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The character degree graph of a finite group G is the graph whose vertices
are the prime divisors of the irreducible character degrees of G and two distinct
vertices p1 and p2 are joined by an edge if p1p2 divides some irreducible character
degree of G. In this paper, we prove that some finite simple groups are uniquely
determined by their character degree graphs and their orders.
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1. INTRODUCTION AND PRELIMINARY RESULTS

Let G be a finite group, Irr(G) be the set of irreducible characters of G,
and denote by cd(G), the set of irreducible character degrees of G.

The character degree graph of G, which is denoted by Γ(G), is defined
as follows: the vertices of this graph are the prime divisors of the irreducible
character degrees of the group G and two distinct vertices p1 and p2 are joined
by an edge if there exists an irreducible character degree of G which is divisible
by p1p2. This graph was introduced in [13] and studied by many authors (see
[11, 14]).

Recently, there has been much interest in the influence of arithmetical
conditions on degrees of irreducible characters of a group G on the structure of
G. A finite group G is called a K3-group if |G| has exactly three distinct prime
divisors. Recently Chen et al. in [15] and [16] proved that all simple K3-groups
and the Mathieu groups are uniquely determined by their orders and one or
both of their largest and second largest irreducible character degrees.

Let p be an odd prime number. In [6] the authors proved that the simple
group L2(p) is uniquely determined by its order and its largest and second
largest irreducible character degrees. In [10] it is proved that the simple group
L2(p

2) is uniquely determined by its character degree graph and its order.
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In [7], the authors proved that if G is a finite group such that |G| =
2|L2(p

2)|, p2 ∈ cd(G) and there does not exist any θ ∈ Irr(G) such that 2p |
θ(1), then G has a unique nonabelian composition factor isomorphic to L2(p

2).
In [5] it is proved that the projective special linear group L2(q) is uniquely
determined by its group order and its largest irreducible character degree when
q is a prime or when q = 2a for an integer a ≥ 2 such that 2a − 1 or 2a + 1 is
a prime.

In [8] it is proved that if p is an odd prime number and G is a finite group
such that |G| = |L2(p

2)|, p2 ∈ cd(G) and there does not exist any θ ∈ Irr(G)
such that 2p | θ(1), then G ∼= L2(p

2).

The goal of this paper is to introduce a new characterization for some
simple groups. In fact for a simple group S in this list we prove that if G is
a finite group such that |G| = |S| and Γ(G) = Γ(S), then G ∼= S. Also by an
example we show that this result is not true for all simple groups.

If N E G and θ ∈ Irr(N), then the inertia group of θ in G is IG(θ) =
{g ∈ G | θg = θ}. If the character χ =

∑k
i=1 eiχi, where for each 1 ≤ i ≤ k,

χi ∈ Irr(G) and ei is a natural number, then each χi is called an irreducible
constituent of χ.

Lemma 1.1 ((Itô’s Theorem) [3, Theorem 6.15]). Let A E G be abelian.
Then χ(1) divides |G : A|, for all χ ∈ Irr(G).

Lemma 1.2 ( [3, Theorems 6.2, 6.8, 11.29]). Let NEG and let χ ∈ Irr(G).
Let θ be an irreducible constituent of χN and suppose θ1 = θ, . . . , θt are the
distinct conjugates of θ in G. Then χN = e

∑t
i=1 θi, where e = [χN , θ] and

t = |G : IG(θ)|. Also θ(1) | χ(1) and χ(1)/θ(1) | |G : N |.

Lemma 1.3 ((Itô-Michler Theorem) [2] ). Let ρ(G) be the set of all prime
divisors of the elements of cd(G). Then p 6∈ ρ(G) if and only if G has a normal
abelian Sylow p-subgroup.

Lemma 1.4 ([15, Lemma]). Let G be a nonsolvable group. Then G has a
normal series 1EH EK EG such that K/H is a direct product of isomorphic
nonabelian simple groups and |G/K| | |Out(K/H)|.

