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In this paper, continuous Legendre multi-wavelets are utilized as a basis in a
practical direct method to approximate the solutions of the Fredholm integral
equations system. To begin with we describe the characteristic of Legendre
multi-wavelets and will go on to indicate that through this method a system of
Fredholm integral equations can be reduced to an algebraic equation. Finally,
numerical results of some examples show that the method is practical and has
high accuracy.
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1. INTRODUCTION

Many physical problems are modeled in the form of Fredholm integral
equations, such problems as potential theory and Dirichlet problems which
discussed in [1] and [2], electrostatics [3], mathematical problems of radiative
equilibrium [4], the particle transport problems of astrophysics and reactor
theory [5], and radiative heat transfer problems which discussed in [6–7]. For
such equations as well as a system of such equations, various techniques such as
iterative, extrapolation, Galerkin, collocation, quadrature, projection, spline,
orthogonal polynomial, and multiple grid methods have been presented to de-
termine desired solutions (see e.g. [1, 8, 9] and the references therein). These
methods include analytical and numerical approaches. In principle, analyti-
cal solution is the most desired result in theory and it is almost unobtainable
for most practical problems. Although classical numerical methods can cope
with a majority of complicated problems related to a system of integral equa-
tions, the obtained results cannot be expressed in simple form. Therefore some
more sophisticated numerical methods called approximate methods were pro-
posed. In comparison with classical numerical methods, one of the advantages
of approximate methods lies in that it can give a solution in an analytic form
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with an acceptable error. As a result, up-to-date approximate methods remain
of much interest in spite of advanced numerical methods accompanied with
the help of modern computers. Usual approximate methods include iterative
methods, series expansion in terms of certain orthogonal functions, pertur-
bation technique, and so on. Furthermore, the system of integral equations
plays a basic role to many physical, biological and engineering models. For in-
stance, in several heat transfer problems in physics, the equations are usually
replaced by system of integral equations [8]. Also, many well-known models
for neural networks in biomathematics, nuclear reactor dynamics problems and
thermo-elasticity problems are also based on these systems [10–11]. Moreover,
integro-differential equations, which are important in many practical problems,
can be transformed to integral equations systems [12].

Let us consider the system of linear Fredholm integral equations of the
form:

(1) F (x) = G(x) +

∫
Γ
K(x, t)F (t)dt, x ∈ Γ = [0, 1] ,

where,

F (x) = [f1(x), f2(x), ..., fn(x)]T ,
G(x) = [g1(x), g2(x), ..., gn(x)]T ,
K(x, t) = [ki,j(x, t)]

T , i, j = 1, 2, ..., n.

In system (1) the known kernel K(x, t) is continuous, the function G(x)
is given, and F (x) is the solution to be determined [12].

There have been considerable interests in solving integral equation (1).
In addition to the well-known techniques, there are several new techniques
for solving integral equation systems, such as Haar functions method [13],
Adomian decomposition method [14], Block-Pulse functions [15], Rung-kutta
method [16], Tau method [17], Newton-Taw method [18],Taylor collocation
method [19], Sinc function basis [20], homotopy perturbation method [21–22],
Biorthogonal systems method [23], triangular functions method [24], Fast mul-
tiscale Galerkin methods [25], reproducing kernel method [26]. As we know, it
is important to select a suitable basis function in numerical methods for system
of integral equations. One of the most attractive proposals made in the recent
years was an idea connected to the application of wavelets as basis functions
in the method of moments [27]. The wavelet technique allows the creation of
very fast algorithms when compared to the algorithms ordinarily used and the
main advantage of the wavelet technique is its ability to transform complex
problems into a system of algebraic equations. Various wavelet basis are ap-
plied. In addition to the conventional Duabechies wavelets, Haar wavelets [28],
linear B-splines [29], Walsh functions [30] have been used.
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In this paper, we present the application of the linear Legendre multi-
wavelets as basis functions in collocations method for numerical solution of
the system of Fredholm integral equations (1). The method is tested with the
numerical examples.

2. PROPERTIES OF LEGENDRE MULTI-WAVELETS

Wavelets constitute a family of functions constructed from dilation and
translation of a single function called the mother wavelet. When the dilation
parameter a and the translation parameter b vary continuously, we have the
following family of continuous wavelets as [30].

ϕa,b(t) = |a|−1/2φ(
t− b
a

), a, b ∈ R, a 6= 0.

If we restrict the parameters a and b to discrete values as a = 2−k, b = n2−k,
then

ϕk,n(t) = 2−k/2φ(2kt− n),

form an orthogonal basis [30].
The linear Legendre multi-wavelets are described in [31] and applied in

[32–34]. For constructing the linear Legendre multi-wavelets, at first we de-
scribe the following scaling functions:

ϕ0(t) = 1, ϕ1(t) =
√

3(2t− 1), 0 ≤ t ≤ 1.

