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1. INTRODUCTION

This article, dedicated to coorbit theory, can be seen a continuation of
[6], in which the construction of the symbolic calculus associated to the data
(Σ, µ, π,H) is undertaken. We denote by Σ a Hausdorff locally compact space
endowed with a Radon measure µ. It serves as a family of indices for a set of
bounded operators {π(s) | s ∈ Σ } in the Hilbert space H . We do not assume
that π(s) is unitary and we do not ask anything about the product π(s)π(t)
for s, t ∈ Σ . The map π(·) is assumed bounded and weakly continuous. The
main requirement is relation (2.2), a condition of square integrability extend-
ing a wide-spread related concept from group representation theory [7]. As
explained in [6], the general setting is meant to cover, unify and extend some
new developments in pseudodifferential theory [1–5, 18, 20, 23–27, 29].

Part of the formalism developed in [6] is briefly summarized in Section 2.
It is shown how to raise the family π, essentially by integration, to a corre-
spondence f 7→ Π(f) sending a closed subspace of L 2(Σ;µ) to the ideal of all
Hilbert-Schmidt operators in H. Actually the fact that Π is “an integrated
form” of π (in the spirit of group representation theory) is only seen a posteri-
ori; the initial construction is just based on the the “representation coefficient”
map Φ .

To make further progress, we introduce an extra Fréchet space G, con-
tinuously and densely embedded in H. Then duality and topological tensor
product techniques generate new spaces, organized in Gelfand triples, as well
as isomorphisms extending or restricting the mappings Π and Φ. These Gelfand
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triples, also useful for coorbit theory, have extra algebraic properties, compat-
ible with the topologies. We also include an extension of the involution and of
the symbol composition law to a large subspace, called the Moyal algebra,
cf. [19, 28].

In Sections 3,4 and 5, that are the original parts of the present article,
we show that coorbit spaces of vectors and symbols can be developed in such a
general setting.

Very roughly, in a coorbit theory useful Banach spaces are defined by im-
posing conditions on suitable transformations applied to its elements. We do
not feel competent to give a comprehensive overview, a historical presenta-
tion or exhaustive references for this topic, also related to (or even including)
wavelet theory, so the discussion will be restricted to a framework as close as
possible to our setting.

The basic pattern is the fundamental article [10] of Feichtinger and
Gröchenig, which constructed coorbit spaces starting with an integrable, ir-
reducible strongly continuous unitary representation π : G→ B(H) of a locally
compact group G in a Hilbert space H. This article unified a lot of previous
work on function spaces and had a great influence on the subsequent devel-
opment of the field. Among many others, it contains as a particular case
the theory of modulation spaces previously developed by Feichtinger [8, 9], in
a classical function space context and also in connection to the Schrödinger
representation of the Heisenberg group. Among the many developments we
cite [12]. Recent contributions as [11, 30] (see also references therein) extend
the theory of coorbit spaces much beyond group theory; they rely on frames
{w(s) | s ∈ Σ} ⊂ H indexed by a locally compact space Σ endowed with
a Radon measure with respect to which a square integrability condition is
required. Our “coorbit spaces of vectors” are essentially covered as a rather
particular case, setting w(s) := π(s)∗w for some fixed element w ∈ H. So our
main contribution lies in another realm, involving “coorbit spaces of symbols”.

Recent work ([12–18, 21, 22, 32–34, 36] and many others), triggered by
contributions of Sjöstrand [31], showed the great importance of modulation
spaces in the theory of pseudodifferential operators on Rn or on Abelian lo-
cally compact groups. On one hand, “modulation spaces of vectors” constitute
convenient spaces on which pseudodifferential operators naturally apply, pro-
viding a rich setting going beyond the usual formalism involving Hilbert and
Schwartz spaces. But, more importantly, a similar strategy leads to introducing
“modulation spaces of symbols”, spaces of functions or distributions defined in
phase-space, transformed by the pseudodifferential prescription into operators.
These spaces of symbols are often better-suited and simpler to use than the
traditional spaces used in pseudodifferential theory.
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We are going to introduce coorbit spaces of vectors and coorbit spaces of
symbols associated to the above-mentioned square-integrable family π . For the
first, in accord with the existing theory [10, 11], it is clear that we must use a
defining procedure in terms of φw , where φw(u) := φu,w = Φ(u⊗w) for a fixed
“window” w . So, for a Banach spaceM of functions on Σ , one gets a Banach
space of vectors cow(M) := φ−1

w (M). This goes along the lines of [10] and the
setting is more particular than that of [11, 30], so we will be brief about the
spaces cow(M) .

For symbols, one must first construct the analogous mappings Υh indexed
by “symbol windows” h ; it transforms functions on Σ into functions on Σ×Σ
and constitutes the main tool. But actually, analogous to Φ , there is a naturally
defined isomorphism Υ generating the family {Υh}h by localization, using the
tensor product structure: one sets Υh(f) := Υ(f ⊗ h) for all f ∈ G ′(Σ × Σ) .
(See [27] for a related construction in a more restricted framework.)

In fact, as shown in Corollary 3.5, Υ can be seen as a Hilbert algebra
Gelfand triple isomorphism. We arrange things so that the algebraic structure
on the second Hilbert algebra Gelfand triple be independent on our data π;
it just involves composition of integral kernels. For suitable windows h , this
facilitates studying the algebraic properties of various coorbit spaces obtained
by inducing through Υh . We think that preservation of the algebraic properties
is one of the main merits of the present coorbit construction.

Once the basic properties of the mapping Υ are obtained, a reconstruction
formula and the techniques of a coorbit theory are available. The procedure
generates Banach spaces COh(M ) of “functions” on Σ from Banach spaces M
of “kernels” on Σ × Σ . Under admissibility conditions one gets information
about denseness, duality, interpolation, independence of the window.

The two types of coorbit spaces are related because the two mappings Φ
and Υ are intimately connected, as indicated in Propositions 3.4 and 5.3. The
main consequence is Corollary 5.4: For suitable Banach spaces M ,M1,M2

(and for suitably tuned windows), the symbols f ∈ CO(M ) give raise to
bounded operators Π(f) : cow(M1) → cow(M2) if the kernels F ∈ M give
raise to bounded integral operators Int(F ) :M1 →M2 . This second assertion
is universal, it has nothing to do with the data π and the symbolic calculus
Π and can be checked independently. Thus one gets efficient boundedness cri-
teria for “the pseudodifferential operators” Π(f) in terms of coorbit spaces of
vectors and symbols.

