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The motion of incompressible fractional Oldroyd-B fluids between two parallel
walls perpendicular to a plate that applies time-dependent shear stresses to the
fluid is studied by means of integral transforms. In the special cases of New-
tonian and second grade fluids, these shear stresses reduces to fH(t)sin(ωt) or
fH(t)cos(ωt). General solutions for velocity are presented as a sum of Newto-
nian solutions and the corresponding non-Newtonian contributions. They reduce
to the similar solutions corresponding to the motion over an infinite plate if the
distance between walls tend to infinity and can be easy particularized to give
the similar solutions for ordinary and fractional Maxwell or second grade fluids
performing the same motions. As a check of general results some known solu-
tions from the literature are recovered as limiting cases. Finally, the influence
of fractional parameters on the fluid motion and the distance between walls for
which the measured value of the velocity in the middle of the channel is unaf-
fected by their presence (more exactly, it is equal to the velocity corresponding
to the motion over an infinite plate) are graphically determined.
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1. INTRODUCTION

Historically, the Oldroyd-B model is regarded as an extension of the up-
per convected Maxwell model [17] that has gained a special status amongst the
rate type fluids. It represents one of the simplest constitutive models, capable
of describing the visco-elastic behavior of dilute polymeric solutions under gen-
eral flow conditions. Oldroyd-B fluids store energy like the linearized elastic
solids, their dissipation being due to two dissipative mechanisms that implies
that they arise from a mixture of two viscous fluids. Although the constitutive
relations of Oldroyd-B fluids are relatively simple, the dynamics of several flow
models is complicated enough to offer challenging numerical simulations to the
mathematicians and numerical analysts. To illustrate the complexity involved
in using such a model, we recommend the work of Rajagopal [20, Sec. 4]. Some
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existence results regarding flows of Oldroyd-B fluids have been established by
Guillope and Sout [11]. The motion of Oldroyd-B fluids over an infinite plate
as well as that between two parallel walls perpendicular to the plate was ex-
tensively studied in the literature (see for instance [1, 2, 4–6, 12, 16, 24, 29]
and therein references). Such a motion can be induced by the plate that is
moving in its plane or applies a shear stress to the fluid and some exact solu-
tions have been also extended to Oldroyd-B fluids with fractional derivatives
[3, 7, 30] and [31]. However, all these solutions correspond to motions due to
the plate that is moving in its plane and its velocity is given on the bound-
ary. In some problems, what is specified is the force applied on the boundary
[23, 28 and 33]. Consequently, contrary to what is usually assumed, the force
with which the plate is moved can be prescribed. To reiterate, in Newtonian
mechanics force is the cause and kinematic is the effect (see Rajagopal [21]
for a detailed discussion of the same). Furthermore the “no slip” boundary
condition may not be necessarily applicable to flows of polymeric fluids that
can slide on the boundary. On the other hand, the fractional calculus is an
efficient tool and suitable frame-work within which useful generalizations of
various classical physical concepts are already obtained. It was successfully
used in describing the visco-elasicity [9] and the area of its applications is wide
enough. Germant [10] seems to be the first who proposed the use of fractional
derivatives in visco-elasticity and the interest for visco-elastic fluids with frac-
tional derivatives came from practical problems. The first objective law which
characterizes a fluid with fractional derivatives is that of Palade et al. [18,
Eq. (16)]. Their constitutive relation under linearization is equivalent to the
one-dimentional equality τ(1 + λDα) = µDβγ proposed by Makris et al. [15]
for the fractional Maxwell model. It is worth pointing out that mechanical
properties predicted by means of this equation, where τ and γ are the shear
stress and strain and Dα is a fractional derivative operator with respect to
time, were in excellent agreements with experimental results. Based on the
above remarks, our interest here is to extend some known results [22] to fluids
with fractional derivatives. Consequently, we study the motion of an incom-
pressible fractional Oldroyd-B fluid between two parallel walls perpendicular
to a plate. The motion of the fluid is due to the plate that after time t = 0+

applies a time-dependent shear stress to the fluid. In the special cases of second
grade and Newtonian fluids, this shear stress reduces to an oscillating one and
known results from the literature are recovered as limiting cases. Furthermore,
the similar solutions corresponding to the motion over an infinite plate are also
attained as special cases of general solution. They satisfy all imposed initial
and boundary conditions and can easy be reduced to the similar solutions for
fractional or ordinary Maxwell, second grade and Newtonian fluids. Finally,
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the influence of fractional parameters on the fluid motion as well as the dis-
tance between walls for which their presence can be neglected is graphically
determined.

2. GOVERNING EQUATIONS

In the following, we propose to study the unidirectional motion of frac-
tional Oldroyd-B fluids whose velocity field v is of the form

v = v(y, z, t) = u(y, z, t)i,(1)

where i is the unit vector along the x -direction of a fixed Cartesian coordinate
system Oxyz. For such a motion the constraint of incompressibility is auto-
matically satisfied. We also assume that the extra-stress tensor S, as well as
the velocity v, depends of y, z and t only. By substituting Eq. (1) into the
constitutive equations of an Oldroyd-B fluid and assuming that the fluid is at
rest up to the moment t = 0, we obtain the relevant equations [5](

1 + λ
∂

∂t

)
τ1(y, z, t) = µ

(
1 + λr

∂

∂t

)
∂u(y, z, t)

∂y
,(2) (

1 + λ
∂

∂t

)
τ2(y, z, t) = µ

(
1 + λr

∂

∂t

)
∂u(y, z, t)

∂z
,

Here τ1(y, z, t) = Sxy(y, z, t) and τ2(y, z, t) = Sxz(y, z, t) are the non-trivial
shear stresses, µ is the dynamic viscocity of the fluid while λ and λr are relax-
ation, respectively retardation times.