Lemma 1.5 ((Gallagher’s Theorem) [3, Corollary 6.17]). Let N EG and
let χ ∈ Irr(G) be such that χN = θ ∈ Irr(N). Then the characters βχ for
β ∈ Irr(G/N) are irreducible distinct for distinct β and all of the irreducible
constituents of θG.

Lemma 1.6 ((Palfy’s Theorem) [11, Theorem 4.1]). Let ρ(G) be the set of
all prime divisors of the character degrees of G. Let G be a solvable group and
π ⊆ ρ(G). If |π| ≥ 3, then there exist primes p, q ∈ π and a degree a ∈ cd(G)
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so that pq divides a. In other words, any three primes in ρ(G) must have an
edge in Γ(G) that is incident to two of those primes.

Lemma 1.7 ([6, Main Theorem 1]). Let p be an odd prime number. If G
is a finite group such that (i) |G| = |L2(p)|, (ii) p ∈ cd(G), (iii) cd(G) has
an even integer, (iv) there does not exist any element a ∈ cd(G) such that
2p | a, then G ∼= L2(p).

Lemma 1.8 ([5, Theorem B]). Let G be a group. Assume that either
2a− 1 or 2a + 1 is a prime. Then G ∼= L2(2

a) if and only if |G| = |L2(2
a)| and

b(G) = b(L2(2
a)), where b(G) is the largest irreducible character degree of G.

Lemma 1.9 ([16, Lemma 2]). Let G be a finite solvable group of order
pα1
1 pα2

2 . . . pαn
n , where p1, p2, ..., pn are distinct primes. If (kpn + 1) - pαi

i , for
each i ≤ n− 1 and k > 0, then the Sylow pn-subgroup is normal in G.

If n is an integer and r is a prime number, then we write rα‖n, when
rα | n but rα+1 - n. Also if r is a prime number we denote by Sylr(G), the set
of Sylow r-subgroups of G and we denote by nr(G), the number of elements of
Sylr(G). If H is a characteristic subgroup of G, we write H ch G. All other
notations are standard and we refer to [1].

2. MAIN RESULTS

Theorem 2.1. Let p be an odd prime number and q = p or q = p2. If
q ≥ 5 and G is a finite group of order |L2(q)|, such that Γ(G) = Γ(L2(q)), then
G ∼= L2(q).

Proof. If q = p2, then the result follows by the main theorem of [10]. So
let q = p. By assumptions p and 2 are some vertices of Γ(G) and 2 � p in
Γ(G). Therefore using Lemma 1.7 we get that G ∼= L2(p). �

Theorem 2.2. Let α be a positive integer such that 2α − 1 or 2α + 1 is a
prime. Then L2(2

α) is characterizable by order and character degree graph.

Proof. LetG be a finite group of order |L2(2
α)| such that Γ(G) = Γ(L2(2

α)).
We consider two cases:

Case (I) Let p = 2α + 1 be a prime number. Then 2 and p are two isolated
vertices of the character degree graph of G. Also the prime divisors of 2α − 1
construct a connected component of Γ(G) which is a clique. Therefore since
the degree of each irreducible character divides the order of G we conclude that
p is the largest element of cd(G). Now we get the result using Lemma 1.8.
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Case (II) Let p = 2α − 1 be a prime number. By (I) we can suppose that
p ≥ 7. Then by Palfy’s Theorem, G is nonsolvable and so by Lemma 1.4,
G has a normal series 1 E H E K E G such that K/H is a direct product of
isomorphic nonabelian simple groups and |G/K| | |Out(K/H)|. Also there
exists an irreducible character χ ∈ Irr(G) such that χ(1) = p.

If p | |H|, then by Lemma 1.2, χH ∈ Irr(H), since p‖|G|. We know
that K/H has an irreducible character of even degree and so using Gallagher’s
Theorem we get that 2 ∼ p in Γ(G), which is a contradiction.