2. A GENERALIZED SYMBOLIC CALCULUS

Let us fix a Hausdorff locally compact space Σ and a Radon measure
µ on Σ with full support. We set BC(Σ) for the C∗-algebra of all bounded



66 M. Măntoiu 4

continuous complex-valued functions on Σ and L q(Σ) for the usual Lebesgue
space of order q ∈ [1,∞] on (Σ, µ). The complex Hilbert space H will always
be separable and infinite-dimensional. Its conjugate will be denoted by H
and B(H) stands for the C∗-algebra of bounded linear operators on H . The
starting point of our constructions is a bounded and weakly continuous map
π : Σ→ B(H) .

Hypothesis 2.1. The sesquilinear mapping

(2.1) φπ ≡ φ : H×H → BC(Σ) , φu,v(s) := 〈π(s)u, v〉 .

is L 2(Σ;µ)-valued and extends to an isometry Φπ ≡ Φ : H⊗̂H → L 2(Σ;µ) ≡
L 2(Σ) .

This overstanding hypothesis is equivalent to requiring

(2.2)

∫
Σ

dµ(s)| 〈π(s)u, v〉 |2 = ‖u‖2 ‖v‖2, ∀u, v ∈ H .

Let us denote by Λ the canonical isomorphism between the Hilbert space
tensor product H⊗̂H (the Hilbert completion of the algebraic tensor product
H⊗H) and the ideal B2(H) of all the Hilbert-Schmidt operators in H , sending
u ⊗ v into the rank one operator Λ(u ⊗ v) ≡ λu,v := 〈·, v〉u. Then, by Hy-
pothesis 2.1, there is a closed subspace B2(Σ) := Φ

(
H⊗̂H

)
of L 2(Σ) which

is unitarily equivalent to H⊗̂H and (hence) with B2(H). This space B2(Σ) is
the closure in L 2(Σ) of the subspace Φ(H⊗ H) . Clearly, there is a Hilbert
space isomorphism Π := Λ ◦ Φ−1 : B2(Σ)→ B2(H) uniquely defined by

(2.3) Π (φu,v) = λu,v = 〈·, v〉u , ∀u, v ∈ H

and satisfying for every f, g ∈ B2(Σ)

Tr [Π(f)Π(g)∗] = 〈f, g〉(Σ) :=

∫
Σ

dµ(s)f(s) g(s) .

For any f ∈ B2(Σ) one has in weak sense

(2.4) Π(f) =

∫
Σ

dµ(s)f(s)π(s)∗ .

By transport of structure one defines a product and an involution:

? : B2(Σ)×B2(Σ)→ B2(Σ) , f ? g := Π−1[Π(f)Π(g)] ,

? : B2(Σ)→ B2(Σ) , f? := Π−1[Π(f)∗] .
One has for all f, g, h ∈ B2(Σ)

(2.5) 〈f?, g?〉(Σ) = 〈g, f〉(Σ) ,

(2.6) 〈f ? g, h〉(Σ) = 〈f, h ? g?〉(Σ) = 〈g, f?? h〉(Σ) .
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The ∗-subalgebra B1(Σ) := B2(Σ) ? B2(Σ) is dense in B2(Σ) and it is iso-
morphic through Π with the ∗-algebra B1(H) of trace-class operators. We can
“compute” the symbol of a trace-class operator T by[

Π−1(T )
]
(s) = Tr [Tπ(s)] , µ− a.e. s ∈ Σ .

In [6] rather explicit formulae are given for the algebraic structure (?,? ) , that
will not be used here. But we notice for further use the relations

(2.7) 〈φu1,v1 , φu2,v2〉(Σ) = 〈u1, u2〉 〈v2, v1〉

and

(2.8) φu1,v1? φu2,v2 = 〈u2, v1〉φu1,v2 , φ?u,v = φv,u ,

valid for every u, u1, u2, v, v1, v2 ∈ H , as well as

(2.9) f ? φu,v ? g = φΠ(f)u,Π(g)∗v , ∀ f, g ∈ B2(Σ), u, v ∈ H .

In most of the applications some supplementary structure is available.
Let G be a Fréchet space continuously and densely embedded in H . Then the
projective tensor product G⊗̂pG is a Fréchet space continuously and densely
embedded in the Hilbert space H⊗̂H .

Let us set G (Σ) := Φ
[
G⊗̂pG

]
⊂ B2(Σ) ⊂ L 2(Σ) . It can be easily seen

that G (Σ) ⊂ B1(Σ) , since B2(H) can be identified with the projective tensor
product H⊗̂pH .

We endow G (Σ) with the linear topology transported from G⊗̂pG through
Φ , denote by G ′(Σ) the topological dual and keep the same notation 〈·, ·〉(Σ) for

the duality between G (Σ) and G ′(Σ) . On the topological duals we are usually
going to consider the ∗-weak topology. When we want to empasize this we will
use notations like G′σ or G ′(Σ)σ . The use of the strong topology (the topology
of uniform convergence on bounded sets) will be indicated by an index β .

As explained in [6], besides (G,H,G′σ) , one gets new Gelfand triples(
G⊗̂p G,H⊗̂H, (G⊗̂p G)′σ

)
and (G (Σ),B2(Σ),G ′(Σ)σ) . They are isomorphic

by (various restrictions or extensions of) the mapping Φ .

Note that for any u, v ∈ G′ one has a well-defined element φu,v := Φ(u⊗
v) ∈ G ′(Σ) . It is an easy task to state and prove suitable extensions of the
relations (2.7) and (2.8).

Remark 2.2. One has a canonical isomorphism
(
G⊗̂p G

)′ ∼ B(G,G′σ) that
involves the space of all the linear operators A : G → G′ which are continuous,
when G′ is endowed with the weak∗-topology. Using this, it is easy to deduce
that Π = Λ ◦ Φ−1 : B2(Σ) → B2(H) extends to a linear isomorphism Π :
G ′(Σ) → B(G,G′σ) . Thus the elements of G ′(Σ) can be seen as symbols of
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linear operators T : G → G′ that are continuous with respect to the weak∗-
topology on the dual. The relation

(2.10) 〈Π(g)u, v〉 =

∫
Σ

dµ(t)g(t) 〈π(t)∗u, v〉 = 〈g, φv,u〉(Σ) ,

valid a priori for g ∈ B2(Σ) and u, v ∈ H, stands also true for g ∈ G ′(Σ) and
u, v ∈ G with the obvious reinterpretation of the duality 〈·, ·〉(Σ).

