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In this paper, we consider the Hecke groups H(
√
m) for m = 1, 2 and 3. Firstly,

we give the generators of the principal congruence subgroups H2(
√
m) of H(

√
m),

respectively. Then, using some of these generators, we define a sequence Uk

which is generalized version of the Pell numbers sequence Pk given in [12] for
the modular group, in the extended Hecke groups H(

√
m) for m = 1, 2 and 3.
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1. INTRODUCTION

In [5], Erich Hecke introduced the groups H(λ) generated by two linear
fractional transformations

T (z) = −1

z
and S(z) = − 1

z + λ
,

where λ is a fixed positive real number. E. Hecke showed that H(λ) is discrete
if and only if λ = λq = 2 cos πq , q is an integer, q ≥ 3, or λ ≥ 2. We will focus
on the discrete case with λ < 2. These groups have come to be known as the
Hecke Groups, and we will denote them H(λq) for q ≥ 3. The Hecke group
H(λq) is isomorphic to the free product of two finite cyclic groups of orders 2
and q and it has a presentation

(1) H(λq) =< T, S | T 2 = Sq = I >∼= C2 ∗ Cq.

The first several of these groups areH(λ3) = Γ = PSL(2,Z) (the modular

group), H(λ4) = H(
√

2), H(λ5) = H(1+
√
5

2 ), and H(λ6) = H(
√

3). It is clear

that H(λq) ⊂ PSL(2,Z[λq]), for q ≥ 4. The groups H(
√

2) and H(
√

3) are of
particular interest, since they are the only Hecke groups, aside from the mod-
ular group, whose elements are completely known (see, [11]). Also conjugates
of the Hecke groups H(

√
2) and H(

√
3) are commensurable to H(λ3) = H(1).

The other H(λq)’s are incommensurable to conjugates of H(λ3) = H(1) and
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of each other. Thus H(
√
m), m = 1, 2 and 3, are called arithmetic as subgroups

of SL(2,R). Also these arithmetic Hecke groups have been studied by many
authors, for example, see [2], [7] and [8].

Throughout this paper, we identify each matrix A in SL(2,Z[λq]) with
−A, so that they each represent the same element of H(λq). Thus, we can
represent the generators of Hecke groups H(λq) as

T =

(
0 −1
1 0

)
and S =

(
0 −1
1 λq

)
.

The principal congruence subgroups of level p, p prime, of H(λq) are
defined in [6], as

Hp(λq) = {M ∈ H(λq) : M ≡ ±I (mod p)} ,

=

{[
a bλq
cλq d

]
: a ≡ d ≡ ±1, b ≡ c ≡ 0 (mod p), ad− λ2qbc = 1

}
.

Hp(λq) is always a normal subgroup of finite index in H(λq).
The principal congruence subgroups of Hecke group H(

√
m), m = 2 and

3, has been studied by Cangül and Bizim in [3]. They proved that the quo-
tient group of the Hecke group H(

√
m) by its principal congruence subgroup

H2(
√
m) is the dihedral group D2m, i.e. :

H(
√
m)/H2(

√
m) ∼= D2m.

In the literature, principal congruence subgroups H2(λ3) of H(λ3) have
been extensively studied in many aspects, see [1], [4], [9] and [12]. It is known
that principal congruence subgroup H2(λ3) is generated by

a1 = TSTS =

[
1 2
0 1

]
and a2 = TS2TS2 =

[
1 0
2 1

]
.

In [12], they proved that if A(g) is the matrix representing of the element
g = (a1.a2)

k = ((TS)2(TS−1)2)k, k ≥ 1, which is product of the generators of
H2(λ3), and if g ∈ H(λ3) act on a real quadratic irrational number α, then

A(g) =

[
P2k−1 P2k

P2k P2k+1

]
,

where Pk is the kth Pell number. It is well-known that the Pell numbers are
defined by the recurrence relation P0 = 0, P1 = 1 and Pk = 2Pk−1 + Pk−2, for
k ≥ 2. The Pell-Lucas numbers are defined by the recurrence relation Q0 = 2,
Q1 = 2 and Qk = 2Qk−1 + Qk−2, for k ≥ 2. The Pell-Lucas number can be
also expressed by Qk = 2Pk−1 + 2Pk.

The aim of this paper is to generalize results given in [12] for the mod-
ular group to the Hecke groups H(

√
m) for m = 1, 2 and 3. To do these,
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firstly, we give the generators of the principal congruence subgroups H2(
√
m)

of H(
√
m). Then, using some of these generators, we define a sequence which

is generalized version of the Pell numbers sequence given in [12] for the modu-
lar group, in Hecke groups H(

√
m) for m = 1, 2 and 3. Finally, we investigate

the fixed points of the transformations ((TS−1)2(TS)2)k and ((TS)2(TS−1)2)k

in Q(
√
d).

