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For given graphs G and H, the Ramsey number R(G,H) is the least natural
number n such that for every graph F of order n the following condition holds:
either F contains G or the complement of F contains H. In this paper, we
determine the Ramsey number of path Pn versus sunflower graph SFm when n
grows at least as a quadratic function of m. In this case R(Pn, SFm) = 3n − 2
if m is odd and 2n + m

2
− 2 otherwise.
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1. INTRODUCTION

Let G(V,E) be a graph with the vertex-set V (G) and edge-set E(G). If
xy ∈ E(G) then x is called adjacent to y, and y is a neighbor of x and vice
versa. For any A ⊆ V (G), we use NA(x) to denote the set of all neighbors
of x in A, namely NA(x) = {y ∈ A|xy ∈ E(G)}. Let Pn be a path with n
vertices, Cn be a cycle with n vertices, Wk be a wheel with k + 1 vertices,
i.e., a graph consisting of a cycle Ck with one additional vertex adjacent to
all vertices of Ck. For m ≥ 3, the sunflower graph SFm is a graph on 2m + 1
vertices obtained by taking a wheel Wm with hub x, an m-cycle v1, v2, . . . , vm,
and additional m vertices w1, w2, . . . , wm, where wi is joined by edges to vi, vi+1

for i = 1, 2, . . . ,m, where i + 1 is taken modulo m. The hub of Wm is also
called the hub of SFm.

Baskoro and Surahmat [4] determined the Ramsey number of a combina-
tion of Pn versus a wheel Wk, as follows.

Theorem ([4]). We have

R(Pn,Wk) =

{
2n− 1 if k ≥ 4 is even and n ≥ k

2 (k − 2),

3n− 2 if k ≥ 5 is odd and n ≥ k−1
2 (k − 3).

Other papers concerning Ramsey numbers of paths versus wheel related
graphs are [2–4, 7]; a nice survey paper on Ramsey numbers is [6].

In this paper, we determine the Ramsey numbers involving path and
sunflower graph SFm as follows.
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Theorem. If m ≥ 4 is even and n ≥ 4m2 − 7m+ 4 then R(Pn, SFm) =
2n+ m

2 − 2.

Proof. Consider the graph F1 = 2Kn−1 ∪Km
2
−1. It is obvious that F1 6⊃

Pn. We have also F1
∼= Kn−1,n−1,m

2
−1. Let π be a 3-coloring of SFm with three

colors. We deduce that the vertices of Cm are alternately colored with two
colors and the third color must be assigned to the hub of SFm and to vertices
w1, . . . , wm. This implies that the color classes of π are A = {v1, v3, . . . , vm−1},
B = {v2, v4, . . . , vm} and C = {x,w1, w2, . . . , wm}; we have |A| = |B| = m

2 and
|C| = m + 1. Since no monochromatic color class of π cannot be included in
the part having m

2 − 1 vertices of the complete 3-partite graph Kn−1,n−1,m
2
−1,

we deduce that SFm 6⊂ F1, which implies R(Pn, SFm) ≥ 2n+ m
2 − 2.

For the reverse inequality, let F be a graph on 2n+ m
2 −2 vertices contain-

ing no Pn. Let L1 = l1,1, l1,2, . . . , l1,k be a longest path in F and so k ≤ n− 1.
If k = 1 we have F ∼= K2n+m

2
−2 which contains SFm. Suppose that k ≥ 2.

We shall prove that F contains SFm. Obviously, for each z ∈ V1, where
V1 = V (F )\V (L1), zl1,1, zl1,k 6∈ E(F ). Let L2 = l2,1, l2,2, . . . , l2,t be a longest
path in F [V1]. It is clear that 1 ≤ t ≤ k. Let V2 = V (F )\(V (L1) ∪ V (L2)).
Since |V (F )| = 2n+ m

2 − 2, there exist at least m
2 vertices in V2, which are not

adjacent to any endpoint l1,1, l1,k, l2,1, l2,t. We distinguish three cases.
Case a1: k < 4m− 2. If t = 1 then the vertices in V1 induce a subgraph

having only isolated vertices. In this case, we shall add an edge uv to F ,
where u, v ∈ V1 and denote L2 = u, v. In this way we can define inductively a
system of paths L1, L2, . . . , Lm such that Li is a longest path in F [Vi−1], where
Vi−1 = V (F ) \

⋃i−1
j=1 V (Lj) or an edge added to F as above. If F1 denotes the

graph F or the graph F plus some edges added in the process of defining the
system of paths, it follows that endpoints of these Lj (1 ≤ j ≤ m) induce in
F1 a complete graph K2m minus a matching having at most m edges if some
of the endpoints of the same Lj are adjacent in F1. If Y denotes the set of
the remaining vertices, we have |V (Y )| ≥ 2n + m

2 − 2 −m(4m − 3) > m
2 ≥ 2.