By neglecting the body forces and in the absence of a pressure gradient
in the flow direction, the balance of linear momentum leads to the significant
equation

∂τ1(y, z, t)

∂y
+
∂τ2(y, z, t)

∂z
= ρ

∂u(y, z, t)

∂t
(3)

where ρ is the constant density of the fluid. Eliminating τ1(y, z, t) and τ2(y, z, t)
between Eqs. (2) and (3), the governing equation

λ
∂2u(y, z, t)

∂t2
+
∂u(y, z, t)

∂t
= ν

(
1 + λr

∂

∂t

)(
∂2

∂y2
+

∂2

∂z2

)
u(y, z, t),(4)

for velocity is obtained. Here ν = µ
ρ is the kinematic viscosity of the fluid.

In order to determine the velocity field corresponding to a motion problem
with velocity on the boundary, the partial differential equation (4) is sufficient.
However, for a shear stress boundary value problem both equations (2) and
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(4) are necessary. In the case of Oldroyd-B fluid with fractional derivatives, as
before, the governing equation for velocity

(1 + λαDα
t )
∂u(y, z, t)

∂t
= ν(1 + λβrD

β
t )(

∂2

∂y2
+

∂2

∂z2
)u(y, z, t),(5)

is obtained eliminating the shear stresses τ1 and τ2 between the motion equation
(3) and the corresponding constitutive equations

(1 + λαDα
t )τ1(y, z, t) = µ(1 + λβrD

β
t )
∂u(y, z, t)

∂y
,(6)

(1 + λαDα
t )τ2(y, z, t) = µ(1 + λβrD

β
t )
∂u(y, z, t)

∂z
,(7)

where [13, 19]

Dp
t f(t) =

1

Γ(1− p)

t∫
0

f ′(τ)

(t− τ)p
dτ, 0 ≤ p < 1, D1

t = f ′(t)(8)

is the Caputo derivative operator. Into above relations α ≥ β [27] and Γ(.) is
the Gamma function. For α = β = 1 the fractional Oldroyd-B model reduces
to the usual Oldroyd-B model and for β = 1 and λr = 0 the fractional Maxwell
model is obtained.

3. WORDING AND SOLUTION OF THE PROBLEM

Consider an incompressible fractional Oldroyd-B fluid between two par-
allel walls (in the planes z = 0 and z = d) perpendicular to a plate situated
at the plane y = 0. After time t = 0, the plate is set in motion due to a time
dependent shear stress according to the governing equation (5). It is chosen so
that for second grade and Newtonian fluids to become [8, 32]

τ1(0, z, t) = fH(t)sin(ωt) and τ1(0, z, t) = fH(t)cos(ωt),(9)

where f is a constant, ω is the frequency of the oscillations and H(.) is the
Heaviside unit step function. Due to the shear the fluid is gradually moved
and its velocity is of the form (1). The governing equation for velocity is given
by the equality (7) and the appropriate initial and boundary conditions are

u(y, z, 0) = 0,
∂u(y, z, t)

∂t
|t=0= 0; y > 0(10)

(1 + λαDα
t )τ1(y, z, t) |y=0 = µ(1 + λαrD

β
t )
∂u(y, z, t)

∂y
|y=0; z ∈ (0, d)
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= fH(t)sin(ωt) or fH(t)cos(ωt)(11)

u(y, 0, t) = u(y, d, t) = 0, y > 0, t ≥ 0,(12)

u(y, z, t),
∂u(y, z, t)

∂y
→ 0 as y →∞, z ∈ [0, d], t ≥ 0.(13)

Of course, bearing in mind that the fluid has been at rest upto the moment
t = 0 and applying the Laplace transform to the first parts of Eqs. (11), we
can prove that

τ1(0, z, t) =
f

λα
H(t)

t∫
0

sin(ω(t− s))Gα,0,1(− 1

λα
, s)ds,(14)

or

τ1(0, z, t) =
f

λα
H(t)

t∫
0

cos(ω(t− s))Gα,0,1(− 1

λα
, s)ds,(15)

where the generalized functionGa,b,c(d, t) =
∞∑
j=0

djΓ(j+c)ta(j+c)−b−1

Γ(j+1)Γ(c)Γ(a(j+c)−b) [14, pp. 14–

15] is the inverse Laplace transform of qb

(qa−d)c if Re(ac− b) > 0,Re(q) > 0 and

| dqa | < 1. For α = β = 1, corresponding to ordinary Oldroyd-B fluids, Eqs. (14)
and (15) take the simple forms [22, Eqs. (6) and (7)]

τ1(0, z, t) = fH(t)
λω

1 + λ2ω2

(
1

λω
sin(ωt)− cos(ωt) + e−

t
λ

)
,(16)

or

τ1(0, z, t) = fH(t)
λω

1 + λ2ω2

(
sin(ωt) +

1

λω
cos(ωt)− 1

λω
e−

t
λ

)
.(17)

For λ→ 0, Eqs. (16) and (17) tend to the equations (9) corresponding to sine
and cosine shear stresses on the boundary. In the following the linear partial
differential equation (7), together with the initial and boundary conditions
(10)–(13), will be solved using Fourier and Laplace transforms. For simplicity,
the obtained solutions will be referred as to sine and cosine solutions. In order to
solve both problems in the same time, let us denote by uc(y, z, t) and us(y, z, t)
the solutions corresponding to the cosine and sine oscillations and by

v(y, z, t) = uc(y, z, t) + ius(y, z, t),(18)

the complex velocity where i is the imaginary unit. With a view to the previous
relations, we attain to the next initial and boundary-value problem

