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In this paper, we consider the Hecke groups H(y/m) for m =1, 2 and 3. Firstly,
we give the generators of the principal congruence subgroups Ha(y/m) of H(y/m),
respectively. Then, using some of these generators, we define a sequence Uy
which is generalized version of the Pell numbers sequence Pj given in [12] for
the modular group, in the extended Hecke groups H(y/m) for m = 1,2 and 3.

AMS 2010 Subject Classification: 20H10, 11F06.

Key words: Hecke group, principal congruence subgroup, generalized Pell seguence,
generalized Pell-Lucas sequence.

1. INTRODUCTION

In [5], Erich Hecke introduced the groups H(\) generated by two linear
fractional transformations
1 1
T(z)=—- d S =——
()=—, ad ) =-—,
where A is a fixed positive real number. E. Hecke showed that H () is discrete
if and only if A = A\; = 2cos g, q is an integer, ¢ > 3, or A > 2. We will focus
on the discrete case with A < 2. These groups have come to be known as the
Hecke Groups, and we will denote them H()\;) for ¢ > 3. The Hecke group
H()\;) is isomorphic to the free product of two finite cyclic groups of orders 2
and ¢ and it has a presentation

(1) H(\) =<T,S|T?=81=1>~CyxC,.

The first several of these groups are H(A\3) = I' = PSL(2,Z) (the modular
group), H(\y) = H(\/2), H(\5) = H(lg—\/g), and H()\g) = H(+/3). It is clear
that H(\,) C PSL(2,Z[)\,]), for ¢ > 4. The groups H(v/2) and H(v/3) are of
particular interest, since they are the only Hecke groups, aside from the mod-
ular group, whose elements are completely known (see, [11]). Also conjugates
of the Hecke groups H(v/2) and H(+/3) are commensurable to H(\3) = H(1).
The other H(\;)’s are incommensurable to conjugates of H(A3) = H(1) and
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of each other. Thus H(y/m), m = 1,2 and 3, are called arithmetic as subgroups
of SL(2,R). Also these arithmetic Hecke groups have been studied by many
authors, for example, see [2], [7] and [8].

Throughout this paper, we identify each matrix A in SL(2,7Z[\,]) with
—A, so that they each represent the same element of H();). Thus, we can
represent the generators of Hecke groups H(\,) as

0 —1 0 —1
(0 Y was= (0.

The principal congruence subgroups of level p, p prime, of H(\,) are
defined in [6], as

H,(\y) = {MeH(\):M==I (modp)},

= {{ Ciq bgq } ca=d=+1,b=c=0 (modp),ad—)@bc-l}.
H,()\q) is always a normal subgroup of finite index in H(A,).
The principal congruence subgroups of Hecke group H(y/m), m = 2 and
3, has been studied by Cangiil and Bizim in [3]. They proved that the quo-
tient group of the Hecke group H(y/m) by its principal congruence subgroup
Hy(y/m) is the dihedral group Day,, i.e. :

H(v'm)/Hz(v/m) = Doy,

In the literature, principal congruence subgroups Ha(A3) of H(A3) have
been extensively studied in many aspects, see [1], [4], [9] and [12]. It is known
that principal congruence subgroup Ha(A3) is generated by

1 2

alzTSTS:[O 1

and ay = T'S?*TS? = L0 .
21
In [12], they proved that if A(g) is the matrix representing of the element
g = (a1.a2)* = ((T'S)*(T'S™1)2)*, k > 1, which is product of the generators of
Hy(A3), and if g € H(A3) act on a real quadratic irrational number «, then

| Pk Py
Alg) = [ Py, Pogy1 |’

where Py is the k' Pell number. It is well-known that the Pell numbers are
defined by the recurrence relation Py =0, P, =1 and P, = 2P,_1 + Py_o, for
k > 2. The Pell-Lucas numbers are defined by the recurrence relation Qg = 2,
Q1 =2 and Qi = 2Qk_1 + Qr_9, for k > 2. The Pell-Lucas number can be
also expressed by Qr = 2P;_1 + 2P;.

The aim of this paper is to generalize results given in [12] for the mod-
ular group to the Hecke groups H(y/m) for m = 1,2 and 3. To do these,
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firstly, we give the generators of the principal congruence subgroups Ha(1/m)
of H(y/m). Then, using some of these generators, we define a sequence which
is generalized version of the Pell numbers sequence given in [12] for the modu-
lar group, in Hecke groups H(y/m) for m = 1,2 and 3. Finally, we investigate
the fixed points of the transformations ((7°S~1)2(7'S)?)* and ((T'S)*(TS~1)%)*
in Q(Vd).

