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An ideal I of a local Cohen-Macaulay ring (R,m) is called a cohomologically
complete intersection if Hi

I(R) = 0 for all i 6= c := height(I). Here Hi
I(R),

i ∈ Z denotes the local cohomology of R with respect to I. For instance, a
set-theoretic complete intersection is a cohomologically complete intersection.
Here we study cohomologically complete intersections from various homological
points of view. As a main result it is shown that the vanishing Hi

I(M) = 0
for all i 6= c is completely encoded in homological properties of Hc

I (M). These
results extend those of Hellus and Schenzel (see [13, Theorem 0.1]) shown in
the case of a local Gorenstein ring. In particular we get a characterization of
cohomologically complete intersections in a Cohen-Macaulay ring in terms of the
canonical module.
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1. INTRODUCTION

Let (R,m) denote a local Noetherian ring. For an ideal I ⊂ R it is a
rather difficult question to determine the smallest number n ∈ N of elements
a1, ..., an ∈ R such that Rad I = Rad(a1, ..., an)R. This number is called the
arithmetic rank, ara I, of I. By Krull’s generalized principal ideal theorem
it follows that ara I ≥ height(I). Of a particular interest is the case whenever
ara I = height(I). If this equality holds then I is called a set-theoretic complete
intersection.

For the ideal I let H i
I(·), i ∈ Z, denote the local cohomology functor with

respect to I, see [6] for its definition and basic results. The cohomological
dimension, cd(I), defined by

cd(I) = sup{i ∈ Z|H i
I(R) 6= 0}

is another invariant related to the ideal I. It is well known that

grade I ≤ height(I) ≤ cd(I) ≤ ara I.
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In particular, if I is a set-theoretically complete intersection it follows
that height(I) = cd(I). The converse does not hold in general (see [12, Re-
mark 2.1(ii)]). Not so much is known about ideals with the property of grade I =
cd(I). We call those ideals cohomologically complete intersections. In this
paper we continue with the investigations of cohomologically complete inter-
sections, in particular when I is an ideal in a Cohen-Macaulay ring (R,m). In
this case I is a cohomologically complete intersection if height(I) = cd(I).

As an application of our main results there is a characterization of co-
homologically complete intersections. In fact, this provides a large number of
necessary conditions for an ideal to be a set-theoretic complete intersection in
a local Cohen-Macaulay ring.

Theorem 1.1. Let (R,m) be a ring of dimension n, I ⊆ R an ideal of
grade(I,M) = c, and M 6= 0 a maximal Cohen-Macaulay R-module with
idR(M) <∞. Then the following conditions are equivalent:

(a) H i
I(M) = 0 for all i 6= c.

(b) For all p ∈ V (I) ∩ SuppR(M) the natural homomorphism

H
h(p)
pRp

(Hc
IRp

(Mp))→ H
dim(Mp)
pRp

(Mp)

is an isomorphism and H i
pRp

(Hc
IRp

(Mp))=0 for all i 6=h(p)=dim(Mp)−c.
(c) For all p ∈ V (I) ∩ SuppR(M) the natural homomorphism

Ext
h(p)
Rp

(k(p), Hc
IRp

(Mp))→ Ext
dim(Mp)
Rp

(k(p),Mp)

is an isomorphism and ExtiRp
(k(p), Hc

IRp
(Mp)) = 0 for all i 6= h(p) =

dim(Mp)− c.
(d) For all p ∈ V (I) ∩ SuppR(M) the natural homomorphism

K(M̂p)→ Extc
R̂p

(Hc
IR̂p

(M̂p),K(R̂p))

is an isomorphism and Exti
R̂p

(Hc
IR̂p

(M̂p),K(R̂p)) = 0 for all i 6= h(p) =

dim(Mp)− c.
(e) H i

I(R)=0 for all i 6=c, that is I is a cohomologically complete intersection.

Note that the natural homomorphisms, in (b), (c), and (d) of the above
Theorem, can be constructed by truncation complex (see Definition 4.1 and
Theorem 4.3). Moreover K(M̂p) denotes the canonical module of M̂p, see [18]
for its definition and basic properties.

In the case of M = R a local Gorenstein ring the equivalence of the
conditions (a), (b), (c), (d) was shown by Hellus and Schenzel as the main
result of their paper (see [13, Theorem 0.1]). The new point of view here is
the generalization to any maximal Cohen-Macaulay module of finite injective
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dimension. This implies a large bunch of new necessary conditions for an ideal
to become set-theoretically a complete intersection.

As a byproduct of our investigations there is another characterization of
a Cohen-Macaulay ring. H. Bass conjectured in his paper (see [1]) that if a
Noetherian local ring (R,m) possesses a non-zero finitely generated R-module
M such that its injective dimension idR(M) is finite then R is Cohen-Macaulay
ring. This was proved by M. Hochster (see [9]) in the equicharacteristic case
and finally by P. Roberts (see [16]). We add here the following characterization
of a local Cohen-Macaulay ring.

Theorem 1.2. Let (R,m) be a Noetherian local ring, I an ideal of R,
and M 6= 0 a finitely generated R-module. Suppose that H i

I(M) = 0 for all
i 6= c = grade(I,M), then the following are equivalent:

(1) idR(M) <∞.

(2) idR(Hc
I (M)) <∞.

If one of the equivalent conditions is satisfied then R is a Cohen-Macaulay ring.

The paper is organized as follows. In the Section 2 we recall a few pre-
liminaries used in the sequel of the paper. In Section 3 we make a comment
to the Local Duality for a Cohen-Macaulay ring. In Section 4 we describe
the truncation complex as it was introduced by Hellus and Schenzel (see [13,
Definition 2.1]) and use it for the proofs of our main results. In Section 5 we
conclude with a few applications.