(1 + λαDα
t )
∂v(y, z, t)

∂t
= ν(1 + λβrD

β
t )(

∂2

∂y2
+

∂2

∂z2
)v(y, z, t); y, t > 0(19)



90 Azhar Ali Zafar, Constantin Fetecau and Itrat Abbas Mirza 6

v(y, z, 0) = 0,
∂v(y, z, t)

∂t
|t=0= 0; y > 0, z ∈ [0, d],(20)

µ(1 + λβrD
β
t )
∂v(y, z, t)

∂y
|y=0= fH(t)eiωt; z ∈ (0, d),(21)

v(y, 0, t) = v(y, d, t) = 0, y > 0, t ≥ 0,(22)

v(y, z, t),
∂v(y, z, t)

∂y
→ 0 as y →∞, z ∈ [0, d], t ≥ 0.(23)

By multiplying Eq. (19) with
√

2
π cos(yξ) sin(αkz) where αk = kπ

d , integrating

the result with respect to y and z from 0 to ∞ and 0 to d and using the
boundary conditions (21)–(23), we find that

(1 + λαDα
t )
∂vk(ξ, t)

∂t
+ ν(ξ2 + α2

k)(1 + λβrD
β
t )vk(ξ, t)

=
f

ρ

√
2

π

(
(−1)k − 1

αk

)
eiωt; t > 0.(24)

Of course in view of the initial conditions (20), the double Fourier cosine and
sine transforms

vk(ξ, t) =

√
2

π

∞∫
0

d∫
0

v(y, z, t) cos(yξ) sin(αkz)dzdy, k = 1, 2, 3, ..

of v(y, z, t) have to satisfy the initial conditions

vk(ξ, 0) =
∂vk(ξ, t)

∂t
|t=0= 0 for ξ > 0 and k = 1, 2, 3, ...(25)

Applying the Laplace transform to Eq. (24) and bearing in mind the initial
conditions (25), we can obtain the image function v̄k(ξ, q) of vk(ξ, t) in the
form

v̄k(ξ, q) =
f

ρ

√
2

π

(
(−1)k − 1

αk

)
×

× 1

(q − iω)(λαqα+1 + q + ν(ξ2 + α2
k)(1 + λβr qβ))

,(26)

where q is the Laplace transform parameter. In order to provide a suitable
form of the velocity field, we rewrite Eq. (26) in the equivalent form

v̄k(ξ, q) =
f

ρ

√
2

π

(
(−1)k − 1

αk

)
(F1k(ξ, q)− F2k(ξ, q)F3k(ξ, q)),(27)
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where F1k(ξ, q) = 1
(q−iω)(q+ν(ξ2+α2

k))
, F2k(ξ, q) = qβF1k(ξ, q) and

F3k(ξ, q) =
qα−β + ν(ξ2 + α2

k)aq
−1

(qα + λ−α) + λ−αq−1ν(ξ2 + α2
k)aq

β−1
, with a =

λβr
λα
.(28)

Finally applying the inverse Laplace transform to Eq. (27), inverting the re-
sult by means of inverse Fourier sine and cosine formulae [26] and using the
convolution theorem, we attain for the complex velocity v(y, z, t) the simple
form

v(y, z, t) =− 8f

ρπd

∞∑
k=1

sin(αmz)

αm

∞∫
0

f1m(ξ, t) cos(yξ)dξ+

+
8f

ρπd

∞∑
k=1

sin(αmz)

αm

∞∫
0

t∫
0

f2m(ξ, t− τ)f3m(ξ, τ) cos(yξ)dτdξ,(29)

where m = 2k− 1 and f1m(ξ, t), f2m(ξ, t) and f3m(ξ, t) are the inverse Laplace
transforms of the functionsF1m(ξ, q), F2m(ξ, q) and F3m(ξ, q) respectively. By
setting d = 2h and changing the origin of the coordinate system at the middle
of the channel (taking z = z′ + h and dropping out the prime notation), the
complex velocity can be written in the equivalent form

v(y, z, t) =
4f

ρπh

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

f1m(ξ, t) cos(yξ)dξ+

+
4f

ρπh

∞∑
k=1

(−1)k+1 cos(γmz)

γm

∞∫
0

t∫
0

f2m(ξ, t− τ) cos(yξ)dτdξ,(30)

where γm = (2k−1)π
2h . It is worth pointing out that the first term of Eq. (30),

namely

vN (y, z, t) =
4f

ρπh

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

f1m(ξ, t) cos(yξ)dξ,(31)

represents the complex velocity corresponding to a Newtonian fluid performing
the same motion. Indeed, this term does not contain λ, λr, α and β into its
expression and the limit of f3m(ξ, t) from the second term of Eq. (30), is zero
for λ and λr → 0. Consequently, the general solution v(y,z,t), as it results
from Eq. (30), is the sum between the Newtonian solution vN (y, z, t) and
the non-Newtonian contribution vnN (y, z, t). The inverse Laplace transform of
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F1m(ξ, q), namely

f1m(ξ, t) =
ν(ξ2 + γ2

m)− iω
ν2(ξ2 + γ2

m)2 + ω2

(
cos(ωt) + i sin(ωt)− e−ν(ξ2+γ2m)t

)
,(32)

can be immediately attained. Introducing Eq. (32) into (31) and using Eqs.
(A2)–(A5) from Appendix, it results that

vN (y, z, t) =
2f

µh

∞∑
k=1

(−1)k cos(γmz)

γm

e−yBm√
A2
m +B2

m

ei(ωt−yAm−φm) −

− 4f

µh

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

(ξ2 + γ2
m)− iων

(ξ2 + γ2
m)2 + ω2

ν2

e−ν(ξ2+γ2m)t cos(yξ)dξ(33)

where 2A2
m =

√
γ4
m + ω2

ν2
− γ2

m, 2B2
m =

√
γ4
m + ω2

ν2
+ γ2

m and tanφm = Am
Bm

.