If p | |G/K|, then by Lemma 1.4 we get that p | |Out(K/H)|. Also K/H is
a direct product of k copies of a simple group S and so Out(K/H) ∼= Out(S)oSk.
Since 60p ≤ |K/H| ≤ (p+1)(p+2), we conclude that p | |Out(S)|. Since p ≥ 7
and p - |S| it follows that S is a nonabelian simple group of Lie type over
GF(q), where q = rβ and p | β. Now 2p ≤ q ≤ |K/H| ≤ (p+ 1)(p+ 2), which
is a contradiction.

Therefore p | |K/H|. By assumptions p2 - |G|, which implies that K/H
is a nonabelian simple group. Also 2 � p in Γ(G) and so 2 � p in Γ(K/H) and
specially Γ(K/H) is not complete. In [14] finite simple groups, with noncom-
plete character degree graphs are determined . By considering them we have:

K/H ∈ {J1,M11,M23, A8,
2B2(q), L3(q), U3(q), L2(q)}.

Since 2 is an isolated vertex in the character degree graph of G we see that
the only possibility for K/H is L2(p + 1) where p = 2α − 1. Hence H = 1
and G = K. Therefore L2(2

α) is characterizable by its order and its character
degree graph. �

Using the above theorem it follows that L2(4), L2(8), L2(16) and L2(32)
are characterizable by order and character degree graph. In the next theorem
we prove the same result for L2(64).

Theorem 2.3. If G is a finite group of order |L2(64)|, such that Γ(G) =
Γ(L2(64)), then G ∼= L2(64).

Proof. By [1] we see that Γ(G) has three connected components and 2 is
an isolated vertex of Γ(G). Hence by Palfy’s Theorem, G is not a solvable group
and so G has a normal series 1EHEKEG such that K/H is a direct product
of isomorphic nonabelian simple groups and |G/K| | |Out(K/H)|. By the
classification of finite simple groups and [1], it follows that K/H is isomorphic
to Sz(8), L3(4), L4(2), A7, L2(13), L2(8), L2(7), A6 or A5. Now we consider
each possibility separately. Since 2 is an isolated vertex of Γ(G) and Γ(K/H)
is a subgraph of Γ(G) we get that K/H 6∼= Sz(8), L3(4), L4(2), A7, A6, L2(7)
and L2(13). If K/H ∼= L2(8), then |G/K| = 1, since |G/K| | 3. Therefore
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|H| = 23 · 5 · 13. Since 5 ∼ 13 in Γ(G), we get that G has an irreducible
character χ such that 65 | χ(1) and so H has an irreducible character θ such
that 65 | θ(1), by Lemma 1.2. Hence 652 < |H|, which is a contradiction.

If K/H ∼= A5, then |H| = 2α ·3 ·7 ·13, where α = 3 or 4. Using Lemma 1.2
we get that H has an irreducible character of degree 13. Therefore O13(H) = 1
by Itô-Michler Theorem. If H is a solvable group, then by Lemma 1.9 we get
that O13(H) 6= 1, which is a contradiction. Therefore H is a nonsolvable group
and so H has a nonabelian chief factor Mi+1/Mi which is isomorphic to L2(7)
or L2(13). In each case the vertex 2 is not an isolated vertex of Γ(Mi+1/Mi)
and so of Γ(Mi+1). Therefore since Mi+1 is a subnormal subgroup of G we get
that 2 is not an isolated vertex of Γ(G), which is a contradiction.

Hence K/H ∼= L2(64) which implies that G ∼= L2(64) and the result
follows. �

Lemma 2.4. Let G be a solvable group of order 2α ·5 ·7, where 1 ≤ α ≤ 6.
Then O5(G) 6= 1 or O7(G) 6= 1.

Proof. If 1 ≤ α ≤ 3, then using Lemma 1.9 we get that Sylow 5-subgroup
of G is a normal subgroup of G.