2. PRELIMINARIES

In this section, we will fix the notation of the paper and summarize a few
preliminaries and auxiliary results. We always assume that (R,m) is a local
commutative Noetherian ring with m as a maximal ideal and k = R/m denotes
the residue field. Furthermore E = ER(k) denotes the injective hull of k.

Let I ⊆ R be an ideal of R. For an R-module M let H i
I(M), i ∈ Z denote

the local cohomology modules of M with respect to I (see [6] for its definition).
We define the grade and the cohomological dimension

grade(I,M)=inf{i ∈ Z : H i
I(M) 6= 0} and cd(I,M)=sup{i ∈ Z : H i

I(M) 6= 0}.

For a finitely generated R-module M this notion of grade coincides with the
usual one on the maximal length of an M -regular sequence contained in I. For
any R-module X, idR(X) stands for the injective dimension of X.

Moreover, if M is finitely generated, we define heightM I = height IR/
AnnRM. Then grade(I,M) ≤ heightM I ≤ cd(I,M). In the case of M = R
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in addition it follows that height I ≤ ara I ≤ cd I. Furthermore for a Cohen-
Macaulay R-module M it turns out that heightM I = dimM − dimM/IM
for any ideal I ⊂ R. For a Cohen-Macaulay R-module M it is clear that
heightM I = grade(I,M).

Remark 2.1. Let x = x1, . . . , xr ∈ I denote a system of elements of R
such that Rad I = Rad(x)R. We consider the Čech complex Čx with respect
to x = x1, ..., xr. That is

Čx =
r
⊗
i
Čxi ,

where Čxi is the complex 0→ R→ Rxi → 0. Then Čx has the following form

0→ R→
r
⊕
i=1

Rxi → ...→ Rx1x2...xr → 0.

By Ďx we denote the truncation of Čx by R. That is, we have Ďi
x = Čix for all

i 6= 0 and Ď0
x = 0.

So there is a short exact sequence of complexes of flat R-modules

0→ Ďx → Čx → R→ 0,

where Čx → R is the identity in homological degree zero.

For an arbitrary complex of R-modules X it follows (see [19, Theo-
rem 1.1]) that

H i(Čx ⊗R X) ∼= H i
I(X) for all i ∈ Z.

Now let us summarize a few well-known facts about grade and local co-
homology. For basic notions on grade as well as other notions of commutative
algebra we refer to Matsumura’s textbook (see [15]). For the facts on homolog-
ical algebra needed in this paper see [21]. Also we denote R̂ for the completion
of R with respect to the maximal ideal.

Proposition 2.2. For finitely generated R-modules M , N and I ⊆ R be
an ideal we have

(a) grade(I,M) = inf{depth(Mp) : p ∈ SuppR(M) ∩ V (I)}.
(b) Suppose that SuppR(N) ⊆ SuppR(M), then cd(I,N) ≤ cd(I,M).

In particular cd(I,M) ≤ cd(I).

Proof. The statement (a) is shown in [3, Proposition 1.2.10]. For the
proof of (b) we refer to [4, Theorem 2.2]. �

In the context of our paper we are interested in Cohen-Macaulay rings
and modules. A non-zero finitely generated R-module M is called maximal
Cohen-Macaulay module if depth(M) = dim(R).
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Proposition 2.3. Let (R,m) be a Cohen-Macaulay ring of dimension
n and I ⊆ R an ideal. For a maximal Cohen-Macaulay module M 6= 0 we
consider the following conditions:

(a) grade(I) = cd(I) and

(b) grade(I,M) = cd(I,M).

Then (a) implies (b), while the converse is also true provided that SuppR(M) =
Spec(R).

Proof. Let p ∈ SuppR(M). Because of depth(Mp) = depth(Rp) = dim(Rp)
(recall that M is maximal Cohen-Macaulay module) it follows that

grade(I) ≤ grade(I,M) ≤ cd(I,M) ≤ cd(I)

So (a) implies (b). If SuppR(M) = Spec(R) we have that grade(I)=grade(I,M)
and cd(I,M) = cd(I) (see Proposition 2.2) and the converse holds also. �

Notation 2.4. As usual we use the symbol “ ∼= ” in order to denote an
isomorphism of modules. In contrast to that we use the symbol “

∼−→ ” in the
following context:

Let X → Y be a morphism of complexes such that it induces an isomor-
phism in cohomologies, i.e. a quasi-isomorphism. Then we write X

∼−→ Y .
That is “

∼−→ ” indicates that there is a morphism of complexes in the right
direction.

Moreover if X
∼−→ Y is a quasi-isomorphism and F ·R is a complex of flat

R-modules bounded above. Then it induces a quasi-isomorphism F ·R⊗RX
∼−→

F ·R ⊗R Y . Similar results are true for HomR(., E·R) respectively HomR(P ·R, .)
for E·R a bounded below complex of injective R-modules respectively P ·R a
bounded above complex of projective R-modules. For details we refer to [7].
This is the only fact we need of the theory of derived functors.

Note that the following Lemma remains true for an arbitrary Noetherian
ring and an arbitrary ideal.

Lemma 2.5. Let (R,m) be a ring of dimension n. Let X be a complex of R-
modules such that SuppR(H i(X)) ⊆ V (m) for all i ∈ Z. Then H i

m(X) ∼= H i(X)
for all i ∈ Z.

Proof. Let x = x1, . . . , xn ∈ m denote a system of parameters of R. Then
we have the following short exact sequence of complexes of flat R-modules

0→ Ďx → Čx → R→ 0.

Apply the functor · ⊗RX to this sequence and we get the following long exact
sequence of cohomology modules

· · · → H i(Ďx ⊗R X)→ H i
m(X)→ H i(X)→ · · ·
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Now we claim that Ďx⊗RX is an exact complex. This follows because

⊕
j
H i(Rxj ⊗R X) ∼= ⊕

j
Rxj ⊗R H i(X) = 0

This is true since SuppR(H i(X)) ⊆ V (m) and cohomology commutes with
exact functors. So it proves thatH i(X) ∼= H i

m(X) for all i ∈ Z, as required. �

In the following, we need a result that was originally proved by Hellus
and Schenzel (see [13, Proposition 1.4]) by a spectral sequence. Here we will
give an elementary proof without using spectral sequences.