2. GENERALIZED PELL NUMBERS IN H:(Aq) FOR ¢ = 3,4 AND 6

First, we give the group structure of the principal congruence subgroup
Hj(\g) of Hecke group H()\;) for ¢ =3, 4 and 6.

THEOREM 1. If ¢ = 3,4 and 6, then the principal congruence subgroup
Hy(Xg) of H()g) is the free product of (q — 1) infinite cyclic groups.

Proof. We have
H(\g)/Ha(Ag) 2 (T, S| T? = S1=(TS)*=1).

Hence we obtain
| H(Aq)/H2(Ag) = Dg, ([10])
[H(Aq) : Ha(Ag)| = 2q.

If we choose a Schreier transversal for Ha()) as
I,T,8,58% .., 891 78 15% .., TS972 ST.

Then all possible products are

IT.(T) ' =1, 1.5.(9) ' =1,

T.T.(I) ' =1, T.5(TS)"' =1,

ST.(ST) ' =1, S.8.(8H 1 =1,
3

S2.T.(TS172)~ = S2T ST, S52.8.(SH "t =1,

STLT(TS)~ = SelTseiT,  S9LS(1)7 =1,
TS.T.(S971)~1 =TSTS, TS.S.(TS*)~ ! =1,
TS2.T.(8972)~1 = TS?TS?, TS2.85.(TS3) 1 =1,

TS12T.(S%H)~ 1 =1897218972, TSI72.6.(ST) "t =TS9 1871,
ST.T.(S) ' =1, ST.S.(T)~! = STST,
The generators Ha(\,) are TSTS,TS?TS?,--- , TS 175971, Thus Ha()\,)
has a presentation

Hay(Ag) = (TSTS) % (T'S*TS?) % -+ (TSI 17811
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Here, using the permutation method and Riemann-Hurwitz formula, we also
get the signature of Ha()\q) as (0; oo(2m)). ]

Thus the principal congruence subgroup Ha(\), ¢ = 3,4 or 6, of H(\,)
is the free product of (¢ — 1) finite cyclic groups of order infinite and it is
generated by

ay = TSTS,ay = TS*TS?,...,a41 = TSI TS

Now, we give some generalizations of the Pell numbers and the Pell-Lucas
numbers. To do this, we use the generators a; = T'ST'S and a4—1 = TS-1T7s-1
of Ha(Ag) of H()\;), ¢ = 3,4 and 6. Here we replace \;, ¢ = 3,4 or 6 with
vm, m = 1,2 and 3, respectively. Then we have the matrix representation of
a1 = (TS)? and ag—1 = (T'S™!)? as

iy
and Lo
s )

Therefore we obtain the matrix representation of the product a,—1.a; = (T'S~1)?

(TS)? as
A:[2;m ﬁfﬁz}

Then, we can show the following lemma.

LEMMA 2. The k th power of A is
Ak — { Usk—1 Uni }
Uk Uszpya
where Uy =0, Uy =1 and Uy, = 2/mUi_1 + Ug_o, for k > 2.

Proof. In order to prove its we use induction method on k. Let

(U U
a=o o]

and
Ak [ Usk—1 Usp } .

Usr Uszpt1
Then we have

2 _ 1 2y/m 1 2/m
o [Wﬁ 1+4m]'[2\/ﬁ 1+4m}
= L+ dm 2y/m(1 + 4m) + 2/m
[ 2y/m(1 +4m) + 2y/m Am + (4m + 1)2 }
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Us U
Ug Us |~

Hence assertion is true for £k = 2. Now, let us assume that
Ak-1 [ Uzk—3 Uszk—2 ] .
Usk—2 Uzk—1

Finally Ay is obtained as

Ak — [ Usk—3 Usp—2 1 2/m

| Usk—2 U1 || 2¢/m 1+4m

[ Usp—3 +2¢/m(Us—2) 2y/mUap—3 + (1 +4m)Usp_o
L Usp._o9 + 2\/m(U2k_1) 2\/ngk_2 + (1 + 4m)U2k_1

_ [ Usk—1 Uz }
Uy Uiy |-

Therefore we have a real number sequence Ug. The definition and boundary
conditions of this sequence are

U, = 2mUk—1+Uk—2a for k > 2,
Uy = 0,U,=1. 0O

ProrosiTION 3. For all k > 2,

Ui = (Vi + V1 = (Vin = Vm D]

1
2v/m+1
Proof. If Uy, is a characteristic polynomial r* to solve this equation, then
we get the following equation

P =oymr* 4 b2 = 02 _oy/mr — 1 = 0.
Hence we find the roots of this equation as

rmzﬂivm—i—l.