2. GENERALIZED PELL NUMBERS IN H2(λq) FOR q = 3,4 AND 6

First, we give the group structure of the principal congruence subgroup
H2(λq) of Hecke group H(λq) for q = 3, 4 and 6.

Theorem 1. If q = 3, 4 and 6, then the principal congruence subgroup
H2(λq) of H(λq) is the free product of (q − 1) infinite cyclic groups.

Proof. We have

H(λq)/H2(λq) ∼=
〈
T, S | T 2 = Sq = (TS)2 = I

〉
.

Hence we obtain
H(λq)/H2(λq) ∼= Dq, ([10])

and
|H(λq) : H2(λq)| = 2q.

If we choose a Schreier transversal for H2(λq) as

I, T, S, S2, · · · , Sq−1, TS, TS2, ..., TSq−2, ST.

Then all possible products are

I.T.(T )−1 = I, I.S.(S)−1 = I,
T.T.(I)−1 = I, T.S.(TS)−1 = I,
S.T.(ST )−1 = I, S.S.(S2)−1 = I,
S2.T.(TSq−2)−1 = S2TS2T, S2.S.(S3)−1 = I,
...

...
Sq−1.T.(TS)−1 = Sq−1TSq−1T, Sq−1.S.(I)−1 = I,
TS.T.(Sq−1)−1 = TSTS, TS.S.(TS2)−1 = I,
TS2.T.(Sq−2)−1 = TS2TS2, TS2.S.(TS3)−1 = I,
...

...
TSq−2.T.(S2)−1 = TSq−2TSq−2, TSq−2.S.(ST )−1 = TSq−1TSq−1,
ST.T.(S)−1 = I, ST.S.(T )−1 = STST,

The generators H2(λq) are TSTS, TS2TS2, · · · , TSq−1TSq−1. Thus H2(λq)
has a presentation

H2(λq) = 〈TSTS〉 ∗
〈
TS2TS2

〉
∗ · · · ∗

〈
TSq−1TSq−1

〉



132 Sebahattin Ikikardes, Zehra Sarigedik Demircioglu and Recep Sahin 4

Here, using the permutation method and Riemann-Hurwitz formula, we also
get the signature of H2(λq) as (0;∞(2m)). �

Thus the principal congruence subgroup H2(λq), q = 3, 4 or 6, of H(λq)
is the free product of (q − 1) finite cyclic groups of order infinite and it is
generated by

a1 = TSTS, a2 = TS2TS2, ..., aq−1 = TSq−1TSq−1.

Now, we give some generalizations of the Pell numbers and the Pell-Lucas
numbers. To do this, we use the generators a1 = TSTS and aq−1 = TS−1TS−1

of H2(λq) of H(λq), q = 3, 4 and 6. Here we replace λq, q = 3, 4 or 6 with√
m, m = 1, 2 and 3, respectively. Then we have the matrix representation of

a1 = (TS)2 and aq−1 = (TS−1)2 as[
1 2
√
m

0 1

]
and [

1 0
2
√
m 1

]
.

Therefore we obtain the matrix representation of the product aq−1.a1=(TS−1)2

.(TS)2 as

A =

[
1 2

√
m

2
√
m 1 + 4m

]
.

Then, we can show the following lemma.

Lemma 2. The k th power of A is

Ak =

[
U2k−1 U2k

U2k U2k+1

]
,

where U0 = 0, U1 = 1 and Uk = 2
√
mUk−1 + Uk−2, for k ≥ 2.

Proof. In order to prove its we use induction method on k. Let

A =

[
U1 U2

U2 U3

]
and

Ak =

[
U2k−1 U2k

U2k U2k+1

]
.

Then we have

A2 =

[
1 2

√
m

2
√
m 1 + 4m

]
.

[
1 2

√
m

2
√
m 1 + 4m

]
=

[
1 + 4m 2

√
m(1 + 4m) + 2

√
m

2
√
m(1 + 4m) + 2

√
m 4m+ (4m+ 1)2

]
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=

[
U3 U4

U4 U5

]
.

Hence assertion is true for k = 2. Now, let us assume that

Ak−1 =

[
U2k−3 U2k−2
U2k−2 U2k−1

]
.

Finally Ak is obtained as

Ak =

[
U2k−3 U2k−2
U2k−2 U2k−1

]
.

[
1 2

√
m

2
√
m 1 + 4m

]
=

[
U2k−3 + 2

√
m(U2k−2) 2

√
mU2k−3 + (1 + 4m)U2k−2

U2k−2 + 2
√
m(U2k−1) 2

√
mU2k−2 + (1 + 4m)U2k−1

]
=

[
U2k−1 U2k

U2k U2k+1

]
.

Therefore we have a real number sequence Uk. The definition and boundary
conditions of this sequence are

Uk = 2
√
mUk−1 + Uk−2, for k ≥ 2,

U0 = 0, U1 = 1. �

Proposition 3. For all k ≥ 2,

Uk =
1

2
√
m+ 1

[
(
√
m+

√
m+ 1)k − (

√
m−

√
m+ 1)k

]
.

