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For given graphs G and H, the Ramsey number R(G, H) is the least natural
number n such that for every graph F' of order n the following condition holds:
either F' contains G or the complement of F' contains H. In this paper, we
determine the Ramsey number of path P, versus sunflower graph SF,, when n
grows at least as a quadratic function of m. In this case R(Pn, SFy) = 3n — 2
if m is odd and 2n + 7 — 2 otherwise.
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1. INTRODUCTION

Let G(V, E) be a graph with the vertex-set V(G) and edge-set E(G). If
xy € E(G) then z is called adjacent to y, and y is a neighbor of x and vice
versa. For any A C V(G), we use N(z) to denote the set of all neighbors
of x in A, namely Ny(x) = {y € Alzy € E(G)}. Let P, be a path with n
vertices, C), be a cycle with n vertices, Wy be a wheel with k + 1 vertices,
i.e., a graph consisting of a cycle Cj with one additional vertex adjacent to
all vertices of Cy. For m > 3, the sunflower graph SF, is a graph on 2m + 1
vertices obtained by taking a wheel W,,, with hub x, an m-cycle vy, va, ..., vy,
and additional m vertices wi, wa, . .., wn, where w; is joined by edges to v;, vi41
for i = 1,2,...,m, where i + 1 is taken modulo m. The hub of W,, is also
called the hub of SF,,.

Baskoro and Surahmat [4] determined the Ramsey number of a combina-
tion of P, versus a wheel Wy, as follows.

THEOREM ([4]). We have
2n — 1 z'fk24isevenandn2§( 2),
3n—2 ifk>5is odd and n > 1 (k—3).
Other papers concerning Ramsey numbers of paths versus wheel related
graphs are [2-4, 7]; a nice survey paper on Ramsey numbers is [6].

In this paper, we determine the Ramsey numbers involving path and
sunflower graph SF,, as follows.

R(Py, W) = {
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THEOREM. If m > 4 is even and n > 4m? — Tm + 4 then R(P,, SFy,) =
2n + 5 — 2.

Proof. Consider the graph Fy = 2K,,_1 U K%_l. It is obvious that Fy A

P,. We have also F} = Kn—l,n—l,%—l' Let m be a 3-coloring of SF},, with three
colors. We deduce that the vertices of C), are alternately colored with two
colors and the third color must be assigned to the hub of SF},, and to vertices
w1, ..., Wn. This implies that the color classes of m are A = {vy,v3,...,Vm-1},
B ={vz,v4,...,0n} and C = {z, w1, ws, ..., wn}; we have |[A| = |B| = F and
|C| = m + 1. Since no monochromatic color class of m cannot be included in
the part having % — 1 vertices of the complete 3-partite graph Kn,l,n,lg,l,
we deduce that SF,, ¢ Fy, which implies R(P,, SF,,) > 2n + 57— 2.

For the reverse inequality, let F' be a graph on 2n-+ % — 2 vertices contain-
ing no P,. Let Ly =1y1,l12,...,l1 be a longest path in /" and so k <n — 1.
If K =1 we have F = K2n+%_2 which contains SF;,. Suppose that & > 2.
We shall prove that F' contains SF,. Obviously, for each z € Vi, where
V1 = V(F)\V(Ll), le,l, le,k; € E(F) Let LQ = 1271,l2’2, c. ,l27t be a longest
path in F[Vi]. Tt is clear that 1 <t < k. Let Vo = V(F)\(V(L1) U V(L2)).
Since |V (F)| = 2n + % — 2, there exist at least % vertices in V5, which are not
adjacent to any endpoint [y 1,01 ,[2,1,l2:. We distinguish three cases.

Case al: k <4m — 2. If t =1 then the vertices in V] induce a subgraph
having only isolated vertices. In this case, we shall add an edge uwv to F,
where u,v € V] and denote Ly = u,v. In this way we can define inductively a
system of paths Ly, Lo, ..., Ly, such that L; is a longest path in F[V;_;], where
Vici=V(F)\ U;;ll V(L;) or an edge added to F' as above. If F; denotes the
graph F' or the graph F plus some edges added in the process of defining the
system of paths, it follows that endpoints of these L; (1 < j < m) induce in
Fy a complete graph K»,, minus a matching having at most m edges if some
of the endpoints of the same L; are adjacent in Fi. If Y denotes the set of
the remaining vertices, we have [V(Y)| > 2n + 3 — 2 —m(4m — 3) > ¢ > 2.
Let x be one vertex which is not adjacent to any endpoint of these L; for
1 < j < m. It is easy to see that = together with all endpoints of paths L;
contains a SF,,, C F| C F having the hub x.