We describe now on the extension of the algebraic structure, relying on
[28]. The composition law ? extends to bilinear separately continuous map-
pings

? : G ′(Σ)× G (Σ)→ G ′(Σ) and ? : G (Σ)× G ′(Σ)→ G ′(Σ)

and the involution ? extends to an anti-linear isomorphism ? : G ′(Σ)→ G ′(Σ) ,
such that for every f ∈ G ′(Σ) and g ∈ G (Σ) one has

(f ? g)? = g? ? f?, (g ? f)? = f? ? g? .

These extensions simply rely on relations (2.5) and (2.6) and on the duality of
G (Σ) and G ′(Σ) , setting for any f ∈ G ′(Σ) and g ∈ G (Σ)

〈f ? g, h〉(Σ) = 〈f, h ? g?〉(Σ) , 〈g ? f, h〉(Σ) = 〈f, g? ? h〉(Σ) ,

〈f?, h〉(Σ) = 〈h?, f〉(Σ) , ∀h ∈ G (Σ) .

We also introduce the subspace

G ′?(Σ) :=
{
f ∈ G ′(Σ) | f ? G (Σ) ⊂ G (Σ), G (Σ) ? f ⊂ G (Σ)

}
and call it the Moyal algebra associated to ? . Obviously G ′?(Σ) is invariant
under the involution f 7→ f?. We extend the composition ? : G ′?(Σ)×G ′?(Σ)→
G ′?(Σ) by setting

〈f ? g, h〉(Σ) := 〈f, g ? h〉(Σ) , ∀ f, g ∈ G ′?(Σ), h ∈ G (Σ) .

Without making all the routine verification, we just state that (G ′?(Σ), ?,? ) is
a ∗-algebra in which G (Σ) is a self-adjoint two-sided ideal.

3. THE CANONICAL MAPPING ON SYMBOLS

Let us put es := Π−1 [π(s)∗] ∈ G ′(Σ) for s ∈ Σ ; thus φu,v(s) = 〈u,Π(es)v〉
for all u, v and s and one has π(s)∗ = Π (es) and π(s) = Π (e?s). For every
f, g ∈ B1(Σ) one gets

(3.1)

∫
Σ

dµ(s)〈f, es〉(Σ)〈es, g〉(Σ) = 〈f, g〉(Σ) .
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and

(3.2) 〈f, es〉(Σ) = f(s) , 〈f, e?s〉(Σ) = f?(s) , µ− a.e. s ∈ Σ

Note that f ? et ? g ∈ B1(H) for every t ∈ Σ and f, g ∈ B2(Σ) .

Definition 3.1. The canonical map (depending implicitly on π)

Υ : B2(Σ)⊗̂B2(Σ)→ L 2(Σ× Σ) ∼= L 2(Σ)⊗̂L 2(Σ)

is defined by

(3.3) [Υ(f ⊗ h)](s, t) := 〈f ? et ? h, es〉(Σ) = (f ? et ? h)(s) .

Remark 3.2. It is easy to check that (3.3) is equivalent to

(3.4) 〈Υ(f ⊗ h), g ⊗ k〉(Σ×Σ) =
〈
f ? k ? h, g

〉
(Σ)

=
〈
f ? k, g ? h?

〉
(Σ)

.

This offers a good starting point for extensions to larger spaces.

A very useful fact is that L 2(Σ×Σ) is a ∗-algebra, in a way that does not
depend on our starting point, the map π : Σ → B(H) . Besides the canonical
scalar product, one also has the composition of kernels

(3.5) (F •G)(s, t) :=

∫
Σ

dµ(r)F (s, r)G(r, t)

and the involution F •(s, t) := F (t, s) . On the other hand, on the Hilbert
tensor product B2(Σ)⊗̂B2(Σ) we can consider the law F := ? ⊗ ? uniquely
defined by

(3.6) (f1 ⊗ f2)F(g1 ⊗ g2) := (f1 ? g1)⊗ (g2 ? f2)

and the tensor product involution (f1 ⊗ f2)F := f?1 ⊗ f?2 .

Theorem 3.3. The canonical mapping Υ : (B2(Σ)⊗̂B2(Σ) ,F ,F ) →
(L 2(Σ×Σ) , • ,• ) is a well-defined isometric morphism of ∗-algebras with range
B2(Σ)⊗̂B2(Σ).

Proof. Notice the relation

(3.7) e?s ? φu,v ? et = φπ(s)u,π(t)v, ∀ s, t ∈ Σ, u, v ∈ H ,

which is a direct consequence of the definitions. Using (3.3), (2.6), (3.7) and
(2.7), for any u, u′, v, v′ ∈ H and any s, t ∈ Σ one has

[
Υ
(
φu,v⊗ φu′,v′

)]
(s, t) =

〈
e?s ? φu,v? et, φ

?
u′,v′

〉
(Σ)

=
〈
φπ(s)u,π(t)v, φv′,u′

〉
(Σ)

=
〈
π(s)u, v′

〉 〈
π(t)v, u′

〉
= φu,v′(s)φv,u′(t) .
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Thus Υ(φu,v ⊗ φu′,v′) = φu,v′ ⊗ φv,u′ which, together with the orthogonality
relations verified by the functions φu,v, implies easily the isometry property
and the identification of the range.

Let us check the algebraic properties. For f, g, h, k ∈ B2(Σ) one has

Υ[(f ⊗ h)F(g ⊗ k)](s, t) = Υ [(f ? g)⊗ (h ? k)] (s, t)

= 〈(f ? g) ? et, es ? (k ? h)?〉(Σ) .

On the other hand, using (2.6) and relation (3.1)

[Υ(f ⊗ h) •Υ(g ⊗ k)](s, t) =

∫
Σ

dµ(r) [Υ(f ⊗ h)](s, r) [Υ(g ⊗ k)](r, t)

=

∫
Σ

dµ(r) 〈f ? er, es ? h?〉(Σ) 〈g ? et, er ? k
?〉(Σ)

=

∫
Σ

dµ(r) 〈er, f?? es ? h?〉(Σ) 〈g ? et ? k, er〉(Σ)

= 〈g ? et ? k, f?? es ? h?〉(Σ)

= 〈f ? g ? et, es ? h?? k?〉(Σ) .