Let α = 4. If O5(G) = 1 and O7(G) = 1, then M , a normal minimal
subgroup of G is an elementary abelian subgroup of order 2β. If β < 4, then
R/M , the Sylow 5-subgroup of G/M is a normal subgroup and so O5(R) 6=
1, which implies that O5(G) 6= 1. Therefore suppose that M , the Sylow 2-
subgroup of G is an elementary abelian subgroup of order 16. Let Q be a
Sylow 7-subgroup of G. If Q is not a normal subgroup of G, then G has 8
Sylow 7-subgroups and so |NG(Q)| = 70. Let H be a Hall subgroup of order
35 in NG(Q). Then G = HM . We claim that H is a maximal subgroup of G.
Otherwise let L be a subgroup of G such that H ≤ L ≤ G. Then M ∩ L is
a normal subgroup of M and L. Therefore M ∩ L E G. Since M is a normal
minimal subgroup of G we get that M ∩L = 1 or M . Also G = LM and since
H ≤ L by Dedekind modular law we get that (M ∩ L)H = MH ∩ L = L. If
M ∩L = 1, then L = H and if M ∩L = M , then L = G. Hence H is a maximal
subgroup of G, which is a contradiction since |NG(Q)| = 70.

If α = 5 or α = 6, then exactly similar to the previous case we get the
result and we omit the details for abbreviation. �

Theorem 2.5. The alternating groups An, where 5 ≤ n ≤ 8, are charac-
terizable by order and character degree graph.

Proof. We know that A5
∼= L2(5) and A6

∼= L2(9). So the result follows
by Theorem 2.1. So in the sequel we consider n = 7 and n = 8.
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Case I. Let n = 7 and G be a finite group such that |G| = 23 · 32 · 5 · 7
and Γ(G) = Γ(A7).

Using [1] we know that the character degree graph of A7 is a complete
graph on four vertices {2, 3, 5, 7}. Hence O7(G) = 1 and O5(G) = 1, by
Itô’s theorem and there exists an irreducible character χ ∈ Irr(G) such that
21 | χ(1). If G is a solvable group, then by considering a Hall subgroup H
of G, where |G : H| = 5 we get a normal subgroup N = HG of G such that
G/N ↪→ S5. Also the order of solvable subgroups of S5 which are divisible by 5
are 5, 10 and 20. Therefore |G/N | is a divisor of 20 and so 7 | |N |. Then using
Lemma 1.2 we get that N has an irreducible character θ such that 21 | θ(1).
Since θ(1)2 < |N |, it follows that |N | = 504 and so H = N C G. On the
other hand, there exists η ∈ Irr(G) such that 35 | η(1). Let ϕ ∈ Irr(H) such
that e = [ηH , ϕ] 6= 0. Then η(1) = etϕ(1), where t = |G : IG(ϕ)| and et | 5.
Therefore 7 | ϕ(1) and since [ηH , ηH ] = e2t ≤ 5, it follows that e = 1 and
t = 5. Hence there exist 5 irreducible characters of degree divisible by 7 in H.
Therefore 1 + 5 · 72 + 212 ≤ |H| = 504, which is a contradiction. So G is a
nonsolvable group and by Lemma 1.4, G has a normal series 1 EH EK E G
such that K/H is a direct product of isomorphic nonabelian simple groups and
|G/K| | |Out(K/H)|. By the classification of finite simple groups and [1], it
follows that K/H is isomorphic to A5, A6, A7, L2(7) or L2(8). If K/H ∼= A5

or A6, then 7 | |H| and the Sylow 7-subgroup of H is a normal subgroup of H
which implies that O7(G) 6= 1, and this is a contradiction. If K/H ∼= L2(7) or
L2(8), then 5 | |H| and similarly to above O5(G) 6= 1, which is a contradiction.
Therefore K/H ∼= A7 and so G ∼= A7.

Case II. Let n = 8.