Proposition 2.6. Let (R,m) be a local ring. Let X be an arbitrary R-
module. Then for any integer s ∈ N the following conditions are equivalent:

(1) H i
m(X) = 0 for all i < s.

(2) ExtiR(k,X) = 0 for all i < s.

If one of the above conditions holds, then there is an isomorphism

HomR(k,Hs
m(X)) ∼= ExtsR(k,X).

Proof. We prove the statement by an induction on s. First let us consider
that s = 0. Because of Supp(k) = {m} = V (m) the injection Γm(X) ⊆ X
induces an isomorphism

HomR(k,Γm(X)) ∼= HomR(k,X).

Recall that HomR(k,X/Γm(X)) = 0 since X/Γm(X) is not m-torsion. Be-
cause of Supp(Γm(X)) ⊆ V (m) it follows that Γm(X) = 0 if and only if
HomR(k,Γm(X)) = 0 which proves the claim for s = 0.

Now consider s + 1 and assume that the statement is true for all i ≤ s.
Since Supp(Hs

m(X)) ⊆ V (m), by using the last isomorphism applied for i =
s, it follows the equivalence of the vanishing of H i

m(X) and ExtiR(k,X) for all
i ≤ s.

So it remains to prove that

HomR(k,Hs+1
m (X)) ∼= Exts+1

R (k,X)

To this end let E·R(X) be a minimal injective resolution of X, then

HomR(k, (E·R(X))i) = 0

for all i ≤ s. That is we have the following exact sequence

0→ Hs+1
m (X)→ Γm(E·R(X))s+1 → Γm(E·R(X))s+2

Because of HomR(k,E·R(X)) ∼= HomR(k,Γm(E·R(X))) it follows that Exts+1
R (k,

X) ∼= HomR(k,Hs+1
m (X)). �



7 On cohomologically complete intersections in Cohen-Macaulay rings 27

Proposition 2.7. Let (R,m) be a local ring and M 6= 0 a finitely gen-
erated R-module. Let I ⊆ R be an ideal of R with H i

I(M) = 0 for all i 6= c
and Hc

I (M) 6= 0. Then c = grade(IRp,Mp) for all p ∈ V (I) ∩ SuppRM .
If M is in addition a Cohen-Macaulay module then c = heightMp

IRp for all
p ∈ V (I) ∩ SuppRM .

Proof. Since c = grade(I,M) ≤ grade(IRp,Mp) for all p ∈ V (I) ∩
SuppRM . Suppose that there is a prime ideal p ∈ V (I) ∩ SuppRM such
that grade(IRp,Mp) = h > c. Then

0 6= Hh
IRp

(Mp) ∼= Hh
IRp

(M ⊗R Rp) ∼= Hh
I (M)⊗R Rp.

But it implies that Hh
I (M) 6= 0, h > c, which is a contradiction to our assump-

tion. �

In case of a not necessarily finitely generatedR-moduleX we put dimX =
dim SuppRX. Note that this agrees with the usual notion dimX = dimR/
AnnRX if X is finitely generated.

3. LOCAL DUALITY THEOREM FOR A COHEN-MACAULAY RING

We want to prove a variation of the Local Duality Theorem for a Cohen-
Macaulay ring. Let (R,m) denote a local ring which is the factor ring of a
local Gorenstein ring (S, n) with dim(S) = t. Let N be a finitely generated
R-module. Then by the Local Duality Theorem there is an isomorphism

H i
m(N) ∼= HomR(Extt−iS (N,S), E)

for all i ∈ N (see [6]). Under these circumstances we define

K(N) := Extt−rS (N,S),dim(N) = r

as the canonical module of N . It was introduced by Schenzel (see [18]) as the
generalization of the canonical module of a ring (see e.g. [3]).

For our purposes here we need an extension of the Local Duality of a
local Gorenstein ring to a local Cohen-Macaulay ring which is valid also for
modules that are not necessarily finitely generated. A more general result of
Lemma 3.1 was proved by Hellus (see [11, Theorem 6.4.1]). We include here a
proof of the particular case for sake of completeness.

Lemma 3.1 (Local Duality). Let (R,m) be a Cohen-Macaulay ring of
dimension n. Let M be an arbitrary R-module. Then there are functorial
isomorphisms

HomR(H i
m(M), E) ∼= Extn−iR (M,K(R̂))

for all i ∈ N.
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Proof. By Cohen’s Structure Theorem any complete local ring (R,m) is
a homomorphic image of a regular local ring and – in particular – of local
Gorenstein ring. Let R̂ be the m-adic completion of R which is homomor-
phic image of a local Gorenstein (regular) ring (S, n) with dim(S) = t. Then
Hn

m(R) ∼= Hn
mR̂

(R̂) because any R-module X with support contained in V (m)

admits the structure of an R̂-module such that X ∼= X ⊗R R̂. Then by the
Local Duality Theorem for Gorenstein rings (see [6]) there is an isomorphism
HomR(Hn

m(R), E) ∼= Extt−nS (R̂, S).
For a system of parameters x = x1, . . . , xn let Čx denote the Čech complex

with respect to x. Because R is a Cohen-Macaulay ring H i
m(R) ∼= H i(Čx) = 0

for all i 6= n. That is, Čx is a flat resolution of Hn
m(R)[−n]. Therefore

TorRn−i(M,Hn
m(R)) ∼= H i(Čx ⊗RM) ∼= H i

m(M)

for all i ∈ Z and an arbitrary R-module M. Now we take the Matlis dual
HomR(·, E) of this isomorphism and get

HomR(H i
m(M), E) ∼= Extn−iR (M,K(R̂))

as it is easily seen by the adjunction isomorphism. �

Note that the above version of the Local Duality holds for an arbitrary
R-module M. That is what we need in the sequel.