The fact that Υ intertwines the two involutions also follows from (2.5) and
(2.6):

Υ
[
(f ⊗ h)F

]
(s, t) = 〈f?? et, es ? h〉(Σ) = 〈(es ? h)? , (f ? ? et)

?〉(Σ)

= 〈h?? e?s, e?t ? f〉(Σ) = 〈e?t ? f, h? ? e?s〉(Σ)

= 〈f ? es, et ? h?〉(Σ) = [Υ(f ⊗ h)] (t, s) . �

In order to establish the connection between the mappings Φ , Π and Υ,
let us consider the representation of

(
L 2(Σ× Σ) , • ,•

)
on the Hilbert space

L 2(Σ) by integral operators

(3.8) [Int(F )h](s) :=

∫
Σ

dµ(t)F (s, t)h(t) ;

the range of the representation is composed of all the Hilbert-Schmidt operators
on L 2(Σ) . By composing with Υ, one gets a representation

(3.9) Int ◦Υ :
(
B2(Σ)⊗̂B2(Σ) ,F ,F

)
→ B

[
L 2(Σ)

]
.

Since Int(f ⊗ g) = 〈·, g〉(Σ)f , we see easily that Int(F ) leaves the closed sub-

space B2(Σ) invariant for any element F of B2(Σ)⊗̂B2(Σ) ; then, with restric-
tions, one clearly has Int

[
B2(Σ)⊗̂B2(Σ)

]
= B2[B2(Σ)] . With this interpre-

tation we are going to show that Int ◦Υ is unitarily equivalent with the tensor
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product of the representation Π with its opposite Π (defined by Π(f) := Π(f)∗),
via the unitary operator Φ : H⊗̂H → B2(Σ) . For f, g, h ∈ B2(Σ) we set

[{L,R}(f ⊗ g)]h := f ? h ? g = (Lf ◦ Rg)h = (Rg ◦ Lf )h .

Proposition 3.4. Setting UΦ(S) := Φ ◦ S ◦ Φ−1, S ∈ B(H⊗̂H) one has

(3.10) Int ◦Υ = UΦ ◦ (Π⊗Π) = {L,R}.

Proof. Let f, g, k ∈ B2(Σ) and s ∈ Σ . Using the fact that the products
of three elements is a trace-class symbol one gets

{[(Int ◦Υ)(f ⊗ g)] k} (s) =

∫
Σ

dµ(t) [Υ(f ⊗ g)] (s, t) k(t)

=

∫
Σ

dµ(t) 〈et, f? ? es ? g?〉(Σ) k(t)

=

〈∫
Σ

dµ(t)k(t)et, f
? ? es ? g

?

〉
(Σ)

= 〈f ? k ? g, es〉(Σ) = (f ? k ? g)(s) .

On the other hand, computing on k = φu,v (such that Φ−1(h) = u ⊗ v) and
using (2.9) we have{[

UΦ ◦ (Π⊗Π)
]

(f ⊗ g)
}
φu,v = Φ {[Π(f)⊗Π(g)∗] (u⊗ v)}

= φΠ(f)u,Π(g)∗v = f ? φu,v ? g

= [{L,R}(f ⊗ g)]φu,v ,

and the proof is finished since the elements f ⊗ g form a total set. �

As in the second part of Section 2, let G be a Fréchet space continuously
and densely contained in H and set G (Σ) := Φ[G⊗̂pG]. We are going to use
the abbereviations

G (Σ× Σ) := G (Σ)⊗̂p G (Σ) ,
B2(Σ× Σ) := B2(Σ)⊗̂B2(Σ)

and
G ′(Σ× Σ) := G (Σ× Σ)′ .

Recall that the family {φu1,v1 ⊗ φu2,v2 | u1, v1, u2, v2 ∈ G} is a total
subset of G (Σ × Σ) . Since we have Υ (φu1,v1 ⊗ φu2,v2) = φu1,v2 ⊗ φv1,u2 (see
the proof of Theorem 3.3), it follows that Υ [G (Σ× Σ)] = G (Σ×Σ) , so we get
by restriction an isomorphism of Fréchet ∗-algebras

(3.11)
(
G (Σ× Σ) ,F ,F

)
Υ−→ (G (Σ× Σ) , • ,• ) .

Continuity follows from the Closed Graph Theorem or directly from a care-
ful examination of the projective topologies. Therefore, as an extension of
Theorem 3.3, one gets
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Corollary 3.5. Assume that the Fréchet space G is continuously and
densely embedded in H . Then there is an isomorphism of Gelfand triples(

G (Σ×Σ),B2(Σ×Σ),G ′(Σ×Σ)
) Υ→

(
G (Σ×Σ),B2(Σ×Σ),G ′(Σ×Σ)

)
that is unitary at the level of the B2-spaces and respects the ∗-algebraic struc-
tures.

The two Gelfand triples above are identical as locally convex spaces but
very different as ∗-algebras; see (3.11) for instance.

The procedure of extension of the algebraic structure described at the
end of Section 2 can be applied to the ∗-algebra (G (Σ × Σ),F,F ), getting a
Moyal algebra G ′F(Σ × Σ), and to (G (Σ × Σ), •,• ), getting a Moyal algebra
G ′•(Σ× Σ) . One gets easily

Corollary 3.6. The map Υ restricts (or extends, depending on the start-
ing point) to an isomorphism of ∗-algebras Υ : G ′F(Σ× Σ)→ G ′•(Σ× Σ) .

Remark 3.7. Later on we are going to need the fact that the unitary in-
tegral operator Int : B2(Σ)⊗̂B2(Σ) → B2[B2(Σ)] extends to a linear isomor-
phism Int : G ′(Σ × Σ) → B[G (Σ),G ′(Σ)σ] . This is actually the isomorphism
of Remark 2.2 with G replaced by the Fréchet space G (Σ) (and H replaced
by the Hilbert space B2(Σ)) . We set Int(f ⊗ g)h = 〈h, g〉(Σ)f for every

f, g ∈ G ′(Σ) and h ∈ G (Σ) and this mapping defined on the algebraic ten-
sor product G ′(Σ) ⊗ G ′(Σ) , compatible with the initial Int , extends to the
final isomorphism.

We now perform localization of the canonical mapping on symbols; it
amounts essentially to regarding Υ as a “function of two variables” and then
fixing the first one in a convenient way. For h ∈ B2(Σ) \ {0} (often called
window or analyzing vector) we set

Υh : B2(Σ)→ B2(Σ× Σ) , Υh(f) := Υ(f ⊗ h) .

Defining
Jh : B2(Σ)→ B2(Σ)⊗̂B2(Σ) by Jh(f) := f ⊗ h ,

then in terms of the adjoint J†h : B2(Σ)⊗̂B2(Σ)→ B2(Σ) given by[
J†h(F )

]
(s) = 〈F (s, ·), h〉(Σ) , µ− a.e. s ∈ Σ ,

one has the relations

J†h ◦ Jk = 〈k, h〉(Σ) id , Jk ◦ J†h = id⊗ Int(k ⊗ h) .