Now let ψ0(t) and ψ1(t) be the corresponding mother wavelets, then by Mul-
tiresolution of analysis (MRA) and applying suitable conditions [31] on ψ0(t)
and ψ1(t) the explicit formula for linear Legendre mother wavelets will obtained
as:

(2) ψ0(t) =

{
−
√

3(4t− 1), 0 ≤ t ≤ 1
2 ,√

3(4t− 3), 1
2 ≤ t ≤ 1,

(3) ψ1(t) =

{
6t− 1, 0 ≤ t ≤ 1

2 ,
6t− 5, 1

2 ≤ t ≤ 1,

and the family {ψj
k,n} = {2k/2ψj(2kt − n)}, k is any nonnegative integer n =

0, 1, ..., 2k − 1 and j = 0, 1, forms an orthonormal basis for L2(R).

3. FUNCTION APPROXIMATION

A function f(t) defined over [0, 1) may be expanded as:

(4) f(t) = f0ϕ0(t) + f1ϕ1(t) +

∞∑
k=0

1∑
j=0

∞∑
n=0

f jk,nψ
j
k,n(t),
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where,

(5) f0 =< f(t), ϕ0(t) >, f1 =< f(t), ϕ1(t) >, f jk,n=< f(t), ψj
k,n(t) >.

In Eq. (5), < ., . > denoting the inner product. We noted that the inner
product is in L2(R). Now, we can consider truncated series of Eq. (4 ) as
follows:

(6) f(t) ≈ f0ϕ0(t) + f1ϕ1(t) +
M∑
k=0

1∑
j=0

2k−1∑
n=0

f jk,nψ
j
k,n(t) = CTφ =

2M+2∑
i=1

ciφi(t)

where,

C = [f0, f1, f
0
0,0, f

1
0,0, ..., f

0
M,0, f

0
M,1, ..., f

0
M,(2M−1)

, ..., f1
M,0, f

1
M,1

, ..., f1
M,(2M−1)

]T ,

φ = [ϕ0(t), ϕ1(t), ψ0
0,0(t), ψ1

0,0(t), ..., ψ0
M,0(t), ψ0

M,1(t), ..., ψ0
M,(2M−1)

(t)

, ..., ψ1
M,0(t), ψ1

M,1(t), ..., ψ1
M,(2M−1)

(t)]T ,

and M is a nonnegative integer. Furthermore, a function k(x, t) ∈ L2([0, 1] ×
[0, 1]) may be approximated as:

(7) k(x, t) ≈ ϕT (x)Kϕ(t),

where, K is (2M+2)× (2M+2) matrix with:

(8) Ki,j =< ϕi(x), < k(x, t), ϕj(t) >> .

The integration of the product of two Legendre multi-wavelets vector function
is obtained as,

(9) I =

1∫
0

ϕ(t)ϕT (t),

where, I is an identity matrix.

4. SOLVING THE SYSTEM OF FREDHOLM INTEGRAL EQUATIONS

In this section, we use Legendre multi-wavelets direct method to convert
equation (1) to algebraic system of linear equations AX = b and then solve
this system by the robust and iterative solver such as Krylov subspace iteration
methods, SOR method, preconditioning models and analytical solver (see e.g.
[35–40] and the references quoted there). We assume that Eq. (1) has a unique
solution. However, the necessary and sufficient conditions for existence and
uniqueness of the solution of system (1) could be found in [12].



5 Linear Legendre multi-wavelets methods for solving systems 45

Consider the ith equation of (1),

(10) fi(x) = gi(x) +

∫ 1

0

n∑
j=1

ki,j(x, t)fi(t)dt, i = 1, 2, ..., n.

We approximate fi, gi and ki,j by (4)-(7) as follows:

(11) fi(x) ≈ CT
i φ(x), gi(x) ≈ GT

i φ(x), ki,j(x, t) ≈ φT (x)Ki,jφ(t).

By substituting relation (11) in (10) we have,

(12)

ϕT (x)Ci = ϕT (x)Gi +
∫ 1

0

n∑
j=1

ϕT (x)Ki,jϕ(t)ϕT (x)Cjdt

= ϕT (x)Gi + ϕT (x)
n∑

j=1
Ki,j(

1∫
0

ϕ(t)ϕT (t)dt)Cj

= ϕT (x)Gi + ϕT (x)
n∑

j=1
Ki,jCj .