Corollary 3.2. Let (R,m) denote a Cohen-Macaulay ring of dimension
n. Let I ⊆ R be an ideal with grade(I,M) = c for an R-module M . Then
there are isomorphisms

Extn−iR (Hc
I (M),K(R̂)) ∼= lim

←−
Extn−iR (ExtcR(R/Ir,M),K(R̂))

for all i ∈ N.
Proof. By Local Duality (Lemma 3.1), we have the following isomorphisms

Extn−iR (Hc
I (M),K(R̂)) ∼= HomR(H i

m(Hc
I (M)), E)

for all i ∈ Z. The module on the right side is isomorphic to

HomR(lim
−→

H i
m(ExtcR(R/Ir,M)), E)

since Hc
I (M) ∼= lim−→ExtcR(R/Ir,M) and because the local cohomology com-

mutes with direct limits. Finally

Extn−iR (Hc
I (M),K(R̂)) ∼= lim

←−
HomR(H i

m(ExtcR(R/Ir,M)), E)

since the Hom-functor in the first variable transforms a direct system into an
inverse system, see [20, Proposition 6.4.6]. Then the claim follows since

HomR(H i
m(ExtcR(R/Ir,M)), E) ∼= Extn−iR (ExtcR(R/Ir,M),K(R̂))

as it is true again by Local Duality (see Lemma 3.1). �



9 On cohomologically complete intersections in Cohen-Macaulay rings 29

4. THE TRUNCATION COMPLEX

Let (R,m) be a local ring of dimension n. Let M 6= 0 denote a finitely
generated R-module and dimM = n. Let I ⊆ R be an ideal of R with
grade(I,M) = c. Suppose that E·R(M) is a minimal injective resolution of
M. Then it follows from (Matlis [14] or Gabriel [5]) that

E·R(M)i ∼=
⊕

p∈SuppM
ER(R/p)µi(p,M),

where µi(p,M) = dimk(p)(ExtiRp
(k(p),Mp)). We get ΓI(ER(R/p)) = 0 for all

p /∈ V (I) and ΓI(ER(R/p)) = ER(R/p) for all p ∈ V (I). Moreover µi(p,M) =
0 for all i < c since grade(I,M) = c. Whence for all i < c it follows that

ΓI(E
·
R(M))i ∼=

⊕
p∈V (I)∩SuppM

ΓI(ER(R/p))µi(p,M) = 0.

ThereforeHc
I (M) is isomorphic to the kernel of ΓI(E

·
R(M))c → ΓI(E

·
R(M))c+1.

Whence there is an embedding of complexes of R-modules Hc
I (M)[−c] →

ΓI(E
·
R(M)). Here, we assume the following convention: if C · := (Ci)i∈Z is

a complex and k ∈ Z, we shall denote by C[k]· the complex defined by the rule
C[k]i := Ci+k.

Definition 4.1. Let C ·M (I) be the cokernel of the above embedding. It is
called the truncation complex. So there is a short exact sequence of complexes
of R-modules

0→ Hc
I (M)[−c]→ ΓI(E

·
R(M))→ C ·M (I)→ 0.

In particular it follows that H i(C ·M (I)) = 0 for all i ≤ c or i > n and
H i(C ·M (I)) ∼= H i

I(M) for all c < i ≤ n.

The advantage of the truncation complex is that it separates the infor-
mation of cohomology modules of H i

I(M) for i = c from those with i 6= c.

In the following we need some preparations of completion. For an R-
module N we denote by ΛI(N) = lim←−N/I

αN the I-adic completion of N . Its

left derived functors are denoted by LiΛ
I(·), i ∈ Z (see [21] for more details).

Note that LiΛ
I(N) = 0 for all i > 0 and a finitely generated R-module N as

follows since ΛI(·) is exact on the category of finitely generated R-modules.

Let us consider the Čech complex Čx with respect to x = x1, . . . , xr ∈
I such that Rad(x)R = Rad I. Then by [19, Section 4] there is a quasi-
isomorphism Lx

∼−→ Čx of complexes of R-modules, where Lx is a bounded
complex of free R-modules (depending on x = x1, . . . , xr).
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Theorem 4.2. Let I denote an ideal of a ring (R,m). Let X · denote a
complex of flat R-modules. Then there are natural isomorphisms

LiΛ
I(X ·) ∼= Hi(HomR(Lx, X

·)) ∼= Hi(HomR(Čx, E
·))

for all i ∈ Z, where E· denotes an injective resolution of X ·.

Proof. See [19, Theorem 1.1]. �

Theorem 4.3. Fix the previous notation. Let M 6= 0 be a maximal
Cohen-Macaulay module with dimM/IM = d. We put c = dimM−dimM/IM
= grade(I,M). Then we have the following results:

(a) There are an exact sequence

0→ Hn−1
m (C ·M (I))→ Hd

m(Hc
I (M))→ Hn

m(M)→ Hn
m(C ·M (I))→ 0

and isomorphisms H i−1
m (C ·M (I)) ∼= H i−c

m (Hc
I (M)) for all i 6= n, n+ 1.

(b) There are an exact sequence

0→ Extn−1R (k,C ·M (I))→ ExtdR(k,Hc
I (M))→ ExtnR(k,M)

→ ExtnR(k,C ·M (I))

and isomorphisms Exti−cR (k,Hc
I (M)) ∼= Exti−1R (k,C ·M (I)) for all i < n.