Then clearly Υh = Υ ◦ Jh and the following formulae hold:

(3.12) Υ†h ◦Υk = J†h ◦ Jk = 〈k, h〉(Σ) id ,
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Υk ◦Υ†h = Υ ◦
[
id⊗ Int(k ⊗ h)

]
◦Υ−1.

In particular ‖h‖−1
(Σ) Υh is an isometry with range Υ[B2(Σ)⊗ h] .

If h and k are not orthogonal, we get from (3.12) for any f ∈ B2(Σ)

(3.13) f =
1

〈h, k〉(Σ)

Υ†h [Υk(f)] ,

which is referred to as the inversion (or the reconstruction) formula.
An easy computation leads to the explicit formula for the adjoint

Υ†h(F ) =

∫
Σ

∫
Σ

dµ(s) dµ(t)F (s, t) es ? h
? ? e?t , ∀F ∈ B2(Σ× Σ) ,

which should be interpreted weakly, applied by duality on f ∈ B2(Σ) .

Remark 3.8. By using Theorem 3.3, one gets for f, g, h, k ∈ B2(Σ)

(3.14) Υh(f) •Υk(g) = Υk?h(f ? g) , Υh(f)• = Υh?(f?) .

Therefore, very often, we are going to use self-adjoint idempotent windows h =
h? = h?h , for which the localized canonical map Υh will be a monomorphism of
∗-algebras. To give a useful example, one gets a self-adjoint projection h = φw,w
for any unit vector w .

Let us use now the opportunities offered by the Gelfand triples con-
structed above. Most of the time we fix a window h in G (Σ) \ {0} and, besides
the initial Υh = Υ ◦ Jh , we work both with the restriction Υh : G (Σ) →
G (Σ × Σ) and (especially) with the extension Υh : G ′(Σ)σ → G ′(Σ × Σ)σ .
They are all well-defined linear injective and continuous because of the iso-
morphism properties of Υ specified in Corollary 3.5 and the obvious mapping
properties of

Jh : G ′(Σ)→ G ′(Σ)⊗ G (Σ) ⊂ G ′(Σ)⊗ G ′(Σ) ⊂ G ′(Σ× Σ) .

On the other hand, Υh : G (Σ) → G (Σ× Σ) possesses an adjoint Υ†h : G ′(Σ×
Σ)ν → G ′(Σ)ν which is linear and continuous for any of the topologies ν = σ, β

and which extends the previous Υ†h : B2(Σ × Σ) → B2(Σ) . The inversion
formula (3.13) still holds for f ∈ G ′(Σ) and h, k ∈ G (Σ) with 〈h, k〉(Σ) 6= 0, by

the continuity of the ingredients of the expression Υ†h ◦Υk : G ′(Σ)ν→ G ′(Σ)ν
and the fact that B2(Σ) is dense in G ′(Σ)ν for ν = σ . One gets the same
conclusion for ν = β by analyzing in detail the way these ingredients were
defined.

Remark 3.9. We indicate now briefly another approach to extending the
mapping Υh , based on Remark 3.2. Formula (3.4) suggests defining Υh :
G ′(Σ)→ G ′(Σ× Σ) by

(3.15) 〈Υh(f), g ⊗ k〉(Σ×Σ) :=
〈
f, g ? h? ? k ?

〉
(Σ)

=
〈
f ? k, g ? h?

〉
(Σ)

,



74 M. Măntoiu 12

where h ∈ G (Σ) \ {0} is the fixed window and g, k are arbitrary elements
of G (Σ) . One can also write the quantities in (3.15) as 〈Int[Υh(f)]g, k〉(Σ).
Rather straightforward arguments justifies this definition and extracts from
it the useful properties of Υh ; the reader will easily check the compatibility
between the two points of view.

4. COORBIT SPACES OF SYMBOLS

We keep the same setting as above, consisting of the data (Σ, µ,G,H, π) ,
assuming Hypohesis 2.1 and the fact that G is a Fréchet space embedded
densely and continuously in the Hilbert space H .

Definition 4.1. Let M be a vector subspace of G ′(Σ × Σ) . Its coorbit
space associated to the window h ∈ G (Σ) \ {0}) is

(4.1) COh(M ) := {f ∈ G ′(Σ) | Υh(f) ∈M } .
Clearly COh[G

′(Σ×Σ)] = G ′(Σ) and COh[B2(Σ×Σ)] = B2(Σ) . The next
result gives other examples of coorbit spaces.

Proposition 4.2. (1) Let h ∈ G (Σ) \ {0}. Then f ∈ G ′(Σ) belongs
to G (Σ) if and only if Υh(f) ∈ G (Σ × Σ) . In other words one has
COh[G (Σ× Σ)] = G (Σ).

(2) If h ? h = h? = h , then Υh : G ′(Σ) → G ′(Σ × Σ) restricts to a
monomorphism of ∗-algebras Υh : G ′?(Σ) → G ′•(Σ × Σ) and one has
COh[G ′•(Σ× Σ)] = G ′?(Σ) .

(3) If M is a ∗-subalgebra of G ′•(Σ×Σ) , then COh(M ) is a ∗-subalgebra of
G ′?(Σ) .

Proof. 1. The “only if part” follows directly from the way Υ has been
constructed in the previous section. For the “if part”, assume that Υh(f) ∈
G (Σ × Σ) . By the extended inversion formula and by the obvious mapping

property Υ†h : G (Σ× Σ)→ G (Σ) one has

f = ‖ h ‖−2
(Σ) Υ†h [Υh(f)] ∈ G (Σ) .

2 and 3. The extensions of the algebraic structures and of the isomor-
phism Υ (Corollary 3.5) allow us to state useful versions of (3.14); for example,
this relation also hold for g, h, k ∈ G (Σ) and f ∈ G ′(Σ) . Then 2 and 3 follow
easily from the definitions and from 1; see also Corollary 3.6. �

If (M , ‖ · ‖M ) is a normed space (usually taken to be continuously em-
bedded in G ′(Σ × Σ) endowed with the weak∗-topology), we endow COh(M )
with the norm

(4.2) ‖f ‖COh(M ) := ‖Υh(f)‖M .
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Proposition 4.3. Let M be continuously embedded in G ′(Σ× Σ)σ .

(1) For h ∈ G (Σ) \ {0} , COh(M ) is a normed space continuously embedded
in G ′(Σ)σ .