As expected, the starting solution (33) is a sum between the permanent and
transient solutions. In order to determine the non-Newtonian contribution
vnN (y, z, t) of the complex velocity v(y, z, t), we need the inverse Laplace trans-
forms of the functions F2m(ξ, q) and F3m(ξ, q). For this, we firstly write them
in the equivalent forms

F2m(ξ, q) = qβ−2

(
1− ν(ξ2 + γ2

m)(ν(ξ2 + γ2
m)− iω)

ν2(ξ2 + γ2
m)2 + ω2

· 1

q + ν(ξ2 + γ2
m)
−

− ω2(ν(ξ2+γ2
m))−iω

ν2(ξ2 + γ2
m)2+ω2

· q

q2 + ω2
− ω2(ω + iν(ξ2 + γ2

m))

ν2(ξ2 + γ2
m)2 + ω2

· ω

ω2+q2

)
,(34)

respectively (see also Eq. (A1) from Appendix)

F3m(ξ, q) =

∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(
ν(ξ2 + γ2

m)

λα
)pλβjr ×

×
(

qα−β+βj−p

(qα + λ−α)p+1
+ aν(ξ2 + γ2

m)
qβj−p−1

(qα + λ−α)p+1

)
.(35)

Applying the inverse Laplace transform to Eqs. (34) and (35), it results that

f2m(ξ, t) =
t1−β

Γ(2− β)
−
(
ν(ξ2 + γ2

m)(ν(ξ2 + γ2
m)− iω)

ν2(ξ2 + γ2
m)2 + ω2

)
1

Γ(2− β)
×

×
∫ t

0
s1−βe−ν(ξ2+γ2m)(t−s)ds−(36)

−
(
ω2(ν(ξ2 + γ2

m)− iω)

ν2(ξ2 + γ2
m)2 + ω2

)
1

Γ(2− β)

∫ t

0
s1−β cos(ω(t− s))ds−

−
(
ω2(ω + iν(ξ2 + γ2

m))

ν2(ξ2 + γ2
m)2 + ω2

)
1

Γ(2− β)

∫ t

0
s1−β sin(ω(t− s))ds
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and

f3m(ξ, t) =
∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(
ν(ξ2 + γ2

m)

λα
)pλβjr ×

×
(
Gα,α−β+jβ−p,p+1(− 1

λα
, t)+aν(ξ2 + γ2

m)Gα,jβ−p−1,p+1(− 1

λα
, t)

)
.(37)

Consequently, the non-Newtonian contribution to the general solution is

vnN (y, z, t) =
4f

ρπh

∞∑
k=1

(−1)k+1 cos(γmz)

γm
×

×
∞∫

0

t∫
0

f2m(ξ, t− s)f3m(ξ, s) cos(yξ)dsdξ,(38)

where f2m(ξ, t) and f3m(ξ, t) are defined in Eqs. (36) and (37).
Separating real and imaginary parts of Eq. (30) and bearing in mind

Eqs. (33) and (38), we find that

uc(y, z, t) = ucN (y, z, t) + ucnN (y, z, t),

us(y, z, t) = usN (y, z, t) + usnN (y, z, t),(39)

where

ucN (y, z, t) =
2f

µh

∞∑
k=1

(−1)k cos(γmz)

γm

e−yBm√
A2
m +B2

m

cos(ωt− yAm − φm)−

− 4f

πµh

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

(ξ2 + γ2
m)e−ν(ξ2+γ2m)t

(ξ2 + γ2
m)2 + ω2

ν2

cos yξdξ(40)

ucnN (y, z, t) =
4f

ρπh

∞∑
k=1

(−1)k+1 cos(γmz)

γm
×

×
∞∫

0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(
ν(ξ2 + γ2

m)

λα
)pλβjr ×

×
(
Gα,α−β+jβ−p,p+1(− 1

λα
, t− τ)+

+aν(ξ2 + γ2
m)Gα,jβ−p−1,p+1(− 1

λα
, t− τ)

)
×

×
(

τ1−β

Γ(2− β)
− 1

Γ(2− β)

τ∫
0

s1−βe−ν(ξ2+γ2m)(τ−s)ds+(41)
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+
ω2

ν2

1

(ξ2 + γ2
m)2 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−βe−ν(ξ2+γ2m)(τ−s)ds−

−ω
2

ν

(ξ2 + γ2
m)

(ξ2 + γ2
m)2 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−β cos(ω(τ − s))ds− r

−ω
2

ν2

ω

(ξ2 + γ2
m)2 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−β sin(ω(τ − s))ds
))

dτ cos(yξ)dξ

and

usN (y, z, t) =
2f

µh

∞∑
k=1

(−1)k cos(γmz)

γm

e−yBm√
A2
m +B2

m

sin(ωt− yAm − φm) +

+
4f

πµh

ω

ν

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

e−ν(ξ2+γ2m)t

(ξ2 + γ2
m)2 + ω2

ν2

cos (yξ)dξ(42)

usnN (y, z, t) =
4f

ρπh

∞∑
k=1

(−1)k+1 cos(γmz)