(c) Assume in addition that R is a Cohen-Macaulay ring. There are an exact
sequence

0→ Ext0R(C ·M (I),K(R̂))→ K(M̂)→ ExtcR(Hc
I (M),K(R̂))

→ Ext1R(C ·M (I),K(R̂))→ 0

and isomorphisms Exti+cR (Hc
I (M),K(R̂)) ∼= Exti+1

R (C ·M (I),K(R̂)) for all
i > 0.

Proof. (a) Let x = x1, . . . , xn ∈ m denote a system of parameters of R.
We tensor the short exact sequence of the truncation complex by the Čech
complex Čx. Then the resulting sequence of complexes remains exact because
Čx is a complex of flat R-modules. That is, there is the following short exact
sequence of complexes of R-modules

0→ Čx ⊗R Hc
I (M)[−c]→ Čx ⊗R ΓI(E

·
R(M))→ Čx ⊗R C ·M (I)→ 0.

Now we look at the cohomology of the complex in the middle. Since ΓI(E
·
R(M))

is a complex of injective R-modules the natural morphism

Γm(E·R(M)) ∼= Γm(ΓI(E
·
R(M)))→ Čx ⊗R ΓI(E

·
R(M))

induces an isomorphism in cohomology (see [19, Theorem 1.1]). Because M is
a maximal Cohen-Macaulay R-module the only non-vanishing local cohomol-
ogy module is Hn

m(M). So the result follows from the long exact cohomology
sequence.
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(b) Let F ·R(k) be a free resolution of k. Apply the functor HomR(F ·R(k), .)
to the short exact sequence of the truncation complex. Then it induces the
following short exact sequences of complexes of R-modules

0→ HomR(F ·R(k), Hc
I (M))[−c]→ HomR(F ·R(k),ΓI(E

·
R(M)))

→ HomR(F ·R(k), C ·M (I))→ 0.

Now HomR(F ·R(k),ΓI(E
·
R(M)))

∼−→ ΓI(HomR(F ·R(k), E·R(M))) since F ·R(k) is
a right bounded complex of finitely generated free R-modules. Since any R-
module of the complex HomR(F ·R(k), E·R(M)) is injective. By [19, Theorem 1.1]
it implies that the complex ΓI(HomR(F ·R(k), E·R(M))) is quasi-isomorphic to
Čy ⊗R HomR(F ·R(k), E·R(M)) where y = y1, . . . , yr ∈ I such that Rad I =
Rad(y)R.

Now tensoring with a right bounded complex of flat R-modules preserves
the quasi-isomorphisms and any R-module of E·R(M) is injective. It induces
the following quasi-isomorphism

Čy ⊗R HomR(k,E·R(M))
∼−→ Čy ⊗R HomR(F ·R(k), E·R(M)).

But the complex on the left side is isomorphic to HomR(k,E·R(M)). This
is true because of each R-module of the complex HomR(k,E·R(M)) has sup-
port in V (m). Therefore the complex HomR(F ·R(k),ΓI(E

·
R(M))) is quasi-

isomorphic to HomR(k,E·R(M)). Then the result follows by the long exact
cohomology sequence. To this end note that the assumption on the maximal
Cohen-Macaulayness of M implies that ExtiR(k,M) = 0 for all i < n.

(c) Let E·R(K(R̂)) be a minimal injective resolution of K(R̂). We apply

the functor HomR(., E·R(K(R̂))) to the short exact sequence of the truncation
complex. Then we have a short exact sequence of complexes of R-modules

0→ HomR(C ·M (I), E·R(K(R̂)))→ HomR(ΓI(E
·
R(M)), E·R(K(R̂)))

→ HomR(Hc
I (M), E·R(K(R̂)))[c]→ 0.

First we investigate the complex in the middle. There is a quasi-isomorphism
of complexes ΓI(E

·
R(M))

∼−→ Lx ⊗ E·R(M) (see [19, Theorem 1.1]). That
is the complex in the middle is quasi-isomorphic to X = HomR(Lx ⊗ E·R(M),

E·R(K(R̂))). By Hom-Tensor adjunction X is isomorphic to the complex HomR

(Lx,HomR(E·R(M), E·R(K(R̂)))). Since E·R(M) is an injective resolution of M
and Lx is a bounded complex of free R-modules. So there are the following
quasi-isomorphisms of complexes

HomR(E·R(M), E·R(K(R̂)))
∼−→ HomR(M,E·R(K(R̂))), and

X
∼−→ HomR(Lx,HomR(M,E·R(K(R̂)))).
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That is, in order to compute the homology of X it will be enough to compute
the homology of HomR(Lx,HomR(M,E·R(K(R̂)))). By virtue of Theorem 4.2
there is the following spectral sequence

Ei,j2 =LiΛ
I(ExtjR(M,K(R̂)))⇒Ei+j∞ =H i+j(HomR(Lx,HomR(M,E·R(K(R̂)))))

Since Extj(M,K(R̂)) is finitely generated for all j ∈ Z. So it degenerates to
isomorphisms L0Λ

I(ExtjR(M,K(R̂)))∼=Hj(HomR(Lx,HomR(M,E·R(K(R̂)))))

for all j ∈ Z. This finally proves that Hj(X) ∼= L0Λ
I(ExtjR(M,K(R̂)))) for all

j ∈ Z.

Since M is a maximal Cohen-Macaulay R-module and R is a Cohen-
Macaulay ring it follows by the Local Duality Theorem (see Lemma 3.1) that
Hj(X) = 0 for all j 6= 0 and Hj(X) ∼= L0Λ

I(HomR(M,K(R̂))) for j = 0. But
HomR(M,K(R̂)) ∼= K(M̂) and L0Λ

I(K(M̂)) = K(M̂) since R̂ is homomor-
phic image of a local Gorenstein ring. Then the long exact sequence of local
cohomology provides the statements in (c). �

4.1. NECESSARY CONDITION OF H i
I(M) = 0, FOR ALL i 6= c

In the following let (R,m) denote a local ring of dimension n. Let M 6= 0
be a finitely generated R-module with dimM = n. Let I ⊂ R be an ideal such
that c = grade(I,M).