Therefore, we have the following algebraic system of linear equations:

(13) Ci = Gi +

n∑
j=1

Ki,jCj .

By solving this linear system, we can find the vector Ci, so,

(14) fi(x) ≈ CT
i φ(x), i = 1, 2, ...n.

5. NUMERICAL EXPRIMENTS

In this section, we give some numerical experiments to illustrate the re-
sults obtained in previous sections. All the numerical experiments presented
in this section were computed by a Maple 16 on a PC with a 1.86 GHz 32-bit
processor and 1 GB memory.

Example 5.1. Consider the following linear system of Fredholm integral
equations: 

u(x) = x
18 + 17

36 +
1∫
0

(x+t
3 )(u(t) + v(t))dt,

v(x) = x2 − 19x
12 + 1 +

1∫
0

(x.t)(u(t) + v(t))dt.

With the exact solutions u(x) = x+ 1 and v(x) = 1 + x2.



46 H. Saberi Najafi, H. Aminikhah and S.A. Edalatpanah 6

TABLE 1

Shows the results of Example 5.1

x Error for u(x) Error for v(x)

0.0 0 8.437524563517452e-001

0.1 0 4.583333669999856e-003

0.2 0 4.166662600000315e-004

0.3 0 4.166661900000257e-004

0.4 0 4.583333879999874e-003

0.5 0 1.041666597500002e-002

0.6 0 4.583334199999900e-003

0.7 0 4.166656999999852e-004

0.8 0 4.166658000002155e-004

0.9 0 4.583334299999686e-003

Fig. 1 – Comparison plot of exact and approximation solution of Example 5.1, for M = 1.

TABLE 2

Shows the results of Example 5.2

x Error for u(x) Error for v(x)

0.0 1.176114627000000e-026 1.562502645000000e-001

0.1 3.327658000000511e-005 4.582723310000000e-003

0.2 3.108605999999070e-005 4.178689700000000e-004

0.3 2.889554000001793e-005 4.184190000000000e-004

0.4 2.670502000001740e-005 4.581073300000000e-003

0.5 2.451449999996136e-005 1.041943410000000e-002

0.6 2.232398000001634e-005 4.580142900000000e-003

0.7 2.013345999996030e-005 4.202801000000000e-004

0.8 1.794294000001528e-005 4.206607000000000e-004

0.9 1.575241999995924e-005 4.579000300000000e-003
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Fig. 2 – Comparison plot of exact and approximation solution of Example 5.2, for M = 1.

Example 5.2. Consider the following system of Fredholm integral equa-
tions: 

u(x) = 11x
6 + 11

15 −
1∫
0

(x+ t)u(t)dt−
1∫
0

(x+ 2t2)v(t)dt,

v(x) = 5
4x

2 + x
4 −

1∫
0

(xt2)u(t)dt−
1∫
0

(x2t)v(t)dt.

With the exact solutions u(x) = x and v(x) = x2. For M = 1, Table 2 and
Fig. 2 are the numerical results for Example 5.2.

TABLE 3

Shows the results of Example 5.3

x Error for u(x) Error for v(x)

0.0 8.788906725000000e-001 9.732308201000000e-007

0.1 2.556600000000000e-003 4.750000000000000e-008

0.2 1.832660000000000e-004 3.030000000000000e-008

0.3 3.715530000000000e-004 1.428000000000000e-007

0.4 3.389135000000000e-003 4.715000000000000e-007

0.5 9.503396000000001e-003 8.002000000000001e-007

0.6 4.215705000000000e-003 1.440400000000000e-006

0.7 3.015720000000000e-004 2.080500000000000e-006

0.8 6.120040000000000e-004 2.876500000000000e-006

0.9 5.588323000000000e-003 3.828000000000000e-006

Example 5.3. Consider the following system of Fredholm integral equa-
tions: 

u(x) = 2ex

3 −
1
4 +

1∫
0

(1
3e

xt)u(t)dt+
1∫
0

t2v(t)dt,

v(x) = 3
2x− x

2 +
1∫
0

(x2e−t)u(t)dt−
1∫
0

xv(t)dt.
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With the exact solutions u(x) = ex and v(x) = x. For M = 1, Table 3 and
Fig. 3 are the numerical results for Example 5.3.

Fig. 3 – Comparison plot of exact and approximation solution of Example 5.3, for M = 1.

6. CONCLUSIONS

In this paper, the systems of Fredholm integral equations are investigated
and a practical direct method based on Legendre multi-wavelets is proposed.
The proposed method is easy to understand and this approximation reduces
the system of integral equations to an explicit system of algebraic equations.
Finally, illustrative examples are included to demonstrate the validity and ap-
plicability of the technique.
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