γm
×

×
∞∫

0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(
ν(ξ2 + γ2

m)

λα
)pλβjr ×(43)

×
(
Gα,α−β+jβ−p,p+1(− 1

λα
, t− τ) +

+aν(ξ2 + γ2
m)Gα,jβ−p−1,p+1(− 1

λα
, t− τ)

)
×

×
(
ω

ν

(ξ2 + γ2
m)

(ξ2 + γ2
m)2 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−βe−ν(ξ2+γ2m)(τ−s)ds+

+
ω2

ν2

ω

(ξ2 + γ2
m)2 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−β cos(ω(τ − s))ds−

−ω
2

ν

(ξ2 + γ2
m)

(ξ2 + γ2
m)2 + ω2

ν2

×
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× 1

Γ(2− β)

τ∫
0

s1−β sin(ω(τ − s))ds
))

dτ cos(yξ)dξ.

At once uc(y, z, t) and us(y, z, t) are determined, the corresponding shear
stresses τ1c(y, z, t), τ1s(y, z, t), τ2c(y, z, t) and τ2s(y, z, t) are obtained in the
same way from Eqs. (5) and (6) with the initial conditions τ1(y, z, 0) = 0,
τ2(y, z, 0) = 0 but their general expressions are not presented here.

4. SPECIAL CASES AND A CHECK OF RESULTS

The similar solutions for Maxwell and second grade fluids with fractional
derivatives as well as those for ordinary fluids performing the same motion are
immediately obtained from general solutions (30) or (39) for suitable values of
material and fractional parameters λ and λr, respectively α and β. For λr = 0
and β = 1, for instance, the solutions corresponding to fractional Maxwell
fluids are easily attained but their expressions are not given here. However, for
a check of general results, some special cases will be considered:

4.1. CASE α = β = 1 (ORDINARY OLDROYD-B FLUIDS)

By making α and β → 1 into Eqs. (39), the solutions

ucOB(y, z, t) =
2f

µh

∞∑
k=1

(−1)k cos(γmz)

γm

e−yBm√
A2
m +B2

m

cos(ωt− yAm − φm)−

− 4f

πµh

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

(ξ2 + γ2
m)e−ν(ξ2+γ2m)t

(ξ2 + γ2
m)2 + ω2

ν2

cos (yξ)dξ +

+
4f

ρπh

∞∑
k=1

(−1)k+1 cos(γmz)

γm
×(44)

×
∞∫

0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(
ν(ξ2 + γ2

m)

λ
)pλjr ×

×
(
G1,j−p,p+1(− 1

λ
, t− s) + aν(ξ2 + γ2

m)G1,j−p−1,p+1(− 1

λ
, t− s)

)
×

×
(

1− 1− e−ν(ξ2+γ2m)s

ν(ξ2 + γ2
m)

+

+
ω2

ν2

1

(ξ2 + γ2
m)2 + ω2

ν2

(
1− e−ν(ξ2+γ2m)s

ν(ξ2 + γ2
m)

)
−



96 Azhar Ali Zafar, Constantin Fetecau and Itrat Abbas Mirza 12

−ω
ν

(ξ2 + γ2
m)

(ξ2 + γ2
m)2 + ω2

ν2

sin(ωτ)−

−ω
2

ν2

1− cos(ωs)

(ξ2 + γ2
m)2 + ω2

ν2

))
ds cos(yξ)dξ

and

usOB(y, z, t) =
2f

µh

∞∑
k=1

(−1)k cos(γmz)

γm

e−yBm√
A2
m +B2

m

sin(ωt− yAm − φm) +

+
4f

πµh

ω

ν

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

e−ν(ξ2+γ2m)t

(ξ2 + γ2
m)2 + ω2

ν2

cos (yξ)dξ +

+
4f

ρπh

∞∑
k=1

(−1)k+1 cos(γmz)

γm
×(45)

×
∞∫

0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(
ν(ξ2 + γ2

m)

λ
)pλjr ×

×
(
G1,j−p,p+1(− 1

λ
, t− s)+

+aν(ξ2 + γ2
m)G1,j−p−1,p+1(− 1

λ
, t− s)

)
×

×
(
ω

ν

(ξ2 + γ2
m)

(ξ2 + γ2
m)2 + ω2

ν2

1− e−ν(ξ2+γ2m)s

ν(ξ2 + γ2
m)

+

+
ω2

ν2

sin(ωs)

(ξ2 + γ2
m)2 + ω2

ν2

−

−ω
2

ν

(ξ2 + γ2
m)(1− cos(ωs))

(ξ2 + γ2
m)2 + ω2

ν2

))
ds cos(yξ)dξ

corresponding to Oldroyd-B fluids are obtained. As a check of results that
have been obtained, Figs. 1 and 2 clearly show that the diagrams of velocities
ucOB(y, z, t) and usOB(y, z, t) at the middle of the channel are almost identical
to those obtained in [22, Eqs. (30a) and (30b)] by a different technique. How-
ever, unlike the results from [22], our solutions are presented as a sum between
the Newtonian solutions and the non-Newtonian contributions. For λr = 0
they reduce to the solutions corresponding to ordinary Maxwell fluids.
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4.2. CASE λ→ 0 (FRACTIONAL SECOND GRADE FLUIDS)

