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The Modified Local Crank-Nicolson method is applied to solve generalized Bur-
gers-Huxley equation. New difference scheme that is explicit, conditionally sta-
ble, and easy to compute is obtained for the considered equation. Numerical
experiment is carried out in support of the given method.
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1. INTRODUCTION

Nonlinear partial differential equations arising from many scientific phe-
nomena play a major role in science and engineering. One of the most well-
known nonlinear partial differential equation is the Burgers-Huxley equation.
This equation is of high importance for describing the interaction between
reaction mechanisms, convection effects, and diffusion transports.

The generalized Burgers-Huxley equation is of the form

(1) ut + αuδux − λuxx = βu(1− uδ)(ηuδ − γ), a ≤ x ≤ b, t ≥ 0,

where α, β, γ, η, λ and δ are parameters such that α, β, λ ≥ 0 and δ > 0.
This equation also includes several known evolution equations depending

on the given parameters. The case δ = 1 contains several known evolution
equations:

(1) if α = 0, then (1) becomes the Huxley equation, sometimes known as
the Fitzhugh-Nagumo equation;

(2) by setting α = 0, η = 0 and γ = −1 in (1), this equation changes to
the Fisher equation;

(3) if β = 0, then (1) becomes the Burgers equation;
(4) the values η = 0 and γ = −1 reduce (1) to the Burgers-Fisher equa-

tion;
(5) if we set α = 0 and γ = −1 in (1), then (1) becomes the Newell-

Whitehead equation.
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Approximate solutions of nonlinear differential equations are of impor-
tance in physical problems. Thus, the approximate method is of great practical
significance, and has drawn close attention of by many people. Various methods
have been used to solve this equation, among them are adomian decomposition
method (ADM) [6, 7, 10], variational iteration method (VIM) [3], exp-function
method [4], spectral collocation method [9], homotopy perturbation method
(HPM) [5] and homotopy analysis method (HAM) [15]. In addition, a numeri-
cal solution of the generalized Burger’s-Huxley equation, based on collocation
method using Radial basis functions (RBFs), called Kansa’s approach was pre-
sented by Khattak [14]. Tomasiello [16] introduced a generalized version of the
Iterative Differential Quadrature (IDQ) method for solving this equation for
the first time.

Recently, Abduwali introduced the Local Crank-Nicolson method [1] and
the Modified Local Crank-Nicolson (MLCN) method [2] for the heat conduction
equation and Burgers’ equation [8]. The MLCN method transforms the partial
differential equation into ordinary differential equations, and uses the Trotter
Product formula of the exponential function to approximate the coefficient
matrix of these ordinary differential equations. The MLCN solver separates this
matrix into some simple matrices, and employs the Crank-Nicolson method to
obtain the time updated solution. The MLCN is a stable and explicit difference
scheme with simple computation.

In this paper, the MLCN is applied to solve the generalized Burgers-
Huxley equation. A new difference scheme for the considered equation is formed,
that produces a nonlinear system. This system is in turn solved using a lin-
earization approach; i.e., the system is linearized by allowing the nonlinearities
to lag one time step behind, and the resulting system of linear equations is
solved using an iterative algorithm. Our work in this paper, is not only suc-
cessfully used to solve the generalized Burgers-Huxley equation, but can also
be used to develop MLCN for solving nonlinear partial differential equations.
The rest of this paper is organized as follows. In section 2, the new scheme of
generalized Burgers-Huxley equation is constructed. Stability analysis is given
for the MLCN scheme of the considered equation. Section 3 is dedicated to
the numerical example. Follow by conclusion and references.

2. DESCRIPTION OF THE NEW SCHEME FOR GENERALIZED
BURGERS-HUXLEY EQUATION

Consider the generalized Burgers-Huxley equation (1) in D = {(x, t) ∈
Ω× (0, T ] = (0, 1)× (0, 1]} with the initial condition

(2) u(x, 0) = u0(x) , x ∈ Ω = (0, 1),
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and boundary conditions

(3) u(0, t) = u(1, t) = 0 , t ∈ (0, 1],

where u0 is a given function.

For (1), using central difference quotient instead of differential term of
space, we obtain the following semi-discrete equation:

(4)
dV (t)

dt
=

1

2h2
AV (t).

Let h = 1/M be the mesh width in space and set xi = ih for i = 1, 2, . . . ,M−1.
Moreover, V (t) in (4) is in the form V (t) = [v(x1, t), v(x2, t), . . . , v(xM−1 , t)]

T .
v(xi, t) is the approximate solution of u(xi, t), and vi := v(xi, t). Let ci =
2h2β(1− vδi )(ηvδi − γ). Then A, a (M − 1)× (M − 1) tri-diagonal matrix, can
be written

(5)

A =



c1 − 4λ 2λ− αhvδ1 0
2λ+ αhvδ2 c2 − 4λ 2λ− αhvδ2

. . .
. . .