Corollary 4.4. Let M 6= 0 be a maximal Cohen-Macaulay R-module
such that H i

I(M) = 0 for all i 6= c = grade(I,M). If dimR(M/IM) = n − c,
then:

(a) The natural homomorphism

Hd
m(Hc

I (M))→ Hn
m(M)

is an isomorphism and H i
m(Hc

I (M)) = 0 for all i 6= d.

(b) The natural homomorphism

ExtdR(k,Hc
I (M))→ ExtnR(k,M)

is an isomorphism and ExtiR(k,Hc
I (M)) = 0 for all i < d.

(c) Suppose that R is in addition a Cohen-Macaulay ring. The natural ho-
momorphism

K(M̂)→ ExtcR(Hc
I (M),K(R̂))

is an isomorphism and Exti+cR (Hc
I (M),K(R̂)) = 0 for all i > 0.

Proof. Because of assumption C ·M (I) is an exact complex.
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First we prove part (a). Apply the Čech complex Čx ⊗R · to the short
exact sequence of the truncation complex since Čx is a complex of flat R-
modules so Čx ⊗R C ·M (I) is exact. Whence result follows from Theorem 4.3.

Now we prove (b). Let F ·R(k) be a free resolution of k. Then apply
HomR(F ·R(k), .) to the short exact sequence of the truncation complex. Since
HomR(F ·R(k), C ·M (I)) is an exact complex the result follows from Theorem 4.3.

Finally, we prove (c). Let E·R(K(R̂)) be a minimal injective resolution

of K(R̂). Then apply HomR(., E·R(K(R̂))) to the short exact sequence of the

truncation complex. Since HomR(C ·M (I)), E·R(K(R̂))) is an exact complex the
result follows from Theorem 4.3. �

Lemma 4.5. Let (R,m) be ring, I ⊆ R an ideal, and M 6= 0 a maxi-
mal Cohen-Macaulay R-module. Suppose that H i

I(M) = 0 for all i 6= c =
grade(I,M) and p ∈ SuppR(M) ∩ V (I). Then

(1) H i
IRp

(Mp) = 0 for all i 6= c.

(2) The natural homomorphism

H i
pRp

(Hc
IRp

(Mp))→ H
dim(Mp)
pRp

(Mp)

is an isomorphism for i = h(p) = dim(Mp)− c and H i
pRp

(Hc
IRp

(Mp)) = 0
for all i 6= h(p) = dim(Mp)− c.
Proof. It is follow from Proposition 2.7 and Corollary 4.4 (a). �

4.2. CONVERSE
(SUFFICIENT CONDITION OF H i

I(M) = 0, FOR ALL i 6= c)

Before we can prove Theorem 4.10 which is one of the main result of this
section we need the following Lemma. For the following technical result we
need a few details on derived categories and derived functors. For all these
facts we refer to the Lecture Note by R. Hartshorne (see [7]). We are grateful
to P. Schenzel for suggesting this argument to us.

Lemma 4.6. Let M 6= 0 be a finitely generated R-module such that
dimR(M)=n=dim(R). Let c=grade(I,M) where I⊆R is an ideal. Then the
following are equivalent:

(1) The natural homomorphism

Exti−cR (k,Hc
I (M))→ ExtiR(k,M)

is an isomorphism for all i ∈ Z.

(2) The natural homomorphism

H i−c
m (Hc

I (M))→ H i
m(M)

is an isomorphism for all i ≤ n.
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Proof. First of all note that the statement in (2) is equivalent to the iso-
morphism for all i ∈ Z. This follows because of dimR(Hc

I (M)) ≤ dimR(M/IM)
≤ dimR(M) − grade(I,M) = n − c = d since SuppR(Hc

I (M)) ⊆ V (I) ∩
SuppR(M). By applying RΓm(·) to the short exact sequence of the trunca-
tion complex it follows that the assumption in (2) is equivalent to the fact that
RΓm(C ·M (I)) is an exact complex.

Moreover by applying the derived functor R Hom(k, ·) to the short exact
sequence of the truncation complex it follows that the statement in (1) is
equivalent to the fact that R Hom(k,C ·M (I)) is an exact complex.

Now we prove that (2) implies (1). If RΓm(C ·M (I)) is an exact complex
the same is true for

R Hom(k,C ·M (I)) ∼= R Hom(k,RΓm(C ·M (I)))

since C ·M (I) is a left bounded complex.

In order to prove that (1) implies (2) consider the short exact sequence
(in fact an exact triangle in the derived category)

0→ mα/mα+1 → R/mα+1 → R/mα → 0.

for α ∈ N. By applying the derived functor R Hom(·, C ·M (I)) it provides a
short exact sequence of complexes

0→ R Hom(R/mα, C ·M (I))→ R Hom(R/mα+1, C ·M (I))

→ R Hom(mα/mα+1, C ·M (I))→ 0.

By induction on α it follows that R Hom(R/mα, C ·M (I)) is an exact complex
for all α ∈ N. Since lim−→R Hom(R/mα, C ·M (I)) ∼= RΓm(C ·M (I)) it follows that
RΓm(C ·M (I)) is exact. This finishes the proof of the Lemma. �

Corollary 4.7. Let M 6= 0 be a maximal Cohen-Macaulay module over a
Cohen-Macaulay ring R of dimension n and I ⊆ R an ideal of grade(I,M) = c.
Then the following are equivalent:

(1) The natural homomorphism

Exti−cR (k,Hc
I (M))→ ExtiR(k,M)

is an isomorphism for i ≥ n and ExtiR(k,Hc
I (M)) = 0 for all i < d =

n− c.
(2) The natural homomorphism

Hd
m(Hc

I (M))→ Hn
m(M)

is an isomorphism and H i
m(Hc

I (M)) = 0 for all i 6= d = n− c.
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Proof. This is an immediate consequence of Lemma 4.6. �

In case we have idR(M) <∞ for the R-module M in Corollary 4.7 we get
the following Corollary. Note that this Corollary provides us a new relation
between the canonical module and the Ext module.

