices, C_n be a cycle with n vertices, W_k be a wheel with $k + 1$ vertices, i.e., a graph consisting of a cycle C_k with one additional vertex adjacent to all vertices of C_k. For $m \geq 3$, the sunflower graph SF_m is a graph on $2m + 1$ vertices obtained by taking a wheel W_m with hub x, an m-cycle v_1, v_2, \ldots, v_m, and additional m vertices w_1, w_2, \ldots, w_m, where w_i is joined by edges to v_i, v_{i+1} for $i = 1, 2, \ldots, m$, where $i + 1$ is taken modulo m. The hub of W_m is also called the hub of SF_m.

Baskoro and Surahmat [4] determined the Ramsey number of a combination of P_n versus a wheel W_k, as follows.

Theorem ([4]). We have

$$R(P_n, W_k) = \begin{cases} 2n - 1 & \text{if } k \geq 4 \text{ is even and } n \geq \frac{k}{2}(k - 2), \\
3n - 2 & \text{if } k \geq 5 \text{ is odd and } n \geq \frac{k - 1}{2}(k - 3). \end{cases}$$

Other papers concerning Ramsey numbers of paths versus wheel related graphs are [2–4, 7]; a nice survey paper on Ramsey numbers is [6].

In this paper, we determine the Ramsey numbers involving path and sunflower graph SF_m as follows.
THEOREM. If \(m \geq 4 \) is even and \(n \geq 4m^2 - 7m + 4 \) then \(R(P_n, SF_m) = 2n + \frac{m}{2} - 2 \).

Proof. Consider the graph \(F_1 = 2K_{n-1} \cup K_{\frac{m}{2}-1} \). It is obvious that \(F_1 \not\subseteq P_n \). We have also \(\overline{F_1} \cong K_{n-1,n-1,\frac{m}{2}-1} \). Let \(\pi \) be a 3-coloring of \(SF_m \) with three colors. We deduce that the vertices of \(C_m \) are alternately colored with two colors and the third color must be assigned to the hub of \(SF_m \) and to vertices \(w_1, \ldots, w_m \). This implies that the color classes of \(\pi \) are \(A = \{v_1, v_3, \ldots, v_{m-1}\}, B = \{v_2, v_4, \ldots, v_m\} \) and \(C = \{x, w_1, w_2, \ldots, w_m\} \); we have \(|A| = |B| = \frac{m}{2} \) and \(|C| = m + 1 \). Since no monochromatic color class of \(\pi \) cannot be included in the part having \(\frac{m}{2} - 1 \) vertices of the complete 3-partite graph \(K_{n-1,n-1,\frac{m}{2}-1} \), we deduce that \(SF_m \not\subseteq \overline{F_1} \), which implies \(R(P_n, SF_m) \geq 2n + \frac{m}{2} - 2 \).

For the reverse inequality, let \(F \) be a graph on \(2n + \frac{m}{2} - 2 \) vertices containing no \(P_n \). Let \(L_1 = l_{1,1}, l_{1,2}, \ldots, l_{1,k} \) be a longest path in \(F \) and so \(k \leq n - 1 \). If \(k = 1 \) we have \(\overline{F} \cong K_{2n+\frac{m}{2}-2} \) which contains \(SF_m \). Suppose that \(k \geq 2 \). We shall prove that \(\overline{F} \) contains \(SF_m \). Obviously, for each \(z \in V_1 \), where \(V_1 = V(F) \setminus V(L_1) \), \(z_{l_{1,1}}, z_{l_{1,k}} \not\in E(F) \). Let \(L_2 = l_{2,1}, l_{2,2}, \ldots, l_{2,t} \) be a longest path in \(F[V_1] \). It is clear that \(1 \leq t \leq k \). Let \(V_2 = V(F) \setminus (V(L_1) \cup V(L_2)) \).

Since \(|V(F)| = 2n + \frac{m}{2} - 2 \), there exist at least \(\frac{m}{2} \) vertices in \(V_2 \), which are not adjacent to any endpoint \(l_{1,1}, l_{1,k}, l_{2,1}, l_{2,t} \). We distinguish three cases.

Case a1: \(k < 4m - 2 \). If \(t = 1 \) then the vertices in \(V_1 \) induce a subgraph having only isolated vertices. In this case, we shall add an edge \(uv \) to \(F \), where \(u, v \in V_1 \) and denote \(L_2 = u, v \). In this way we can define inductively a system of paths \(L_1, L_2, \ldots, L_m \) such that \(L_i \) is a longest path in \(F[V_{i-1}] \), where \(V_{i-1} = V(F) \setminus \cup_{j=1}^{i-1} V(L_j) \) or an edge added to \(F \) as above. If \(F_1 \) denotes the graph \(F \) or the graph \(F \) plus some edges added in the process of defining the system of paths, it follows that endpoints of these \(L_j \) (\(1 \leq j \leq m \)) induce in \(\overline{F_1} \) a complete graph \(K_{2m} \) minus a matching having at most \(m \) edges if some of the endpoints of the same \(L_j \) are adjacent in \(F_1 \). If \(Y \) denotes the set of the remaining vertices, we have \(|V(Y)| \geq 2n + \frac{m}{2} - 2 - m(4m - 3) > \frac{m}{2} \geq 2 \).