The character degree graph of A8 is obtained by removing the edge be-
tween 2 and 3 from the complete graph on vertex set {2, 3, 5, 7}. Let G be a
finite group of order |A8| = 26 · 32 · 5 · 7 such that Γ(G) = Γ(A8). Since 5 and 7
are the vertices of Γ(G), by Lemma 1.3 we get that O5(G) = 1 and O7(G) = 1.

First we prove that G is a nonsolvable group. On the contrary let G be a
solvable group. By the above discussion we get that O2(G) 6= 1 or O3(G) 6= 1.
Now we consider each possibility separately.

Let O3(G) 6= 1. Since 3 is a vertex in Γ(G) by Lemma 1.3 we get that
|O3(G)| = 3. Now we consider the Hall subgroup M/O3(G) of G/O3(G) such
that |G/O3(G) : M/O3(G)| = 3. As we mentioned above we get a normal
subgroup N C G such that |N | = 25 · 3 · 5 · 7 or |N | = 26 · 3 · 5 · 7. Again by
considering T a Hall subgroup of N such that |N : T | = 3, we get a normal
subgroup F of N such that O5(F ) 6= 1 or O7(F ) 6= 1, by Lemma 2.4, which is
a contradiction. Hence O3(G) = 1.
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Therefore O2(G) 6= 1. Let |O2(G)| = 2α, where 1 ≤ α ≤ 6. If 4 ≤ α ≤ 6,
then both the Sylow 5-subgroup and the Sylow 7-subgroup of G/O2(G) are
normal subgroups of G/O2(G) by Lemma 1.9. So we get a normal subgroup
Q of G such that |Q| = 2α · 5 · 7. Now we get a contradiction by Lemma 2.4.

If α = 3, then the Sylow 5-subgroup of G/O2(G) is a normal subgroup
and so we get a normal subgroup Q of G such that |Q| = 40 and so O5(Q) 6= 1,
which implies that O5(G) 6= 1, a contradiction.

If α ≤ 2, then E/O2(G) = O3(G/O2(G)) 6= 1, since O5(G) = 1 and
O7(G) = 1. If |E/O2(G)| = 9, then using Lemma 2.4 we get a contradiction.
So |E/O2(G)| = 3. Since O3(G) = 1 we get that α = 2. Then by considering a
Hall subgroup L such that |G/E : L/E| = 3, we get a normal subgroup M of
G such that |M | = 2γ · 3 · 5 · 7. Again by considering T a Hall subgroup of M
such that |M : T | = 3, we get a normal subgroup F of M such that O5(F ) 6= 1
or O7(F ) 6= 1, by Lemma 2.4, which is a contradiction.

Therefore G is not a solvable group and so by Lemma 1.4, G has a normal
series 1EHEKEG such that K/H is a direct product of isomorphic nonabelian
simple groups and |G/K| | |Out(K/H)|. By the classification of finite simple
groups and [1], it follows that K/H is isomorphic to A5, A6, A7, A8, L2(7),
L2(8) or L3(4). Since 2 ∼ 3 in Γ(A7) and Γ(L2(7)) so these cases are not
occurred. If K/H ∼= L2(8), then |H| · |G/K| = 235 and so O5(G) 6= 1, which
is a contradiction. If K/H ∼= L3(4), then H = 1 and G/K = 1. Therefore
G ∼= L3(4), which is a contradiction since 2 � 7 in Γ(L3(4)) but 2 ∼ 7 in Γ(A8).

Let K/H ∼= A6. Then |G/K| | 4 and |H| · |G/K| = 56. If G/K 6= 1,
then the Sylow 7-subgroup of H is a normal subgroup of H which implies that
O7(G) 6= 1, a contradiction. Therefore G = K and |H| = 56. By Lemma 1.2 we
see that H has an irreducible character of degree 7 and so H is the Frobenius
group 23 : 7. It is a well known result that |Aut(H)| = 168. Also since H is a
normal subgroup of G we get that G/CG(H) ↪→ Aut(H). Therefore 23 · 3 · 5 |
|CG(H)| and HCG(H) E G. Then CG(H)/(H ∩ CG(H)) ∼= HCG(H)/H E
G/H ∼= A6 and since H is centerless we get that CG(H) ∼= A6. Therefore
G ∼= H ×A6 and so 3 � 5 in Γ(G), which is a contradiction.