Case a2: &k > 4m — 2 and t > 4m — 2. In this case we define m — 1
quadruples A; in path L as follows:

A = {ha bz lialish
Ay = {lig liz,lig lig},

Am—1 = {liam—6,l1,4m—5, 11 am—1, 11 4m—3}-
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In a similar way let

By = {lap,l23,l24,1l25},
By

{la6, 127,128,129},

Bm-1 = {l2am—6,12.4m—5,l2,4m—1,124m—3}.

for the path Lo.
Since Vo = V(F)\ (V(L1) UV (Lz)), we have |Va| > % since t,k <n — 1.

Hence, we can consider 3 distinct elements in Va: y1, 2, .. SYm and 3 — 1
pairs of elements Y; = {y;,yi11} for i = 1,2,...,% — 1. By the maximal-
ity of Ly it follows that for each i = 1,2,...,% — 1, at least one vertex in
B; is not adjacent to any vertex in Y;. Denote by b; vertices in B; which
are not adjacent to any vertex in Y; for ¢ = 1,2,..., % — 1. It follows that
la1,y1,01,92,b2,. .., Ym_1, b%_l, ym is an m-cycle in F' and this cycle together

with vertex [; 1 induces W,, in F.

By the maximality of L we get that for any ¢ = 1,...,m —1 and any two
different vertices 21,29 € Vi = V(F)\V(L1), there exists at least one vertex a;
in A; that is not adjacent to z; nor to z5. Hence, we can choose an additional
vertex set {a1,as,...,am—1,l1 ;} which together with W, induces a graph in
F which contains SF,,, thus SF,, C F.

Case a3: k> 4m — 2 and t < 4m — 2. Since F' has no P, it follows that
k <mn —1, hence V; will have at least n + 5 — 1 vertices. Then we can define
the same process as in case al. We obtain a system of paths Lo, ..., Ly, in
the subgraph induced by V; such that the endpoints of Lq,..., L;,, induce in
Fi a complete graph K»,, minus a matching having at most m edges. We get
in this case [V(Y)| > n+ 5 —1—(m—1)(4m —3) > 2 and the proof is similar
to the case al. [

THEOREM. For alln > 3, R(P,,SF3) = 3n — 2.

Proof. To show the lower bound, consider graph F; = 3K,,_1. We have
F = Ky —1n-1n-1, hence its chromatic number x(F1) = 3, but x(SF3) = 4,
which implies that SF3 € Fy. It follows that R(P,, SF3) > 3n — 2. For the
reverse inequality, let us consider a graph F' of order 3n — 2 such that F' does
not contain path P,, we will show that F' contains sunflower graph SF3. Let P
be a longest path in F' with endpoints p; and ps. Obviously, xp1,xps & E(F)
for each x € X = V(F) \ V(P). Let @ be a longest path in F[X] with ¢; and
g2 as its endpoints. Then xq1,xq2 ¢ E(F) for each x ¢ V(P) U V(Q). Let
Y =V(F)\ (V(P)UV(Q)) and R be a longest path in F[Y] with r; and 7
as its endpoints. Since |V (F')| = 3n — 2 and the longest path in F' is of length
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less than or equal to n — 1 then there exists a vertex a € V(P)UV(Q) UV (R)
such that a is not adjacent to any endpoint p1, p2,q1,¢2,71 and ro. Thus, we
give mapping yielding SF3 in F' with ¢ as hub. [

THEOREM. If m > 5 is odd and n > 2m? — 9m + 11 then R(P,, SF,,) =
3n — 2.