It is well known the fact that Oldroyd-B fluids do not contain second grade
fluids as a special case. However, in some motions like those that have been here
considered, the governing equations for Oldroyd-B fluids as well as those for
fractional Oldroyd-B fluids remember the governing equations corresponding
to second grade, respectively fractional second grade fluids. Consequently the
solutions for fractional second grade fluids performing the same motion can be
obtained as limiting cases of our solutions (39). Indeed, making the limit of
Eqs. (39) for λ→ 0 and having in mind the known result

lim
λ→0

1

λk
Ga,b,k(−

c

λ
, t) =

1

ck
t−b−1

Γ(−b)
; b < 0,(46)

we find the solutions for fractional second grade fluids, namely

ucFSG(y, z, t)=
2f

µh

∞∑
k=1

(−1)k cos(γmz)

γm

e−yBm√
A2
m +B2

m

cos(ωt− yAm − φm)−

− 4f

πµh

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

(ξ2 + γ2
m)e−ν(ξ2+γ2m)t

(ξ2 + γ2
m)2 + ω2

ν2

cos (yξ)dξ+(47)

+
4f

ρπh

∞∑
k=1

(−1)k+1 cos(γmz)

γm

∞∫
0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
×

×(ν(ξ2 + γ2
m))p+1λβ(j+1)

r

(t− τ)p−βj

Γ(p− jβ + 1)
×

×
(

τ1−β

Γ(2− β)
− 1

Γ(2− β)

∫ τ

0
s1−βe−v(ξ2+γ2m)(τ−s)ds+

+
ω2

ν2

1

(ξ2 + γ2
m)2 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−βe−ν(ξ2+γ2m)(τ−s)ds−

−ω
2

ν

(ξ2 + γ2
m)

(ξ2 + γ2
m)2 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−β cos(ω(τ − s))ds−

−ω
2

ν2

ω

(ξ2 + γ2
m)2 + ω2

ν2

1

Γ(2− β)
×

×
τ∫

0

s1−β sin(ω(τ − s))ds
))

dτ cos(yξ)dξ
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usFSG(y, z, t)=
2f

µh

∞∑
k=1

(−1)k cos(γmz)

γm

e−yBm√
A2
m +B2

m

sin(ωt− yAm − φm)+

+
4f

πµh

ω

ν

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

e−ν(ξ2+γ2m)t

(ξ2 + γ2
m)2 + ω2

ν2

cos (yξ)dξ+(48)

+
4f

ρπh

∞∑
k=1

(−1)k+1 cos(γmz)

γm
×

×
∞∫

0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(ν(ξ2 + γ2

m)p+1λβ(j+1)
r ×

× (t− τ)p−jβ

Γ(p− jβ + 1)

(
ω

ν

(ξ2 + γ2
m)

(ξ2 + γ2
m)2 + ω2

ν2

1

Γ(2− β)
×

×
τ∫

0

s1−βe−ν(ξ2+γ2m)(τ−s)ds+

+
ω2

ν2

ω

(ξ2 + γ2
m)2 + γ2

ν2

1

Γ(2− β)

τ∫
0

s1−β cos(ω(τ − s))ds−

−ω
2

ν

(ξ2 + γ2
m)

(ξ2 + γ2
m)2 + ω2

ν2

1

Γ(2− β)
×

×
τ∫

0

s1−β sin(ω(τ − s))ds
))

dτ cos(yξ)dξ

Now, by making β = 1 into Eqs. (47) and (48), the solutions corresponding to
second grade fluids, namely

ucSG(y, z, t) =
2f

µh

∞∑
k=1

(−1)k cos(γmz)

γm

e−yBm√
A2
m +B2

m

cos(ωt− yAm − φm)−

− 4f

πµh

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

(ξ2 + γ2
m)e−ν(ξ2+γ2m)t

(ξ2 + γ2
m)2 + ω2

ν2

cos yξdξ+

+
4f

ρπh

∞∑
k=1

(−1)k+1 cos(γmz)

γm

∞∫
0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(ν(ξ2 + γ2

m))p+1λj+1
r ×

× (t− τ)p−j

Γ(p− j + 1)

(
1 +

1

ν

e−v(ξ2+γ2m)(τ−s) − 1

(ξ2 + γ2
m)2 + ω2

ν2

−(49)
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−ω
ν

(ξ2 + γ2
m) sin(ωτ)

(ξ2 + γ2
m)2 + ω2

ν2

− ω2

ν2

(1− cos(ωτ))

(ξ2 + γ2
m)2 + ω2

ν2

))
dτ cos(yξ)dξ,

usSG(y, z, t) =
2f

µh

∞∑
k=1

(−1)k cos(γmz)

γm

e−yBm√
A2
m +B2

m

sin(ωt− yAm − φm) +

+
4f

πµh

ω

ν

∞∑
k=1

(−1)k cos(γmz)

γm

∞∫
0

e−ν(ξ2+γ2m)t

(ξ2 + γ2
m)2 + ω2

ν2

cos (yξ)dξ+(50)

+
4f

ρπh

∞∑
k=1

(−1)k+1 cos(γmz)

γm
×

×
∞∫

0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(ν(ξ2 + γ2

m))p+1λj+1
r ×

(t− τ)p−j

Γ(p− j + 1)

(
ω

ν2

1− e−ν(ξ2+γ2m)τ

(ξ2 + γ2
m)2 + ω2

ν2

+

+
ω2

ν2

sin(ωτ)

(ξ2 + γ2
m)2 + ω2

ν2

−

−ω
ν

(ξ2 + γ2
m)(1− cos(ωτ))

(ξ2 + γ2
m)2 + ω2

ν2

))
dτ cos(yξ)dξ.

are recovered. Indeed, Figs. 3 and 4 clearly show that the diagrams of velocities
ucSG(y, z, t) and usSG(y, z, t) at the middle of the channel are almost identical
to those obtained in [32, Eqs. (22) and (23)] by a different technique. For
λr = 0, as expected, Eqs. (49) and (50) reduce to the Newtonian solutions
that are identical to those obtained in [8, Eqs. (14) and (18)].