Corollary 4.8. Let M 6= 0 be a maximal Cohen-Macaulay module of
finite injective dimension over a local ring R of dimension n and I ⊆ R an
ideal of grade(I,M) = c. Then the following are equivalent:

(1) The natural homomorphism

ExtdR(k,Hc
I (M))→ ExtnR(k,M)

is an isomorphism and ExtiR(k,Hc
I (M)) = 0 for all i 6= d = n− c.

(2) The natural homomorphism

Hd
m(Hc

I (M))→ Hn
m(M)

is an isomorphism and H i
m(Hc

I (M)) = 0 for all i 6= d = n− c.
(3) The natural homomorphism

K(M̂)→ ExtcR(Hc
I (M),K(R̂))

is an isomorphism and Extn−iR (Hc
I (M),K(R̂)) = 0 for all i 6= d = n− c.

Proof. Since M is of finite injective dimension so by [16] it follows that R
is Cohen-Macaulay ring. Note that the equivalence of (1) ⇔ (2) follows from
Corollary 4.7. Recall that ExtiR(k,M) = 0 for all i 6= n since idR(M) = n
under the assumption.

Next we proof the equivalence of (2)⇔ (3).
In fact this is a consequence of the generalized Local Duality (see

Lemma 3.1) and Matlis Duality. �

Remark 4.9. (1) Let M 6= 0 be a maximal Cohen-Macaulay module of
finite injective dimension over a local ring R. Suppose that I ⊆ R is an ideal
with c = grade(I,M). If any of the equivalent conditions of Corollary 4.8
holds then it follows that all the Bass numbers of Hc

I (M) are zero except for
i = d = dimR(M)− c see Proposition 2.7.
(2) Let R be a complete local ring of dimension n and M 6= 0 be a maximal
Cohen-Macaulay module of finite injective dimension. Let I ⊆ R be an ideal
of c = grade(I,M). Then K(R) exists and by [17, Theorem 4.1] it follows that
M ∼= ⊕K(R). Therefore if R is complete so it is enough to prove Corollary 4.8
for K(R) instead of M .
(3) In case R possesses a maximal Cohen-Macaulay module of finite injective
dimension M 6= 0 the ring R is Cohen-Macaulay and it follows that SuppRM =
SpecR. To this end first note that SuppR̂ M̂ = Spec R̂ since M̂ is isomorphic
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to a direct sum of K(R̂) and AnnK(R̂) = (0). This implies AnnRM = 0
which implies the claim.

Now we can prove one of our main result as follows:

Theorem 4.10. Let M 6= 0 be a maximal Cohen-Macaulay module of
idR(M) < ∞ over a local ring R of dimension n and I ⊆ R an ideal of
grade(I,M) = c. The following conditions are equivalent:

(a) H i
I(M) = 0 for all i 6= c.

(b) For all p ∈ V (I) ∩ SuppR(M) the natural homomorphism

H
h(p)
pRp

(Hc
IRp

(Mp))→ H
dim(Mp)
pRp

(Mp)

is an isomorphism and H i
pRp

(Hc
IRp

(Mp))=0 for all i 6=h(p)=dim(Mp)−c.
(c) For all p ∈ V (I) ∩ SuppR(M) the natural homomorphism

Ext
h(p)
Rp

(k(p), Hc
IRp

(Mp))→ Ext
dim(Mp)
Rp

(k(p), (Mp))

is an isomorphism and ExtiRp
(k(p), Hc

IRp
(Mp)) = 0 for all i 6= h(p) =

dim(Mp)− c.
(d) For all p ∈ V (I) ∩ SuppR(M) the natural homomorphism

K(M̂p)→ Extc
R̂p

(Hc
IR̂p

(M̂p),K(R̂p))

is an isomorphism and Exti
R̂p

(Hc
IR̂p

(M̂p),K(R̂p)) = 0 for all i 6= h(p) =

dim(Mp)− c.
(e) H i

I(R) = 0 for all i 6= c, that is I is a cohomologically complete intersec-
tion.

Proof. Firstly we prove the equivalence of (a) and (e). By Remark 4.9
the assumptions imply that SuppRM = SpecR and the equivalence follows by
Proposition 2.3.

For the proof that (a) implies (b) see Lemma 4.5. By Corollary 4.8 the
equivalence of (b), (c), (d) is easily seen by passing to the localization.

Now we prove that (b) implies (a)

We proceed by induction on dim(M/IM). If dim(M/IM) = 0 then
V (I)∩ SuppR(M) ⊆ V (m) so statement (b) holds for p = m. By the definition
of the truncation complex it implies that H i

m(C ·M (I)) = 0 for all i ∈ Z.
Now we apply Lemma 2.5 for X = C ·M (I). Because of SuppR(H i(C ·M (I)))

⊆ V (m) (recall that H i(C ·M (I)) ∼= H i
I(M) for all i 6= c and Hc(C ·M (I)) = 0

(see the Definition 4.1)). This proves the vanishing of H i
I(M) for all i 6= c.

Now let dim(M/IM) > 0 then

dim(Mp/IMp) < dim(M/IM)
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for all p ∈ V (I)∩SuppR(M)\{m}. By the induction hypothesis it implies that

H i
IRp

(Mp) = 0

for all i 6= c and all p ∈ V (I)∩ Supp(M) \ {m}. That is Supp(H i
I(M)) ⊆ V (m)

for all i 6= c. It implies that H i
m(C ·M (I)) = 0 for i ≤ c and i > n. Also for

c < i ≤ n there is an isomorphism

H i
m(C ·M (I)) ∼= H i(C ·M (I)) ∼= H i

I(M).