Let \(x \) be one vertex which is not adjacent to any endpoint of these \(L_j \) for \(1 \leq j \leq m \). It is easy to see that \(x \) together with all endpoints of paths \(L_j \) contains a \(SF_m \subset F_1 \subset \overline{F} \) having the hub \(x \).

Case a2: \(k \geq 4m - 2 \) and \(t \geq 4m - 2 \). In this case we define \(m - 1 \) quadruples \(A_i \) in path \(L_1 \) as follows:

\[
A_1 = \{l_{1,2}, l_{1,3}, l_{1,4}, l_{1,5}\},
A_2 = \{l_{1,6}, l_{1,7}, l_{1,8}, l_{1,9}\},
\vdots
A_{m-1} = \{l_{1,4m-6}, l_{1,4m-5}, l_{1,4m-4}, l_{1,4m-3}\}.
\]
In a similar way let

\[B_1 = \{l_{2,2}, l_{2,3}, l_{2,4}, l_{2,5}\}, \]
\[B_2 = \{l_{2,6}, l_{2,7}, l_{2,8}, l_{2,9}\}, \]
\[\vdots \]
\[B_{m-1} = \{l_{2,4m-6}, l_{2,4m-5}, l_{2,4m-4}, l_{2,4m-3}\}. \]

for the path \(L_2 \).

Since \(V_2 = V(F) \setminus (V(L_1) \cup V(L_2)) \), we have \(|V_2| \geq \frac{m}{2} \) since \(t, k \leq n - 1 \). Hence, we can consider \(\frac{m}{2} \) distinct elements in \(V_2 \): \(y_1, y_2, \ldots, y_{\frac{m}{2}} \) and \(\frac{m}{2} - 1 \) pairs of elements \(Y_i = \{y_i, y_{i+1}\} \) for \(i = 1, 2, \ldots, \frac{m}{2} - 1 \). By the maximality of \(L_2 \) it follows that for each \(i = 1, 2, \ldots, \frac{m}{2} - 1 \), at least one vertex in \(B_i \) is not adjacent to any vertex in \(Y_i \). Denote by \(b_i \) vertices in \(B_i \) which are not adjacent to any vertex in \(Y_i \) for \(i = 1, 2, \ldots, \frac{m}{2} - 1 \). It follows that \(l_{2,1}, y_1, b_1, y_2, b_2, \ldots, y_{\frac{m}{2}-1}, b_{\frac{m}{2}-1}, y_{\frac{m}{2}} \) is an \(m \)-cycle in \(\overline{F} \) and this cycle together with vertex \(l_{1,1} \) induces \(W_m \) in \(\overline{F} \).

By the maximality of \(L_1 \) we get that for any \(i = 1, \ldots, m - 1 \) and any two different vertices \(z_1, z_2 \in V_1 = V(F) \setminus V(L_1) \), there exists at least one vertex \(a_i \) in \(A_i \) that is not adjacent to \(z_1 \) nor to \(z_2 \). Hence, we can choose an additional vertex set \(\{a_1, a_2, \ldots, a_{m-1}, l_{1,1}\} \) which together with \(W_m \) induces a graph in \(\overline{F} \) which contains \(SF_m \), thus \(SF_m \subset \overline{F} \).

Case a3: \(k \geq 4m - 2 \) and \(t < 4m - 2 \). Since \(F \) has no \(P_n \) it follows that \(k \leq n - 1 \), hence \(V_1 \) will have at least \(n + \frac{m}{2} - 1 \) vertices. Then we can define the same process as in case a1. We obtain a system of paths \(L_2, \ldots, L_m \), in the subgraph induced by \(V_1 \) such that the endpoints of \(L_1, \ldots, L_m \), induce in \(\overline{F}_1 \) a complete graph \(K_{2m} \) minus a matching having at most \(m \) edges. We get in this case \(|V(Y)| \geq n + \frac{m}{2} - 1 - (m - 1)(4m - 3) \geq 2 \) and the proof is similar to the case a1. \(\square \)

Theorem. For all \(n \geq 3 \), \(R(P_n, SF_3) = 3n - 2 \).