Let K/H ∼= A5. Then |H| = 23 ·3·7 or |H| = 24 ·3·7. If H is a nonsolvable
group, then the only nonsolvable composition factor of H is isomorphic to
L2(7). But 2 ∼ 3 in Γ(L2(7)), which is a contradiction. Therefore H is a
solvable group.

We know that |G/K| | 2. Therefore we consider two subcases:

(i) Let |G/K| = 2. So |H| = 23 · 3 · 7. We know that there exists
χ ∈ Irr(G) such that 15 | χ(1). Therefore K has an irreducible character η
such that 15 | η(1). Now by considering a Hall subgroup M of index 3 in H we
get that M CH, since O7(G) = 1. Hence M is a normal subgroup of K and
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so CK(M)CK. Therefore T = MCK(M)EK. Also M ∩ CK(M) = 1 which
implies that T ∼= M × CK(M). On the other hand, K/CK(M) ↪→ Aut(M),
which is a group of order 168, since as we mentioned above M is the Frobenius
group 23 : 7. This implies that K = MCK(M) or |K : MCK(M)| = 3.

If K = MCK(M), then |K : CK(M)| = 56 implies that there exists an
irreducible character θ ∈ Irr(CK(M)) such that 15 | θ(1), by Lemma 1.2, which
is a contradiction since |CK(M)| ≤ 225. Therefore |K : MCK(M)| = 3. Let Q
be a Sylow 3-subgroup of H. Then H = QM . Since K/H is a simple group
and MCK(M) CK we get that H 6≤ MCK(M). Therefore K = QMCK(M)
and so

A5
∼=
K

H
∼=
QMCK(M)

H
∼= CK(M).

On the other hand if L = CK(M), then LCK and so K/CK(L) ↪→ Aut(L) ∼=
S5, which implies that 22 · 3 · 7 | |CK(L)|. Since L is centerless we get that
K ∼= CK(L)× L, where CK(L) ∼= M · 3 and L ∼= A5. Now since cd(CK(L)) ⊆
{1, 3, 7} and cd(A5) = {1, 3, 4, 5}, we get that if 3 ∼ 5 in Γ(K), then 2 ∼ 3 in
Γ(K), which is a contradiction.

(ii) So suppose that |G/K| = 1 and so |H| = 24 · 3 · 7. Similarly to
the above case by considering a subgroup of index 3 in H, we get a normal
subgroup M of H of order 23 · 7 or 24 · 7.

For the first case, as we mentioned above we get that M is a Frobenius
group of order 56 and so R, the Sylow 2-subgroup of M is a normal subgroup
of M , which is an elementary abelian subgroup. Using this we conclude that
G has a normal subgroup of order 23 · 7, which is a Frobenius group. If H
has a normal subgroup M of order 24 · 7, then by Itô-Michler theorem we get
that a Sylow 7-subgroup of M is not a normal subgroup of M . If Sylow 2-
subgroup of M is a normal subgroup of M , then easily we can prove that G
has a normal subgroup of order 23 · 7, which is a Frobenius group. Otherwise
if Sylow 2-subgroup of M is not a normal subgroup of M , then there exist 7
Sylow 2-subgroups in M . Now using Theorem 1.16 in [3] we get that there
exist two Sylow 2-subgroup P1 and P2 such that |P1 ∩ P2| = 8. On the other
hand P1 ∩P2CP1 and P1 ∩P2CP2, which implies that NH(P1 ∩P2) ≥ 32 and
so P1 ∩ P2 CH. Therefore we get that G has a normal subgroup of order 56.