5. FLOW OVER AN INFINITE PLATE

In the absence of side walls, namely when h → ∞, Eqs. (39) take the
simpler forms (see also Eq. (A6) from Appendix)

vc(y, t) = −f
µ

√
ν

ω
e−y
√

ω
2ν cos(ωt− y

√
ω

2ν
− π

4
) +

2f

πµ

∞∫
0

ξ2e−νξ
2t

ξ4 + ω2

ν2

cos(yξ)dξ +

+
2f

ρπ

∞∫
0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(
ν(ξ2

λα
)pλβjr ×
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×
(
Gα,α−β+jβ−p,p+1(− 1

λα
, t− τ) + aνξ2Gα,jβ−p−1,p+1(− 1

λα
, t− τ)

)
×

×
(

τ1−β

Γ(2− β)
− 1

Γ(2− β)

τ∫
0

s1−βe−νξ
2(τ−s)ds+(51)

+
ω2

ν2

1

ξ4 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−βe−νξ
2(τ−s)ds−

−ω
2

ν

ξ2

ξ4 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−β cos(ω(τ − s))ds−

−ω
2

ν2

ω

ξ4 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−β sin(ω(τ − s))ds
))

dτ cos(yξ)dξ

and

vs(y, t) = −f
µ

√
ν

ω
e−y
√

ω
2ν sin(ωt− y

√
ω

2ν
− π

4
)− 2f

πµ

ω

ν

∞∫
0

e−νξ
2t

ξ4 + ω2

ν2

dξ +

+
2f

ρπ

∞∫
0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(
νξ2

λα
)pλβjr ×(52)

×
(
Gα,α−β+jβ−p,p+1(− 1

λα
, t− τ) + aνξ2Gα,jβ−p−1,p+1(− 1

λα
, t− τ)

)
×

×
(
ω

ν

ξ2

ξ4 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−βe−νξ
2(τ−s)ds+

+
ω2

ν2

ω

ξ4 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−β cos(ω(τ − s))ds−

−ω
2

ν

ξ2

(ξ4 + ω2

ν2

1

Γ(2− β)

τ∫
0

s1−β sin(ω(τ − s))ds
))

dτ cos(yξ)dξ

corresponding to the motion of an incompressible fractional Oldroyd-B fluid
over an infinite plate. By making α, β → 1 into Eqs. (51) and (52), the
solutions

vc(y, t)=−f
µ

√
ν

ω
e−y
√

ω
2ν cos(ωt−y

√
ω

2ν
−π

4
)+

2f

πµ

∞∫
0

ξ2e−νξ
2t

ξ4 + ω2

ν2

cos(yξ)dξ+
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+
2f

ρπ

∞∫
0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(
νξ2

λ
)pλjr×(53)

×
(
G1,j−p,p+1(− 1

λ
, t− τ) + aνξ2G1,j−p−1,p+1(− 1

λ
, t− τ)

)
×

×
(

1 +
1

ν

ξ2(1− e−νξ2τ )

ξ4 + ω2

ν2

− ω

ν

ξ2 sin(ωτ)

ξ4 + ω2

ν2

− ω2

ν2

1− cos(ωτ)

ξ4 + ω2

ν2

))
dτ cos(yξ)dξ,

and

vs(y, t)=−f
µ

√
ν

ω
e−y
√

ω
2ν sin(ωt−y

√
ω

2ν
−π

4
)− 2f

πµ

ω

ν

∞∫
0

e−νξ
2t

ξ4 + ω2

ν2

cos(yξ)dξ +

+
2f

ρπ

∞∫
0

t∫
0

( ∞∑
p=0

p∑
j=0

(−1)pp!

(p− j)!j!
(
νξ2

λ
)pλjr×(54)

×
(
G1,j−p,p+1(− 1

λ
, t− τ) + aνξ2G1,j−p−1,p+1(− 1

λ
, t− τ)

)
×

×
(
ω

ν2

1− e−νξ2τ

ξ4 + ω2

ν2

+
ω2

ν2

sin(ωτ)

ξ4 + ω2

ν2

− ω

ν

ξ2(1− cos(ωτ))

ξ4 + ω2

ν2

))
dτ cos(yξ)dξ,

corresponding to an Oldroyd-B fluid performing the same motion are recovered.
Indeed, Fig. 5 clearly show that profiles of the velocities vc(y, t) and vs(y, t)
given by Eqs. (53) and (54) are almost identical to those obtained in [25,
Eqs. (27) and (28)].