Proof. To show the lower bound, consider graph \(F_1 = 3K_{n-1} \). We have \(\overline{F}_1 \cong K_{n-1, n-1, n-1} \), hence its chromatic number \(\chi(\overline{F}_1) = 3 \), but \(\chi(SF_3) = 4 \), which implies that \(SF_3 \not\subseteq \overline{F}_1 \). It follows that \(R(P_n, SF_3) \geq 3n - 2 \). For the reverse inequality, let us consider a graph \(F \) of order \(3n - 2 \) such that \(F \) does not contain path \(P_n \), we will show that \(\overline{F} \) contains sunflower graph \(SF_3 \). Let \(P \) be a longest path in \(F \) with endpoints \(p_1 \) and \(p_2 \). Obviously, \(xp_1, xp_2 \not\in E(F) \) for each \(x \in X = V(F) \setminus V(P) \). Let \(Q \) be a longest path in \(F[X] \) with \(q_1 \) and \(q_2 \) as its endpoints. Then \(xq_1, xq_2 \not\in E(F) \) for each \(x \not\in V(P) \cup V(Q) \). Let \(Y = V(F) \setminus (V(P) \cup V(Q)) \) and \(R \) be a longest path in \(F[Y] \) with \(r_1 \) and \(r_2 \) as its endpoints. Since \(|V(F)| = 3n - 2 \) and the longest path in \(F \) is of length
less than or equal to \(n - 1 \) then there exists a vertex \(a \notin V(P) \cup V(Q) \cup V(R) \) such that \(a \) is not adjacent to any endpoint \(p_1, p_2, q_1, q_2, r_1 \) and \(r_2 \). Thus, we give mapping yielding \(SF_3 \) in \(\overline{F} \) with \(a \) as hub. \(\Box \)

Theorem. If \(m \geq 5 \) is odd and \(n \geq 2m^2 - 9m + 11 \) then \(R(P_n, SF_m) = 3n - 2 \).

Proof. By using an argument similar as above we have \(R(P_n, SF_m) \geq 3n - 2 \). To prove \(R(P_n, SF_m) \leq 3n - 2 \), let \(F \) be a graph on \(3n - 2 \) vertices containing no \(P_n \). Let \(L_1 = l_{1,1}, l_{1,2}, \ldots, l_{1,k} \) be a longest path in \(F \) and so \(k \leq n - 1 \). If \(k = 1 \) we have \(\overline{F} \cong K_{3n-2} \), which contains \(SF_m \). Suppose that \(k \geq 2 \) and \(\overline{F} \) does not contain \(SF_m \). Obviously, \(zl_{1,1}, zl_{1,k} \) are not in \(E(F) \) for each \(z \in V_1 \), where \(V_1 = V(F) \setminus V(L_1) \). Let \(L_2 = l_{2,1}, l_{2,2}, \ldots, l_{2,t} \) be a longest path in \(F[V_1] \). If \(t = 1 \) we have \(\overline{F} \cong K_{2n-1} \), which contains \(SF_m \), so we may suppose \(2 \leq t \leq k \). Let \(V_2 = V(F) \setminus (V(L_1) \cup V(L_2)) \). Obviously, \(yl_{2,1}, yl_{2,t} \) are not in \(E(F) \) for each \(y \in V_2 \). Let \(L_3 = l_{3,1}, l_{3,2}, \ldots, l_{3,s} \) be a longest path in \(F[V_2] \). Since \(|V(F)| = 3n - 2 \) and the longest path in \(F \) is of length less than or equal to \(n - 1 \) then there exists a vertex \(x \notin V(L_1) \cup V(L_2) \cup V(L_3) \) such that \(x \) is not adjacent to any endpoint \(l_{1,1}, l_{2,1}, l_{3,1}, l_{1,k}, l_{2,t} \) and \(l_{3,s} \). We distinguish four cases.

Case 1: \(k < 2m - 4 \). It follows that \(t < 2m - 4 \). If \(s = 1 \) then the vertices in \(V_2 \) induce a subgraph having only isolated vertices. In this case we shall add an edge \(uv \) to \(F \), where \(u, v \in V_2 \) and denote \(L_3 = u, v \). In this way we can define inductively as in proof of theorem 2 the system of paths \(L_1, L_2, \ldots, L_m \) such that \(L_i \) is a longest path in \(F[V_{i-1}] \), where \(V_{i-1} = V(F) \setminus \bigcup_{j=1}^{i-1} V(L_j) \) or an edge added to \(F \) as above. If \(F_1 \) denotes the graph \(F \) or the graph \(F \) plus some edges added in the process of defining the system of paths, it follows that endpoints of these \(L_j \), where \(j = 1, 2, \ldots, m \) induce in \(\overline{F_1} \) a complete graph \(K_{2m} \) minus a matching having at most \(m \) edges if some of the endpoints of the same \(L_j \) are adjacent in \(F_1 \). For \(m \geq 5 \) there exists at least one vertex \(x \) which is not adjacent to any endpoint of these \(L_j \). Thus, it is easy to see that vertex \(x \) together with all endpoints of paths \(L_j \) form a \(SF_m \subset F_1 \subset \overline{F} \).