Now in each case we get that G has a normal subgroup of order 56, which
is a Frobenius group and we get a contradiction similarly to (i).

Finally K/H ∼= A8 and so G ∼= A8 and the result follows. �

Theorem 2.6. The finite simple groups L3(q), where 2 ≤ q ≤ 4 are
characterizable by order and character degree graph.
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Proof. We know that L3(2) ∼= L2(7) and the result follows by Theorem 3.1.
So we consider the following two cases:

Case I. Let q = 3 and G be a finite group such that |G| = 24 · 33 · 13
and Γ(G) = Γ(L3(3)), a complete graph on the vertex set {2, 3, 13}. Then
obviously O13(G) = 1.

Similarly to the previous theorems first we prove that G is a nonsolvable
group. On the contrary let G be a solvable group and M be a normal minimal
subgroup of G. Hence M is a p-elementary abelian subgroup where p = 2 or
p = 3 and |M | 6= 27 and |M | 6= 16.

If |M | = 3k, where 1 ≤ k ≤ 2, then using Lemma 1.9 it follows that the
Sylow 13-subgroup of G/M is a normal subgroup and so O13(G) 6= 1, which is
a contradiction. Therefore |M | = 2k ≤ 8. By considering a Hall subgroup of
G/M of order 3313, we get a normal subgroup N of G such that 13 | |N/M |
and |N/M | | 33 · 13. Since O13(G) = 1, we get that |N/M | = 33 · 13. Hence
|N | = 2k · 33 · 13. We know that 3 ∼ 13 in Γ(G) and so N has an irreducible
character θ such that its degree is divisible by 39. Since θ(1)2 = 1521 < |N |,
it follows that θ(1) = 39, |M | = 8 and |N | = 23 · 33 · 13. Let ξ ∈ Irr(M)
such that e = [θM , ξ] 6= 0. Therefore 39 = et, where t = |N : IN (ξ)|. Since
t ≤ |M | = 8, we get that (e, t) = (13, 3) or (39, 1). But in each case we have
132 ·3 ≤ [θM , θM ] ≤ |N : M | = 3313, which is a contradiction. Therefore G has
a normal series 1EHEKEG such that K/H is a direct product of isomorphic
nonabelian simple groups and |G/K| | |Out(K/H)|. By the classification of
finite simple groups and [1], it follows that K/H is isomorphic to L3(3). Hence
G ∼= L3(3).

Case II. Let q = 4 and G be a finite group such that |G| = 26 ·32 ·5·7 and
Γ(G) = Γ(L3(4)). We know that the character degree graph of L3(4) consists
of a complete graph on the vertex set {3, 5, 7} and there exists an edge between
2 and 5. Since the order of L3(4) is equal to the order of A8 exactly similar
to the proof of the last theorem we get that G is nonsolvable and G has a
normal series 1EHEKEG such that K/H is isomorphic to L3(4). Therefore
G ∼= L3(4). �

Remark 2.7. We note that easily we can find some nonabelian simple
groups which are not characterizable by order and character degree graph. As
an example we construct a solvable group with the same order and character
degree graph as U3(3). We know that this group is of order 25 · 33 · 7 and its
character degree graph is a complete graph on vertices {2, 3, 7}. Let H be the
Frobenius group of order 56 = 23 · 7 and P be an extraspecial group of order
33 and exponent 3. We know that P has an automorphism σ of order 2 such
that σ does not centralize Z(P ), the center of P and cd(H) = {1, 7}. Let



60 Behrooz Khosravi, Behnam Khosravi, Bahman Khosravi and Zahra Momen 10

K be the semidirect product of 〈σ〉 acting on P . Therefore |K| = 2 · 33 and
cd(K) = {1, 2, 6}. Let C ∼= Z2, and G = H ×K × C. Then |G| = 25 · 33 · 7
and easily we get that cd(G) = {1, 2, 6, 7, 14, 42}. Thus, Γ(G) = Γ(U3(3) and
|G| = |U3(3)|.
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