Using 71 and ro, we can obtain a general formula of Ug. If we write Uy as
combinations of the roots r1 and r9, we have

Ur = A(Vm + vVm+1)F + B(vm — vVm +1)F.
Since

Uy = 0=A+B

Uy = 1=AWm+vVm+1)+B(/m—vVm+1)

and so

2Avm+1=1.
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Hence constants A and B

1 1
A=——+—and B= ————.
2vVm + 1 2vVm + 1

Therefore we find the formula of U}, as

1
—— |(vV/m+Vm vm O
2\/m+1[( +Vm 1)~ (Vim - )}

This formula is a generalized Pell number sequence Uy. If m = 1, we get
Uy = Py (the k' Pell number) and

Up — M[(Hf) (1 ﬂ)’“].

In general, the trace tr(AF) of A" is
Usk—1 + Usp1 = Usg—1 + 2v/mUsy, + Usg—1 = 2/mUsy, + 2Uzp_1.

Now we can define the generalized Pell-Lucas numbers Vj,. The generalized
Pell-Lucas numbers Vj, are defined by the recurrence relation Vy = 2, Vi = 2y/m
and Vi = 2y/mVj_1 + Vi_o, for k > 2. The generalized Pell-Lucas number can
be also expressed by Vi = 2y/mUy, + 2Uj_1. Then the trace tr(A*) of Ay is
found as V5. Also the determinant of A is 1.

On the other hand, if we take the product ai.aq—1 = (TS)2 ) (TS*I)z,
then we obtain the matrix representation of aj.a4—1 as

=[5k 7]

Ug =

Thus for each k& we have

Bk:[UQk-i—l Uak, ]
Uk U1 |7

Here the trace tr(B*) of B¥ is Vo, and the determinant of B¥ is 1. Additionally,
if we consider the matrice representations of A and B, we find that they have
same eigenvalues 1 = (2m+1)+2y/m(m + 1) and ro = (2m+1)—2/m(m + 1)
of the characteristic equation 72 — (4m + 2)r +1 = 0.

3. FIXED POINTS OF A* AND B* IN Q(Vd)
Now we investigate the case when A* and B* fix elements of Q(v/d). If
o € Q(v/d) and if B* is to fix a then

Uspy1a + Uy
Usra + Ugg—1
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Hence we obtain Usg(a? — 2¢/ma — 1) = 0 for all integers k > 1. Here
a =+/m++/m+ 1. Now we have three possibilities:

i) if m =1 then please see [12, p. 101].

ii) if m=2then a =v2++3,s0d=2or 3.

iii) if m = 3 then a = v/3 42, s0 d = 3.

If a € Q(v/d) and if AF is to fix o then

Usp—1a + Uy, _
Usror + Uapt1

Thus we find Usg(a? + 2y/ma — 1) = 0 for all integers & > 1. Here
a = —y/m++/m+ 1. Now we have three possibilities:

i) if m = 1 then please see [12, p. 101].

i) if m = 2 then o = —v/2 £+/3, so d = 2 or 3.

iii) if m = 3 then a = —v/3+ 2, so d = 3.

For all cases of m, if we take a =7 = \/m++vm + 1 then 771 = —/m +
vVm+1andif 7= /m —+vm+1then 77! = —\/m — v/m + 1.

Therefore if the generators T and S of H(y/m) act on Q(v/d) under
the condition that for all k > 1, (TS )2(T'9)2)" or ((T'9)X(TS™)?)" fixes
elements of Q(v/d), then d = 2,2 or 3 and 3 for m = 1,2 and 3, respectively.

Now we give the following.

COROLLARY 4. If « is a real qudratic irrational number and if
(rs=2(1s))" e H(Vm)(k = 1)
act on a, then the matriz A* of ((TS_I)Q(TS)2)k is

Ak — [ Usk—1 Uz }
Usr Ukt

where Uy, is the k' generalized Pell number and tr(AF) is 2/mUyy, + 2Us_1.
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