(2) If M is a Banach space, COh(M ) is also a Banach space.

Proof. 1. It is obvious that ‖·‖COh(M ) is a norm; recall that Υh : G ′(Σ)→
G ′(Σ×Σ) is injective. If fn converges to f in COh(M ) , then Υh(fn) converges
to Υh(f) in M , hence also ∗-weakly in G ′(Σ × Σ) . But Υ : G ′(Σ × Σ)σ →
G ′(Σ × Σ)σ is a topological isomorphism and thus fn ⊗ h converges to f ⊗ h
∗-weakly in G ′(Σ× Σ) . It follows that fn converges to f ∗-weakly in G ′(Σ) .

2. Let us show that the inducing process preserves completeness. Clearly
COh(M ) is isometrically isomorphic to M (h) := M ∩ Υh[G ′(Σ)] . So we have
to show that M (h) is closed in M . Let

(
Υh(fn)

)
n∈N be a sequence in M (h),

converging to G ∈ M . Due to the continuity of the embedding of M in
G ′(Σ× Σ) we also have

(4.3) Υh(fn) −→
n→∞

G in G ′(Σ× Σ) .

Set f := 1
‖h‖2 Υ†h(G) ∈ G ′(Σ) . From the extended inversion formula

f − fn =
1

‖ h ‖2(Σ)

Υ†h[G−Υh(fn)] −→
n→∞

0 in G ′(Σ)

which, together with (4.3), imply G = Υh(f) ∈M (h). �

Plainly, in Proposition 4.3 the weak∗ topology can be replaced by others,
as ν = β for instance.

If ‖ · ‖M is a C∗-norm then ‖ · ‖COh(M ) will also be a C∗-norm:

‖f? ? f ‖COh(M ) = ‖Υh(f? ? f)‖M = ‖Υh(f)• •Υh(f)‖M
= ‖Υh(f)‖2M = ‖f ‖2COh(M ) .

We study now the dependence of the spaces on the window h .

Proposition 4.4. Assume that for some h, k ∈ G (Σ) \ { 0} one has(
Υk ◦ Υ†h

)
M ⊂ M . Then COh(M ) ⊂ COk(M ) . In addition, if M is a

Banach space continuously embedded in G ′(Σ×Σ) , the embedding of COh(M )
in COk(M ) is continuous.

Proof. By the extended inversion formula, if f ∈ COh(M ) then

f =
1

‖ h ‖2(Σ)

Υ†h[Υh(f)] ∈ Υ†h(M ) ,
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which implies COh(M ) ⊂ Υ†h(M ) . So we need to show that Υ†h(M ) ⊂
COk(M ) . But

f = Υ†h(G), with G ∈M =⇒ Υk(f) = [Υk ◦Υ†h](G) ∈M .

To prove the topological embedding, note that Υk ◦Υ†h ∈ B(M ) by the Closed
Graph Theorem. This and the inversion formula give

‖f ‖COk(M ) =

∥∥Υk

[(
Υ†h ◦Υh

)
f
] ∥∥

M

‖ h ‖2(Σ)

≤
‖Υk ◦Υ†h ‖B(M )

‖h‖2(Σ)

‖f ‖COh(M ) . �

Let us say that the subspace M is admissible if one has
(
Υk ◦Υ†h

)
M ⊂

M for every h, k ∈ G (Σ) \ { 0} . By the result above, if a Banach space
M continuously embedded in G ′(Σ × Σ)σ is admissible, we could speak of the
Banachizable space CO(M ) := Υ−1

h (M ) , which is continuously embedded in
G ′(Σ)σ ; the vector space and the topology do not depend on h ∈ G (Σ) \ { 0} .

Recall that Υk ◦ Υ†h = Υ ◦ Jk ◦ J†h ◦ Υ−1. Set N := Υ−1(M ) ; for
admissibility, it is enough to prove that

Jk,h := Jk ◦ J†h = id⊗ Int(k ⊗ h) : G ′(Σ× Σ)→ G ′(Σ× Σ)

restricts to an operator Jk,h : N → N . This holds for M = G (Σ × Σ) , case
in which N = G (Σ × Σ) ≡ G (Σ)⊗̂p G (Σ) . In general, it may fail even for

h = k . If, however, (Υh ◦Υ†h) M ⊂M for every h ∈ G (Σ) , we say that M is
diagonally admissible; this is weaker than admissible.

Proposition 4.5. (1) If M is a diagonally admissible Banach space

continuously embedded in G ′(Σ × Σ) , for h ∈ G (Σ) \ {0} the map Υ†h :

G ′(Σ× Σ)→ G ′(Σ) restricts to a retract Υ†h : M → COh(M ) .

(2) If G (Σ×Σ) is dense in M , then G (Σ) is dense in COh(M ) .

(3) For any h ∈ G (Σ) \ {0}, the family of coorbit spaces COh(M ) of all
diagonally admissible Banach spaces M continuously embedded in G ′(Σ×
Σ) is stable by any interpolation method.

Proof. 1. We know from the proof of Proposition 4.4 that COh(M ) ⊂
Υ†h(M ) , as a consequence of the inversion formula; the opposite inclusion
follows from diagonal admissibility. Then apply the Closed Graph Theorem to
conclude that Υ†h ∈ B[COh(M ),M ] . The inversion formula shows that this
mapping is a retract.

2. The inclusion G (Σ) ⊂ COh(M ) follows from Lemma 4.2 and from the
monotony of the inducing process, so we only need to prove density.

Let f ∈ COh(M ) , i.e. F := Υh(f) ∈M . One has ‖F − Fn ‖M → 0 for

a sequence {Fn}n∈N ⊂ G (Σ × Σ) . Then fn := ‖ h ‖−2
(Σ) Υ†h(Fn) ∈ G (Σ), since
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G (Σ) = CO[G (Σ× Σ)] and G (Σ× Σ) is admissible. By the point 1

‖f − fn ‖COh(M ) = ‖ h ‖−2
(Σ) ‖Υ†h [Υh(f)− Fn]‖COh(M )≤ c ‖F − Fn ‖M → 0

which proves that G (Σ) is dense in COh(M ) .

3. We need to know that diagonal admissibility is preserved by inter-
polation; this is obvious from the definitions [35]. It is well-known that the
interpolation functors F commute with retracts so, by 1, we get

F [COh(M0),COh(M1) ] = COh [F(M0),F(M1) ]

for any diagonally admissible interpolation couple (M0,M1). �

We treat now the problem of duality.