. . .

2λ+ αhvδ
M−2

cM−2 − 4λ 2λ−αhvδ
M−2

0 2λ+ αhvδ
M−1

cM−1 − 4λ


.

The solution of (4) with initial vector V (0) = [v(x1, 0), v(x2, 0), . . . , v(xM−1 , 0)]T

can be expressed as

(6) V (t) = exp(
t

2h2
A)V (0).

Let τ = T/N be the mesh width in time and set tn = nτ for n =
1, 2, . . . , N . Moreover, V (tn) can be written in the form V (tn) = [v(x1, tn),
v(x2, tn), . . . , v(xM−1 , tn)]T and vni := v(xi, tn). The nonlinear system (6) can
be linearized by allowing the nonlinearities to lag one time step behind. Thus
we have

(7) V (tn+1) = exp(
τ

2h2
A)V (tn),
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where A =

(8)

cn1 − 4λ 2λ− αh(vn1 )δ 0
2λ+ αh(vn2 )δ cn2 − 4λ 2λ− αh(vn2 )δ

. . .
. . .

. . .

2λ+αh(vn
M−2

)δ cn
M−2
− 4λ 2λ−αh(vn

M−2
)δ

0 2λ+ αh(vn
M−1

)δ cn
M−1
− 4λ


,

and cni = 2h2β(1− (vni )δ)(η(vni )δ − γ).

Consider the Crank-Nicolson scheme for generalized Burgers-Huxley equa-
tion

vn+1
i − vni

τ
+ α(vni )δ

(
vn+1
i+1 − v

n+1
i−1

4h
+
vni+1 − vni−1

4h

)

=λ

(
vn+1
i+1 − 2vn+1

i + vn+1
i−1

2h2
+
vni+1 − 2vni + vni−1

2h2

)
+
cni (vn+1

i + vni )

4h2
.(9)

Note that (9) can be rewritten as

− µ(2λ− αh(vni )δ)vn+1
i+1 + (1 + 4µλ− µcni )vn+1

i − µ(2λ+ αh(vni )δ)vn+1
i−1

=µ(2λ− αh(vni )δ)vni+1 + (1− 4µλ+ µcni )vni + µ(2λ+ αh(vni )δ)vni−1,

where the mesh ratio µ = τ
4h2

. Its matrix form is

(10) V (tn+1) = ((I − µA)−1(I + µA))V (tn).

From (7) and (10), we obtain the approximation as follows:

(11) exp(
τ

2h2
A) ≈ (I − µA)−1(I + µA).

Remark 1. One can also get (11) directly by using (1, 1)-Padé approx-
imation of the matrix exponential function exp( τ

2h2
A). The (1, 1)-Padé ap-

proximation of exp(z) is
1+ 1

2
z

1− 1
2
z
. Taking z = τ

2h2
A, we obtain exp( τ

2h2
A) ≈

(1− τ
4h2

A)−1(1 + τ
4h2

A). Moreover, choosing µ = τ
4h2

, we arrive at (11).

From (11), we know that we should consider the approximation of
exp( τ

2h2
A) in order to obtain a new numerical method. Thus, we introduce

a lemma on Trotter’s product formula.
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Lemma 2.1. Let the matrix A can be denoted as A =
∑M−1

i=1 Ai. Then

(12) exp(
t

h2
A) = lim

σ→∞

(
M−1∏
i=1

exp(
tAi
σh2

)

)σ
, σ = 1, 2, . . .

for any h, t.

It follows from Lemma 2.1

(13) exp(
τ

2h2
A) ≈

M−1∏
i=1

exp(
τAi
2h2

),

so (13) is a new approximation. And in order to use this approximation, we
split matrix A in (7) as follows:

A1 =


cn1 − 4λ 2λ− αh(vn1 )δ 0 · · · 0

0 0 0 · · · 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 · · · 0

 ,

(14) Ai =



0 0
...

. . .

0 · · · 2λ+ αh(vni )δ cni − 4λ 2λ− αh(vni )δ · · · 0

. . .
...

0 0


,

where i = 2, 3, . . . ,M − 2,

AM−1 =


0 · · · 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 · · · 0 0 0
0 · · · 0 2λ+ αh(vn

M−1
)δ cn

M−1
− 4λ

 .

For any i, i = 1, 2, . . . ,M − 1, the following relation holds

(15) exp(
τ

2h2
Ai) ≈ (I − µAi)−1(I + µAi).