On the other side note that by the assumption for p = m we have H i
m(C ·M (I)) =

0 for all i ∈ Z (by Theorem 4.3) and hence by virtue of the last isomorphism
it gives the result. This completes the proof of the Theorem. �

Remark 4.11. Let us discuss the necessity of the local conditions in The-
orem 4.10. It is not enough to assume the statements (b), (c), (d) in the
Theorem 4.10 for p = m. That is, we do need these statements for all
p ∈ V (I) ∩ Supp(M). This is shown by Hellus and Schenzel (see [13, Ex-
ample 4.1]) where (b) is true for p = m but not for a localization at p. That is,
these three properties (b), (c), (d) do not localize.

In the next we are interested in the injective dimension of the local coho-
mology module. As a consequence it provides a new characterization of a local
ring to be Cohen-Macaulay.

Theorem 4.12. Let (R,m) be a ring and I an ideal of R. Suppose that
M 6= 0 is a finitely generated R-module such that H i

I(M) = 0 for all i 6= c =
grade(I,M) then the following are equivalent:

(1) idR(M) <∞.

(2) idR(Hc
I (M)) <∞.

Each of the equivalent conditions implies that R is a Cohen-Macaulay ring.

Proof. Let E·R(M) be a minimal injective resolution ofM . SinceH i
I(M) =

0 for all i 6= c so Hc
I (M)[−c] → ΓI(E

·
R(M)) is an isomorphism of complexes

in cohomology. If idR(M) < ∞, then ΓI(E
·
R(M)) is a finite resolution of

Hc
I (M)[−c] by injective R-modules. This proves (1)⇒ (2).

For the converse statement note that the above quasi-isomorphism of
complexes induces the following isomorphism

Exti−cR (k,Hc
I (M)) ∼= ExtiR(k,M)

so it follows that idR(M) <∞ since Exti−cR (k,Hc
I (M)) = 0 for i� 0.

Note that if one of the equivalent conditions in Theorem 4.12 hold then
R will be a Cohen-Macaulay ring (see [16]). �

Note that Zargar and Zakeri define a relative Cohen-Macaulay R-module
M 6= 0 with respect to the ideal I ⊆ R which is actually equivalent to the fact



38 Waqas Mahmood 18

that H i
I(M) = 0 for all i 6= c = grade(I,M). They have shown that if M is

a relative Cohen-Macaulay R-module with respect to I, then idR(Hc
I (M)) =

idR(M)− c (see [22, Theorem 2.6]).

5. APPLICATIONS

In this section, we will give some applications of our main results one of
which is an extension of Hellus and Schenzel’s result (see [13, Lemma 4.3]).

Proposition 5.1. With the notation in Theorem 4.10 suppose in addition
that K(R) exists and consider the following condition:

(f) H i
I(K(R)) = 0 for all i 6= c.

then (f) is equivalent to all the conditions of Theorem 4.10.

Proof. If R is a Cohen-Macaulay ring then K(R) is a maximal Cohen-
Macaulay module of finite injective dimension. Then the equivalence follows
from Theorem 4.10 by view of Proposition 2.3. �

Now the following Proposition is a generalization of an application of
Hellus and Schenzel (see [13, Lemma 4.3]).

Proposition 5.2. Let (R,m) be a ring, I ⊆ R an ideal of grade(I,M) = c
for an R-module M 6= 0. Suppose that x = (x1, ..., xj) ∈ I is an M -regular
sequence for 1 ≤ j ≤ c then the following are equivalent:

(a) H i
IR/x(M/xM) = 0 for all i 6= c− j.

(b) H i
I(M) = 0 for all i 6= c and x is HomR(Hc

I (M),E)- regular.

Proof. By induction on the length of the M -regular sequence x it will be
enough to prove the equivalence of the statements in (a) and (b) for j = 1. Let
us assume that j = 1 and x1 = x.

Firstly, we prove that (a) implies (b). Since x is M -regular so we have
the following short exact sequence

0→M
x→M →M/xM → 0

Applying ΓI to this sequence yields the following long exact sequence of local
cohomology

(5.1) ...→ H i−1
I (M/xM)→ H i

I(M)
x→H i

I(M)→ H i
I(M/xM)→ ...

If i < c then there is the following exact sequence

(5.2) 0→ H i
I(M)

x→H i
I(M)
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Let r ∈ H i
I(M) then there exists n ∈ N such that rIn = 0 it implies that r = 0

because of sequence 5.2. It follows that H i
I(M) = 0 for all i < c. Similarly

we can prove that H i
I(M) = 0 for all i > c so H i

I(M) = 0 for all i 6= c.
Now applying HomR(−, E) to sequence 5.1 and substituting i = c then x is
HomR(Hc

I (M), E)- regular follows from the following short exact sequence

0→HomR(Hc
I (M), E)

x→HomR(Hc
I (M), E)→ HomR(Hc−1

IR/xR(M/xM), E)→0

Now we will prove that the assertion (b) implies (a).
If i ≤ c− 2 or i > c then it follows from sequence 5.1 and Independence

of the Base Ring Theorem (see [2, Theorem 4.2.1]) that H i
IR/xR(M/xM)= 0

for all i ≤ c− 2 or i > c. If i = c then there is the following exact sequence

Hc
I (M)

x→Hc
I (M)→ Hc

IR/xR(M/xM)→ 0

it induces the following exact sequence

0→ HomR(Hc
IR/xR(M/xM), E)→ HomR(Hc

I (M), E)
x→HomR(Hc

I (M), E).

Since x is HomR(Hc
I (M), E)- regular so HomR(Hc

IR/xR(M/xM), E) being the

kernel of the morphism HomR(Hc
I (M), E)

x→HomR(Hc
I (M), E) is zero. There-

fore result follows from [10, Remark 3.11]. �
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