Proposition 4.6. Let (M , ‖ · ‖M ) be a Banach space continuously em-
bedded in G ′(Σ×Σ)σ and containing G (Σ×Σ) continuously and densely. As-
sume also that M is diagonally admissible and that h ∈ G (Σ) \ {0} . Then one
has a canonical identification between COh(M )′ and COh(M ′) .

Proof. Let us denote by i : G (Σ×Σ)→M the canonical injection. Then
the transpose i′ : M ′

β → G ′(Σ× Σ)β ↪→ G ′(Σ× Σ)σ is continuous, where each
dual has been endowed with its own strong topology; note that M ′

β is a Banach
space. The map i′ is also injective, since i was assumed to have a dense range;
thus we can apply to M ′ = M ′

β the coorbit procedure.

Let us set ϕ : COh(M ′)→ COh(M )′ by

〈ϕ(f), g〉(Σ) := 〈Υh(f),Υh(g)〉(Σ×Σ) , ∀ f ∈ COh(M ′), g ∈ COh(M ) .

Actually the duality of the r.h.s. is the one between M ′ and M but, by
compatibility, we use the notation 〈·, ·〉(Σ×Σ) . One has for g ∈ COh(M )

| 〈ϕ(f), g〉(Σ) | = | 〈Υh(f),Υh(g)〉(Σ×Σ) |

≤ ‖Υh(f)‖M ′ ‖Υh(g)‖M
= ‖f ‖COh(M ′) ‖g‖COh(M ) ,

which shows that the functional ϕ(f) is continuous and the correspondence
f 7→ ϕ(f) is contractive.

We show now surjectivity. For f ′ ∈ COh(M )′, we denote by f ′0 its restric-
tion to G (Σ) ; then f ′0 ∈ G ′(Σ) . We must show that f ′0 ∈ COh(M ′), i.e. that
Υh(f ′0) ∈M ′. For G ∈ G (Σ×Σ) , by the choice of f ′ and by the first assertion
in Proposition 4.5 (using diagonal admissibility)∣∣〈Υh

(
f ′0
)
, G
〉

(Σ×Σ)

∣∣ =
∣∣〈f ′0,Υ†h(G)

〉
(Σ)

∣∣ ≤ c1 ‖Υ†h(G)‖COh(M )≤ c2 ‖G‖M .
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This and the density of G (Σ × Σ) in M shows indeed that Υh(f
′
0) ∈M ′. By

the extended inversion formula it follows that ϕ(‖h‖−2
(Σ) f

′
0) = f ′.

Being a continuous linear bijection between two Banach spaces, ϕ is an
isomorphism by the Open Mapping Theorem. �

5. COORBIT SPACES OF VECTORS

Let us fix an element w ∈ H . The family {w(s) := π(s)∗w | s ∈ Σ} is a
tight continuous frame [11], as a consequence of Hypothesis 2.1. The constant
of the frame is C = ‖w‖2; we assume it to be 1 by normalizing w . So we have
in weak sense

1 =

∫
Σ

dµ(s)|w(s)〉〈w(s)| .

We define φw : H → B2(Σ) ⊂ L 2(Σ) by

φw(u) := φu,w = 〈π(·)u,w〉 = 〈u,w(·)〉 ,

with adjoint φ†w : B2(Σ)→ H given by

(5.1) φ†w(f) =

∫
Σ

dµ(s)f(s)π(s)∗w = Π(f)w .

To show the analogy with the localized mappings Υh = Υ ◦ Jh of the previous
section, we could use H 3 u 7→ jw(u) := u⊗w ∈ B2(Σ) to write φw = Φ ◦ jw .
The kernel associated to the frame is

pw(s, t) := 〈w(t), w(s)〉 = 〈π(t)∗w, π(s)∗w〉 = φw(t),w(s) ,

defining a self-adjoint integral operator Pw = Int(pw) in B2(Σ). One checks

easily that Pw = φwφ
†
w is the final projection of the isometry φw, so Pw [B2(Σ)]

is a closed subspace of B2(Σ) . Since φ†wφw = 1, one has the inversion formula

u =

∫
Σ

dµ(t) [φw(u)] (t)w(t)

and the reproducing formula φw(u) = Pw [φw(u)], i.e.

[φw(u)] (s) =

∫
Σ

dµ(t) 〈w(t), w(s)〉 [φw(u)] (t) .

Thus Pw(Σ) := Pw[B2(Σ)] is a reproducing kernel Hilbert space with repro-
ducing kernel pw, composed of bounded continuous functions on Σ .

Let us assume, in addition, that the “window” w belongs to the Fréchet
space G continuously and densely embedded in H. These results above justify
the linear mapping φw : G′ → G ′(Σ) which will be used to pull back algebraic
and topological structure.
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Definition 5.1. Let (M, ‖ · ‖M) be a Banach space continuously embed-
ded in G ′(Σ). Its coorbit space (associated to the couple (π,w)) is

(5.2) cow(M) := {u ∈ G′ | φw(u) ∈M}
with the norm ‖u‖cow(M) := ‖φw(u)‖M .

Remark 5.2. Since coorbit spaces of vectors are not our main concern, we
are not going to develop their theory. After suitable adaptations, a lot can be
said just by specializing results from [11]. It is also possible to make convenient
modifications in the preceding section on coorbit spaces symbols, by making
the replacement Υh 7→ φw. So let us just state the rather obvious fact, that will
be used below, that cow(M) is a Banach space continuously embedded in G′.
Simple arguments based on the inversion formula and the mapping properties
of φ†w show that cow[B2(Σ)] = H , cow[G (Σ)] = G and cow[G ′(Σ)] = G′ (if G is
not Banach, the second and the third examples can be taken in the category
of vector spaces).

The next result will imply a general result on boundedness of operators
Π(f) between modulation spaces. It is a consequence of Proposition 3.4, but
we give a direct proof.

Proposition 5.3. (1) For any f ∈ B2(Σ) and w1, w2 ∈ H, one has

(5.3) φw2Π(f)φ†w1
= Int

[
Υφw2,w1

(f)
]
.

(2) If f ∈ G ′(Σ) and w1, w2 ∈ G, the same identity holds in the space
B[G (Σ),G ′(Σ)] .

Proof. 1. We compute for k ∈ B2(Σ) and s ∈ Σ , using (5.1), (2.4) and
the symbolic calculus[(

φw2Π(f)φ†w1

)
k
]
(s) =

〈
π(s)Π(f)

[
φ†w1

(k)
]
, w2

〉
= 〈Π(k)w1,Π(f)∗π(s)∗w2〉

=

∫
Σ

dµ(t) k(t) 〈π(t)∗w1,Π(f)∗π(s)∗w2〉

=

∫
Σ

dµ(t) k(t) 〈Π (e?s ? f ? et)w1, w2〉

=

∫
Σ

dµ(t) k(t) 〈e?s ? f ? et, φw2,w1〉(Σ)

=
(
Int
[
Υφw2,w1

(f)
]
k
)

(s) .