Let x be one vertex which is not adjacent to any endpoint of these Lj for
1 ≤ j ≤ m. It is easy to see that x together with all endpoints of paths Lj

contains a SFm ⊂ F1 ⊂ F having the hub x.
Case a2: k ≥ 4m − 2 and t ≥ 4m − 2. In this case we define m − 1

quadruples Ai in path L1 as follows:

A1 = {l1,2, l1,3, l1,4, l1,5},
A2 = {l1,6, l1,7, l1,8, l1,9},

...

Am−1 = {l1,4m−6, l1,4m−5, l1,4m−4, l1,4m−3}.
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In a similar way let

B1 = {l2,2, l2,3, l2,4, l2,5},
B2 = {l2,6, l2,7, l2,8, l2,9},

...

Bm−1 = {l2,4m−6, l2,4m−5, l2,4m−4, l2,4m−3}.

for the path L2.

Since V2 = V (F ) \ (V (L1) ∪ V (L2)), we have |V2| ≥ m
2 since t, k ≤ n− 1.

Hence, we can consider m
2 distinct elements in V2: y1, y2, . . . , ym

2
and m

2 − 1
pairs of elements Yi = {yi, yi+1} for i = 1, 2, . . . , m2 − 1. By the maximal-
ity of L2 it follows that for each i = 1, 2, . . . , m2 − 1, at least one vertex in
Bi is not adjacent to any vertex in Yi. Denote by bi vertices in Bi which
are not adjacent to any vertex in Yi for i = 1, 2, . . . , m2 − 1. It follows that
l2,1, y1, b1, y2, b2, . . . , ym

2
−1, bm

2
−1, ym

2
is an m-cycle in F and this cycle together

with vertex l1,1 induces Wm in F .

By the maximality of L1 we get that for any i = 1, . . . ,m−1 and any two
different vertices z1, z2 ∈ V1 = V (F )\V (L1), there exists at least one vertex ai
in Ai that is not adjacent to z1 nor to z2. Hence, we can choose an additional
vertex set {a1, a2, . . . , am−1, l1,k} which together with Wm induces a graph in
F which contains SFm, thus SFm ⊂ F .

Case a3: k ≥ 4m− 2 and t < 4m− 2. Since F has no Pn it follows that
k ≤ n− 1, hence V1 will have at least n+ m

2 − 1 vertices. Then we can define
the same process as in case a1. We obtain a system of paths L2, . . . , Lm, in
the subgraph induced by V1 such that the endpoints of L1, . . . , Lm, induce in
F1 a complete graph K2m minus a matching having at most m edges. We get
in this case |V (Y )| ≥ n+ m

2 − 1− (m− 1)(4m− 3) ≥ 2 and the proof is similar
to the case a1. �

Theorem. For all n ≥ 3, R(Pn, SF3) = 3n− 2.

Proof. To show the lower bound, consider graph F1 = 3Kn−1. We have
F1
∼= Kn−1,n−1,n−1, hence its chromatic number χ(F1) = 3, but χ(SF3) = 4,

which implies that SF3 6⊆ F1. It follows that R(Pn, SF3) ≥ 3n − 2. For the
reverse inequality, let us consider a graph F of order 3n− 2 such that F does
not contain path Pn, we will show that F contains sunflower graph SF3. Let P
be a longest path in F with endpoints p1 and p2. Obviously, xp1, xp2 6∈ E(F )
for each x ∈ X = V (F ) \ V (P ). Let Q be a longest path in F [X] with q1 and
q2 as its endpoints. Then xq1, xq2 6∈ E(F ) for each x 6∈ V (P ) ∪ V (Q). Let
Y = V (F ) \ (V (P ) ∪ V (Q)) and R be a longest path in F [Y ] with r1 and r2
as its endpoints. Since |V (F )| = 3n− 2 and the longest path in F is of length
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less than or equal to n− 1 then there exists a vertex a 6∈ V (P )∪ V (Q)∪ V (R)
such that a is not adjacent to any endpoint p1, p2, q1, q2, r1 and r2. Thus, we
give mapping yielding SF3 in F with a as hub. �

Theorem. If m ≥ 5 is odd and n ≥ 2m2 − 9m+ 11 then R(Pn, SFm) =
3n− 2.