Proof. If Uk is a characteristic polynomial rk to solve this equation, then
we get the following equation

rk = 2
√
mrk−1 + rk−2 ⇒ r2 − 2

√
mr − 1 = 0.

Hence we find the roots of this equation as

r1,2 =
√
m±

√
m+ 1.

Using r1 and r2, we can obtain a general formula of Uk. If we write Uk as
combinations of the roots r1 and r2, we have

Uk = A(
√
m+

√
m+ 1)k +B(

√
m−

√
m+ 1)k.

Since

U0 = 0 = A+B

U1 = 1 = A(
√
m+

√
m+ 1) +B(

√
m−

√
m+ 1)

and so

2A
√
m+ 1 = 1.
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Hence constants A and B

A =
1

2
√
m+ 1

and B = − 1

2
√
m+ 1

.

Therefore we find the formula of Uk as

Uk =
1

2
√
m+ 1

[
(
√
m+

√
m+ 1)k − (

√
m−

√
m+ 1)k

]
. �

This formula is a generalized Pell number sequence Uk. If m = 1, we get
Uk = Pk (the kth Pell number) and

Uk =
1

2
√

2

[(
1 +
√

2
)k
−
(

1−
√

2
)k]

.

In general, the trace tr(Ak) of Ak is

U2k−1 + U2k+1 = U2k−1 + 2
√
mU2k + U2k−1 = 2

√
mU2k + 2U2k−1.

Now we can define the generalized Pell-Lucas numbers Vk. The generalized
Pell-Lucas numbers Vk are defined by the recurrence relation V0 = 2, V1 = 2

√
m

and Vk = 2
√
mVk−1 +Vk−2, for k ≥ 2. The generalized Pell-Lucas number can

be also expressed by Vk = 2
√
mUk + 2Uk−1. Then the trace tr(Ak) of Ak is

found as V2k. Also the determinant of Ak is 1.

On the other hand, if we take the product a1.aq−1 = (TS)2 .
(
TS−1

)2
,

then we obtain the matrix representation of a1.aq−1 as

B =

[
1 + 4m 2

√
m

2
√
m 1

]
.

Thus for each k we have

Bk =

[
U2k+1 U2k

U2k U2k−1

]
.

Here the trace tr(Bk) of Bk is V2k and the determinant of Bk is 1. Additionally,
if we consider the matrice representations of A and B, we find that they have
same eigenvalues r1 = (2m+1)+2

√
m(m+ 1) and r2 = (2m+1)−2

√
m(m+ 1)

of the characteristic equation r2 − (4m+ 2)r + 1 = 0.

3. FIXED POINTS OF Ak AND Bk IN Q(
√
d)

Now we investigate the case when Ak and Bk fix elements of Q(
√
d). If

α ∈ Q(
√
d) and if Bk is to fix α then

U2k+1α+ U2k

U2kα+ U2k−1
= α.
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Hence we obtain U2k(α
2 − 2

√
mα − 1) = 0 for all integers k ≥ 1. Here

α =
√
m±

√
m+ 1. Now we have three possibilities:

i) if m = 1 then please see [12, p. 101].

ii) if m = 2 then α =
√

2±
√

3, so d = 2 or 3.

iii) if m = 3 then α =
√

3± 2, so d = 3.

If α ∈ Q(
√
d) and if Ak is to fix α then

U2k−1α+ U2k

U2kα+ U2k+1
= α.

Thus we find U2k(α
2 + 2

√
mα − 1) = 0 for all integers k ≥ 1. Here

α = −
√
m±

√
m+ 1. Now we have three possibilities:

i) if m = 1 then please see [12, p. 101].

ii) if m = 2 then α = −
√

2±
√

3, so d = 2 or 3.

iii) if m = 3 then α = −
√

3± 2, so d = 3.

For all cases of m, if we take α = τ =
√
m+
√
m+ 1 then τ−1 = −

√
m+√

m+ 1 and if τ̄ =
√
m−

√
m+ 1 then τ̄−1 = −

√
m−

√
m+ 1.

Therefore if the generators T and S of H(
√
m) act on Q(

√
d) under

the condition that for all k ≥ 1,
(
(TS−1)2(TS)2

)k
or
(
(TS)2(TS−1)2

)k
fixes

elements of Q(
√
d), then d = 2, 2 or 3 and 3 for m = 1, 2 and 3, respectively.

Now we give the following.

Corollary 4. If α is a real qudratic irrational number and if(
(TS−1)2(TS)2

)k ∈ H(
√
m)(k ≥ 1)

act on α, then the matrix Ak of
(
(TS−1)2(TS)2

)k
is

Ak =

[
U2k−1 U2k

U2k U2k+1

]
where Uk is the kth generalized Pell number and tr(Ak) is 2

√
mU2k + 2U2k−1.
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