6. NUMERICAL RESULTS AND DISCUSSIONS

In this note, two types of unsteady motions of fractional Oldroyd-B flu-
ids between two parallel walls perpendicular to a plate are studied by means
of integral transforms. Exact solutions are developed for velocity in terms of
the generalized Ga,b,c(d, .) functions and they are presented as a sum between
Newtonian solutions and the non-Newtonian contributions. This is important
because the non-Newtonian behavior of the fluid motion is brought to light.
Furthermore, the solutions corresponding to second grade and Maxwell fluids
with fractional derivatives as well as those for ordinary fluids performing the
same motion are obtained as limiting cases of general solutions. As a check of
their validity, the profiles of velocity field given by Eqs. (44), (45), (49) and
(50) as well as those of the similar solutions from the existing literature have
been presented in Figs. 1–4 for y = 0 and three different values of the distance
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h between walls. They clearly show that our limiting solutions for Oldroyd-B
and second grade fluids are equivalent to the known solutions from the litera-
ture. In the absence of the side walls, namely when the distance between walls
tends to infinity, all solutions are going to the similar solutions corresponding
to the motion over an infinite plate. These solutions can be also particular-
ized to give the similar solutions for ordinary or fractional Maxwell and second
grade fluids. The solutions corresponding to ordinary Oldroyd- B fluids, for
instance, are given by Eqs. (53) and (54). Their diagrams, as it results from
Fig. 5, are almost identical to those corresponding to the solutions (27) and
(28) that have been obtained by Shahid et al. [25] by a different technique. In
order to determine the distance between walls for which the measured value of
velocity in the middle of the channel is unaffected by the presence of the side
walls (namely, this value it is approximately equal to the velocity correspond-
ing to the motion over an infinite plate), Figs. 6 and 7 have been sketched for
three distinct values of the time t. It is observed that this distance for cosine
oscillations of the shear (hc = 0.5) is smaller than that for the sine oscillations
(hs = 0.76). This is obvious, because, at time t = 0+ the shear stress on
the boundary is zero in the second case. In order to avoid repetition only the
influence of fractional parameters α and β on the fluid motion (effects of the
material parameters have been shown in [22]) is underlined by Figs. 8 and 9.
As expected, they have opposite effects on the fluid motion in both cases. For a
fixed value of β an increase of the parameter α implies a faster flow of the fluid
in the case of cosine oscillations and a slowness of the flow in the second case.
Opposite effects appear when the parameter α is unchanging and β increases.
In all cases the fluid velocity decreases from a maximum value near the bottom
plate and continuously decreases for large values of y.

Fig. 1 – Profile of velocities ucOB(y, 0, t) given by Eq. (44)

and [22, Eq. (30a)] with f = −50, ν = 0.001457, ρ = 1020,

λ = 0.8, λr = 0.5, ω = 0.5, y = 0.2 and h = 0.05, 0.15, 0.4.
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Fig. 2 – Profile of velocities usOB(y, 0, t) given by Eq. (45)

and [22, Eq.(30b)] with f = −50, ν = 0.001457, ρ = 1020,

λ = 0.8, λr = 0.5, ω = 0.5, y = 0.2 and h = 0.05, 0.15, 0.4.

Fig. 3 – Profile of velocities ucSG(y, 0, t) given by Eq. (49)

and [32, Eq. (22)] with f = −50, ν = 0.001457, ρ = 1020,

λ = 0.8, λr = 0.5, ω = 0.5, y = 0.2 and h = 0.05, 0.1, 0.3.

Fig. 4 – Profile of velocities usSG(y, 0, t) given by Eq. (50)

and [32, Eq. (23)] with f = −50, ν = 0.001457, ρ = 1020,

λ = 0.8, λr = 0.5, ω = 0.5, y = 0.2 and h = 0.05, 0.1, 0.3.
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Fig. 5 – Profile of velocities vc(y.t) given by Eq. (53)

and [25, Eq. (27)], vs(y.t) given by Eq. (54) and [25,

Eq. (28)] versus t with f = −50, ν = 0.001457,

ρ = 1020, λ = 0.8, λr = 0.5, ω = 0.5 and y = 0.2.

Fig. 6 – Profile of velocities uc(y, 0, t) given

by Eq. (39)1 and vc(y, t) given by Eq. (51) for

f = −50, ν = 0.001457, λ = 2, λr = 1.5, α =

0.8, β = 0.4, ω = 0.5 and different values of t.

Fig. 7 – Profile of velocities us(y, 0, t) given by

Eq. (39)2 and vs(y, t) given by Eq. (52) for

f = −50, ν = 0.001457, λ = 2, λr = 1.5, α =

0.8, β = 0.4, ω = 0.5 and different values of t.
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Fig. 8 – Profile of velocities uc(y, 0, t) given by Eq. (39)1 and

us(y, 0, t) given by Eq. (39)2 for f = −50, ν = 0.001457, λ = 0.8,

λr = 0.5, β = 0.4, ω = 1.5 at t = 18 and different values of α.

Fig. 9 – Profile of velocities uc(y, 0, t) given by Eq. (39)1 and

us(y, 0, t) given by Eq. (39)2 for f = −50, ν = 0.001457, λ = 0.8,

λr = 0.5, α = 0.85, ω = 1.5 at t = 18 and different values of β.

7. APPENDIX

(A1) 1
x+a =

∞∑
k=0

(−1)kxk

ak+1 , (a+ b)k =
k∑

m=0

k!
(k−m)!m!a

mbk−m

(A2)
∞∫
0

(ξ2+d2) cos(yξ)
(ξ2+d2)2+c2

dξ = πe−yB

2(A2+B2)
(B cos(yA)−A sin(yA))

(A3)
∞∫
0

cos(yξ)
(ξ2+d2)2+c2

dξ = πe−yB

2c(A2+B2)
(A cos(yA) +B sin(yA))
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(A4)
∞∫
0

(ξ2+d2)ξ sin(yξ)
(ξ2+d2)2+c2

dξ = π
2 e
−yB cos(yA)

(A5)
∞∫
0

ξ sin(yξ)
(ξ2+d2)2+c2

dξ = π
2ce
−yB sin(yA),

where 2A2 =
√
d4 + c2 − d2, 2B2 =

√
d4 + c2 + d2

(A6) lim
h→∞

2
h

∞∑
n=1

(−1)n+1 cos(γmz)
γm

= 1
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