Proof. By using an argument similar as above we have R(Pn, SFm) ≥
3n − 2. To prove R(Pn, SFm) ≤ 3n − 2, let F be a graph on 3n − 2 vertices
containing no Pn. Let L1 = l1,1, l1,2, . . . , l1,k be a longest path in F and so
k ≤ n − 1. If k = 1 we have F ' K3n−2, which contains SFm. Suppose that
k ≥ 2 and F does not contain SFm. Obviously, zl1,1, zl1,k are not in E(F ) for
each z ∈ V1, where V1 = V (F ) \ V (L1). Let L2 = l2,1, l2,2, . . . , l2,t be a longest
path in F [V1]. If t = 1 we have F ' K2n−1, which contains SFm, so we may
suppose 2 ≤ t ≤ k. Let V2 = V (F ) \ (V (L1) ∪ V (L2)). Obviously, yl2,1, yl2,t
are not in E(F ) for each y ∈ V2. Let L3 = l3,1, l3,2, . . . , l3,s be a longest path
in F [V2]. Since |V (F )| = 3n − 2 and the longest path in F is of length less
than or equal to n − 1 then there exists a vertex x 6∈ V (L1) ∪ V (L2) ∪ V (L3)
such that x is not adjacent to any endpoint l1,1, l2,1, l3,1, l1,k, l2,t and l3,s. We
distinguish four cases.

Case 1: k < 2m− 4. It follows that t < 2m−4. If s = 1 then the vertices
in V2 induce a subgraph having only isolated vertices. In this case we shall add
an edge uv to F , where u, v ∈ V2 and denote L3 = u, v. In this way we can
define inductively as in proof of theorem 2 the system of paths L1, L2, . . . , Lm

such that Li is a longest path in F [Vi−1], where Vi−1 = V (F ) \
⋃i−1

j=1 V (Lj) or
an edge added to F as above. If F1 denotes the graph F or the graph F plus
some edges added in the process of defining the system of paths, it follows that
endpoints of these Lj , where j = 1, 2, . . . ,m induce in F1 a complete graph
K2m minus a matching having at most m edges if some of the endpoints of the
same Lj are adjacent in F1. For m ≥ 5 there exists at least one vertex x which
is not adjacent to any endpoint of these Lj . Thus, it is easy to see that vertex
x together with all endpoints of paths Lj form a SFm ⊂ F1 ⊂ F .

Case 2: k ≥ 2m− 4, t ≥ 2m− 4 and s ≥ 2m− 4. For i = 1, 2, . . . ,m− 3
define the couples Ai in path L1 as follows:

Ai =

{
{l1,i+1, l1,i+2} for i odd,
{l1,k−i, l1,k−i+1} for i even.

Similarly, define couples Bi, Ci in paths L2 and L3, respectively as follows:

Bi =

{
{l2,i+1, l2,i+2} for i odd,
{l2,t−i, l2,t−i+1} for i even.
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Ci =

{
{l3,i+1, l3,i+2} for i odd,
{l3,s−i, l3,s−i+1} for i even.

We have seen that since s ≤ t ≤ k ≤ n− 1 and |F | = 3n− 2, there exists
at least one vertex x which is not in L1 ∪ L2 ∪ L3. Since L1 is a longest path
in F , there exists one vertex of Ai for each i, say ai which is not adjacent with
x. Similarly, we obtain vertices bi and ci in couples Bi and Ci which are not
adjacent to x for every i = 1, . . . ,m−3. The maximality of the paths L1 and L2

also implies that for every i, j, k = 1, . . . ,m−3 we have aibj , aick, bjck 6∈ E(F ).
Thus, vertex set {l1,1, l2,t, a1, b1, a2, b2, . . . , am−3

2
, bm−3

2
, l3,1} with vertex x will

contain Wm in F and additional vertex set {l3,s, c1, c2, c3, . . . , cm−3, l1,k, l2,1}
with wheel Wm, gives SFm ⊂ F .

Case 3: k ≥ 2m − 4, t ≥ 2m − 4 and s < 2m − 4. Since F has no Pn

it follows that t ≤ k ≤ n − 1. Consequently, V2 will have at least n vertices.
Then we can define the same process as in case 1. We obtain a system of
paths L3, . . . , Lm in the subgraph induced by V2 such that the endpoints of
L1, . . . , Lm induce in F1 a complete graph K2m minus a matching having at
most m edges. We get in this case |V (Y )| ≥ n− (m− 2)(2m− 5) ≥ 1 and the
proof is similar to the case 1.

Case 4: k ≥ 2m−4 and t < 2m−4. We deduce that s < 2m−4. Since F
has no Pn it follows that k ≤ n− 1. Consequently, V1 will have at least 2n− 1
vertices. Then we can define the same process as in case 1. We obtain a system
of paths L2, . . . , Lm in the subgraph induced by V1 such that the endpoints of
L1, . . . , Lm induce in F1 a complete graph K2m minus a matching having at
most m edges. We get in this case |V (Y )| ≥ 2n− 1− (m− 1)(2m− 5) > 1 and
the proof is similar to the case 1. �
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