Proof. By using an argument similar as above we have R(FP,,SF,,) >
3n — 2. To prove R(P,,SF,) < 3n — 2, let F' be a graph on 3n — 2 vertices
containing no P,. Let Li = ly1,l12,...,l1, be a longest path in F' and so
E<n-—1. If k=1 we have F ~ K3,,_», which contains SF},. Suppose that
k > 2 and F does not contain SF,,. Obviously, 21 1, zl1 ) are not in E(F) for
each z € Vi, where V; = V(F)\ V(L1). Let Ly =la1,l22,...,l2; be a longest
path in F[V3]. If t = 1 we have F ~ Ky, 1, which contains SF},, so we may
suppose 2 < t < k. Let Vo = V(F)\ (V(L1) UV (Lg)). Obviously, yl21,yla
are not in E(F) for each y € Va. Let L3 = l31,132,...,l3s be a longest path
in F[V3]. Since |V(F')| = 3n — 2 and the longest path in F' is of length less
than or equal to n — 1 then there exists a vertex x € V(L1) UV (L2) UV (L3)
such that z is not adjacent to any endpoint l11,l21,131,01 ,l2,+ and I3 5. We
distinguish four cases.

Case 1: k < 2m — 4. It follows that t < 2m —4. If s = 1 then the vertices
in V5 induce a subgraph having only isolated vertices. In this case we shall add
an edge uv to F', where u,v € V5 and denote L3 = u,v. In this way we can
define inductively as in proof of theorem 2 the system of paths Ly, Lo, ..., Ly,
such that L; is a longest path in F[V;_1], where V;_; = V(F) \ U;;ll V(L;) or
an edge added to F' as above. If F} denotes the graph F' or the graph F plus
some edges added in the process of defining the system of paths, it follows that
endpoints of these L; , where j = 1,2,...,m induce in Fi a complete graph
K5, minus a matching having at most m edges if some of the endpoints of the
same L; are adjacent in Fy. For m > 5 there exists at least one vertex x which
is not adjacent to any endpoint of these L;. Thus, it is easy to see that vertex
x together with all endpoints of paths L; form a SF,, C Fy C F.

Case 2: k>2m—4,t>2m—4and s >2m —4. Fort=1,2,...,m —3
define the couples A; in path L; as follows:

A — {liv1,liiv2)  foriodd,
¢ {ll,kfzﬁ ll,kfiJrl} for i even.
Similarly, define couples B;, C; in paths Lo and Ls, respectively as follows:

B — {l2i41,l2i42}  foriodd,
‘ {lo4—isla4—it1} forieven.



5 On path-sunflower Ramsey numbers 389

C — {l3i41,13,i12}  foriodd,
o {l3,87i> l3,sfi+1} for i even.

We have seen that since s <t <k <n—1and |F| = 3n — 2, there exists
at least one vertex x which is not in Ly U Ls U L3. Since L is a longest path
in F, there exists one vertex of A; for each i, say a; which is not adjacent with
x. Similarly, we obtain vertices b; and ¢; in couples B; and C; which are not
adjacent to x for every ¢ = 1,...,m—3. The maximality of the paths L; and Lo

also implies that for every i, j,k = 1,...,m —3 we have a;b;, a;ci, bjcy, € E(F).

Thus, vertex set {l1,1,l2¢,a1,b1,a2,b2,...,am-3,bm—3,l31} with vertex z will
o 2 2

contain Wy, in F' and additional vertex set {l3s,c1,¢2,¢3,...,Cm—3,l1k, 021}

with wheel W,,, gives SF,, C F.

Case 3: kK >2m —4,¢t > 2m —4 and s < 2m — 4. Since F has no P,
it follows that ¢t < k < n — 1. Consequently, Vo will have at least n vertices.
Then we can define the same process as in case 1. We obtain a system of
paths Ls, ..., L,, in the subgraph induced by V5 such that the endpoints of
Ly,...,L,, induce in Fy a complete graph Kjs,, minus a matching having at
most m edges. We get in this case |V(Y)| > n — (m —2)(2m —5) > 1 and the
proof is similar to the case 1.

Case 4: k> 2m—4 and t < 2m —4. We deduce that s < 2m —4. Since F
has no P, it follows that £ < n — 1. Consequently, V; will have at least 2n — 1
vertices. Then we can define the same process as in case 1. We obtain a system
of paths Lo, ..., L,, in the subgraph induced by V; such that the endpoints of
Ly,...,L,, induce in Fy a complete graph K, minus a matching having at
most m edges. We get in this case |[V(Y)| >2n—1—(m—1)(2m—5) > 1 and
the proof is similar to the case 1. [
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