2. This can be justified repeating the computation above in weak sense,
applied to a “test function” l ∈ G (Σ) , using our previous information about
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the extended objects. One has, with suitable interpretations and also using
Remark 3.9〈(

φw2Π(f)φ†w1

)
k, l
〉

(Σ)
=
〈

Π(f)φ†w1
k, φ†w2

l
〉

(Σ)
= 〈Π(f)Π(k)w1,Π(l)w2〉

= 〈Π(l? ? f ? k)w1, w2〉 = 〈l? ? f ? k, φw1,w2〉(Σ)

= 〈f, l ? φw1,w2 ? k
?〉(Σ) =

〈
Υφw2,w1

(f), l ⊗ k
〉

(Σ×Σ)

=
〈
Int
[
Υφw2,w1

(f)
]
k, l
〉

(Σ)
. �

Corollary 5.4. Let (M1, ‖ · ‖M1) and (M2, ‖ · ‖M2) be two Banach
spaces continuously embedded in G ′(Σ) and (M , ‖ · ‖M ) be a Banach space
continuously embedded in G ′(Σ × Σ) . If Int (M ) ⊂ B(M1,M2) , then
Π[COφw2,w1

(M )] ⊂ B[cow1(M1), cow2(M2)] .

Proof. Assume that f ∈ COφw2,w1
(M ) , meaning that Υφw2,w1

(f) ∈ M .
Let also u ∈ cow1(M1) , thus φw1(u) ∈M1 . Applying the assumption, we get

v := Int
[
Υφw2,w1

(f)
]
φw1(u) ∈M2 .

By (5.3), this is written v = φw2 [Π(f)]u ∈ M2 , i.e. Π(f)u ∈ cow2(M2) . On
the other hand

‖Π(f)u‖cow2 (M2) = ‖φw2 [Π(f)u]‖M2= ‖Int
[
Υφw2,w1

(f)
]
φw1(u)‖M1

≤ C ‖φw1(u)‖M1= C ‖u‖cow1(M1) . �

The formalism benefits from a good choice of a space G. We follow now
the approach of [10] and [11] to show that such choices are possible. Consider
continuous admissible weights A : Σ× Σ→ [1,∞) which are

• bounded along the diagonal: A(s, s) ≤ C <∞ for all s ∈ Σ ,

• symmetric: A(s, t) = A(t, s) for all s, t ∈ Σ ,

• satisfying A(s, t) ≤ A(s, r)A(r, t) for all r, s, t ∈ Σ .

It is easy to see that

AA := {K : Σ× Σ→ C measurable | ‖K ‖AA
<∞}

is a Banach ∗-algebra of kernels with the norm

‖K ‖AA
:= max

{
ess sup
s∈Σ

∫
Σ

dµ(t)(AK)(s, t) , ess sup
t∈Σ

∫
Σ

dµ(s)(AK)(s, t)

}
.
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Picking some (inessential) point r ∈ Σ one defines the weight a ≡ ar : Σ →
[1,∞) by a(s) := A(s, r) . Fixing also a unit vector w0 ∈ H, we require that
the kernel pw0 given by (5) be an element of AA . Then set G ≡ Ga,w0 := {w ∈
H | φw0(w) ∈ L 1

a (Σ)} with norm

‖w‖Ga,w0
:= ‖φw0(w)‖L 1

a (Σ) =

∫
Σ

dµ(s) a(s) | [φw0(w)] (s)| .

Proposition 5.5. (1) Ga,w0 is a Banach space continuously and densely
embedded in H .

(2) Setting G = Ga,w0, then the space G (Σ) := Φ
(
G⊗̂p G

)
is given by

G (Σ) =
{
h ∈ B2(Σ) | Υφw0,w0

(h) ∈ L 1
a⊗a(Σ× Σ)

}
.

Proof. 1. For the Banach space property we send to [11, Prop. 3.1] . The
embedding follows from Hypothesis 2.1, from a(·) ≥ 1 and from the bound
[φw0(w)] (·) ≤ D <∞ :

‖w‖2H=

∫
Σ

dµ(s) | [φw0(w)] (s) |2 ≤ D
∫

Σ
dµ(s) a(s) | [φw0(w)] (s) | .

To prove density, it is enough to check that the total family {w0(s) = π(s)∗w0 |
s ∈ Σ } is contained in Ga,w0 . As in [11, (3.9)], it follows easily from the
requirement pw0 ∈ AA that

(5.4) ‖w0(s)‖Ga,w0
≤ a(s) ‖pw0 ‖AA

.

If we are not interested in the dependence of s of the “constant” in (5.4), much
less can be required on pw0 . For other possible developments we refer to Ch.
3 in [11] .

2. The weight can be absorbed in the measure: one has L 1
a (Σ ;µ) =

L 1(Σ ; aµ) and L 1
a⊗a(Σ×Σ ;µ⊗µ) = L 1(Σ×Σ ; (aµ)⊗ (aµ)) , so it is enough

to consider the case A(r, s) = 1 .
By the first computation of the proof of Theorem 3.3 we have

Υφw0,w0
[Φ(u⊗ v)] := Υ(φu,v⊗ φw0,w0) = φu,w0⊗ φv,w0 = φw0(u)⊗ φw0(v) ,

which implies that Υφw0,w0
◦ Φ = φw0⊗ φw0 . Since L 1(Σ × Σ) can be

seen as the completed projective tensor product L 1(Σ)⊗̂p L 1(Σ) , the result
follows easily. �

So Ga,w0 is a coorbit space of vectors cow0 [L 1
a (Σ)] and the reservoir of

symbol-windows associated to Ga,w0 is also a coorbit space.
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[23] V. Iftimie, M. Măntoiu and R. Purice, Magnetic pseudodifferential operators. Publ.
RIMS. 43 (2007), 585–623.

[24] M.V. Karasev and T.A. Osborn, Symplectic areas, quantization and dynamics in elec-
tromagnetic fields. J. Math. Phys. 43 (2002), 756–788.
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[26] M. Măntoiu and R. Purice, The modulation mapping for magnetic symbols and operators,
Proc. Aner. Math. DOI: 10.1090/S0002-9939-10-10345-1, 2010.
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