Case 2: \(k \geq 2m - 4, t \geq 2m - 4 \) and \(s \geq 2m - 4 \). For \(i = 1, 2, \ldots, m - 3 \) define the couples \(A_i \) in path \(L_1 \) as follows:

\[
A_i = \begin{cases}
\{l_{1,i+1}, l_{1,i+2}\} & \text{for } i \text{ odd}, \\
\{l_{1,k-i}, l_{1,k-i+1}\} & \text{for } i \text{ even}.
\end{cases}
\]

Similarly, define couples \(B_i, C_i \) in paths \(L_2 \) and \(L_3 \), respectively as follows:

\[
B_i = \begin{cases}
\{l_{2,i+1}, l_{2,i+2}\} & \text{for } i \text{ odd}, \\
\{l_{2,t-i}, l_{2,t-i+1}\} & \text{for } i \text{ even}.
\end{cases}
\]

\[
C_i = \begin{cases}
\{l_{3,i+1}, l_{3,i+2}\} & \text{for } i \text{ odd}, \\
\{l_{3,t-i}, l_{3,t-i+1}\} & \text{for } i \text{ even}.
\end{cases}
\]
\[C_i = \begin{cases}
\{l_{3,i+1}, l_{3,i+2}\} & \text{for i odd,} \\
\{l_{3,s-i}, l_{3,s-i+1}\} & \text{for i even.}
\end{cases} \]

We have seen that since \(s \leq t \leq k \leq n - 1 \) and \(|F| = 3n - 2\), there exists at least one vertex \(x \) which is not in \(L_1 \cup L_2 \cup L_3 \). Since \(L_1 \) is a longest path in \(F \), there exists one vertex of \(A_i \) for each \(i \), say \(a_i \) which is not adjacent with \(x \). Similarly, we obtain vertices \(b_i \) and \(c_i \) in couples \(B_i \) and \(C_i \) which are not adjacent to \(x \) for every \(i = 1, \ldots, m-3 \). The maximality of the paths \(L_1 \) and \(L_2 \) also implies that for every \(i, j, k = 1, \ldots, m-3 \) we have \(a_ib_j, a_ic_k, bjc_k \notin E(F) \). Thus, vertex set \(\{l_{1,1}, l_{2,t}, a_1, b_1, a_2, b_2, \ldots, a_{m-3}, b_{m-3}, l_{3,1}\} \) with vertex \(x \) will contain \(W_m \) in \(\overline{F} \) and additional vertex set \(\{l_{3,s}, c_1, c_2, c_3, \ldots, c_{m-3}, l_{1,k}, l_{2,1}\} \) with wheel \(W_m \), gives \(SF_m \subset \overline{F} \).

Case 3: \(k \geq 2m - 4 \), \(t \geq 2m - 4 \) and \(s < 2m - 4 \). Since \(F \) has no \(P_n \) it follows that \(t \leq k \leq n - 1 \). Consequently, \(V_2 \) will have at least \(n \) vertices. Then we can define the same process as in case 1. We obtain a system of paths \(L_3, \ldots, L_m \) in the subgraph induced by \(V_2 \) such that the endpoints of \(L_1, \ldots, L_m \) induce in \(\overline{F_1} \) a complete graph \(K_{2m} \) minus a matching having at most \(m \) edges. We get in this case \(|V(Y)| \geq n - (m - 2)(2m - 5) \geq 1 \) and the proof is similar to the case 1.

Case 4: \(k \geq 2m - 4 \) and \(t < 2m - 4 \). We deduce that \(s < 2m - 4 \). Since \(F \) has no \(P_n \) it follows that \(k \leq n - 1 \). Consequently, \(V_1 \) will have at least \(2n - 1 \) vertices. Then we can define the same process as in case 1. We obtain a system of paths \(L_2, \ldots, L_m \) in the subgraph induced by \(V_1 \) such that the endpoints of \(L_1, \ldots, L_m \) induce in \(\overline{F_1} \) a complete graph \(K_{2m} \) minus a matching having at most \(m \) edges. We get in this case \(|V(Y)| \geq 2n - 1 - (m - 1)(2m - 5) > 1 \) and the proof is similar to the case 1. \(\square \)

REFERENCES

Received 29 November 2013

COMSATS Institute of Information Technology,
Lahore, Pakistan
akashifali@gmail.com

University of Bucharest,
Str. Academiei, 14,
010014 Bucharest, Romania
ioan@fmi.unibuc.ro

“Bahauddin Zakariya” University,
Center for Advanced Studies in Pure and
Applied Mathematics,
Multan, Pakistan
imranjavaid45@gmail.com