Then applying (13) and (15), we see that

(16) exp(
τ

2h2
A) ≈

M−1∏
i=1

(I − µAi)−1(I + µAi).
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Consequently, combination of (7) and (16) yields a new scheme, i.e.,

(17) V1(tn+1) =

M−1∏
i=1

((I − µAi)−1(I + µAi))V1(tn).

In order to improve the numerical accuracy of (17), we define Bi = AM−i.
By substituting Bi into (17), we deduce that

(18) V2(tn+1) =
M−1∏
i=1

((I − µBi)−1(I + µBi))V2(tn).

Next, take the arithmetic mean of (17) and (18), i.e., V (tn+1) = 1
2(V1(tn+1) +

V2(tn+1)). Denoting the coefficient matrix of V (tn) by C(µ), we have

(19) V (tn+1) = C(µ)V (tn),

where C(µ) = 1
2

(∏M−1
i=1 ((I−µAi)−1(I+µAi))+

∏M−1
i=1 ((I−µBi)−1(I+µBi))

)
.

So, (19) is the wanted new scheme. We refer to the above method as Modified
Local Crank-Nicolson (MLCN) method.

Remark 2. By the expansion formula, we have

exp
( τ

2h2
A
)

=
∞∑
i=0

1

i!

( τ

2h2
A
)i
.

The equation on the right hand side of (13) can be rewritten as

M−1∏
i=1

exp

(
τAi
2h2

)
= I +

τ

2h2
A+

( τ

2h2

)2 (
A1A2 +A1A3 + · · ·+A1AM−1

+ A2A3 +A2A4 + · · ·+A2AM−1 + · · ·+AM−2AM−1

+
1

2
(A2

1 +A2
2 + · · ·+A2

M−1)
)

+ · · · .

If we replace Ai by Bi = AM−i, then we obtain

M−1∏
i=1

exp

(
τBi
2h2

)
=I +

τ

2h2
A+

( τ

2h2

)2 (
AM−1AM−2 +AM−1AM−3 + · · ·+AM−1A1

+AM−2AM−3 +AM−2AM−4 + · · ·+AM−2A1 + · · ·+A2A1

+
1

2
(A2

M−1 +A2
M−2 + · · ·+A2

1)
)

+ · · · .
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By taking the arithmetic mean of above two equations, we have

1

2

(
M−1∏
i=1

exp

(
τAi
2h2

)
+
M−1∏
i=1

exp

(
τBi
2h2

))
= I +

τ

2h2
A+

1

2!

( τ

2h2
A
)2

+ · · · .

Note that

exp
( τ

2h2
A
)

= I +
τ

2h2
A+

1

2!

( τ

2h2
A
)2

+ · · · .

So, we could find that scheme (19) approximates the solution of (4) with the
improved accuracy. In fact, based on taking the arithmetic mean and utiliz-
ing the non-commutativity of the matrix multiplication, we can improve the
approximation accuracy for exp( τ

2h2
A).

The matrix (I + µAi) can be denoted by a simple form:

(20) (I + µAi) =

 Ii−2
Si

IM−i−2

 , i = 2, 3, . . . ,M − 2,

where Ii is an i× i identity matrix. Let ai = 2λ− αh(vni )δ, bi = 2λ+ αh(vni )δ.
Then

Si =

 1 0 0
µbi 1 + µcni − 4µλ µai
0 0 1

 .

Similar to (20), we have

(I − µAi)−1 =

 Ii−2
R−1i

IM−i−2

 , i = 2, 3, . . . ,M − 2,(21)

R−1i =

 1 0 0
µbi

1−µcni +4µλ
1

1−µcni +4µλ
µai

1−µcni +4µλ

0 0 1

 .

Thus, we obtain an explicit expression of V (tn+1). Clearly, (19) is an
explicit scheme. Because we split A into some simple matrices as (14), we
can obtain the inverse of these matrices exactly, although we have to find the
inverse of the matrix in (19). Hence, it avoids solving the linear equations with
large coefficient matrix, which is very important in numerical computation.

Theorem 2.1. Let matrix A be written as A =
∑M−1

i=1 Ai. Suppose cni ≤ 0
depending on β, η and γ. Then, for the split method expressed by (14), the
difference scheme (19) is stable.
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Proof. Let νi be any eigenvalue of matrix Ai, and ρi be any eigenvalue of
matrix (I − µAi)−1(I + µAi). Because of λ ≥ 0 and cni ≤ 0, clearly, we have
νi ≤ 0, and |ρi| = |(1 + µνi)/(1− µνi)| ≤ 1, so

∏M−1
i=1 |ρi| ≤ 1.

Therefore, the absolute value of any eigenvalue of the coefficient matrix
C(µ) of difference scheme (19) is not greater than 1. By the definition of
stability, the new difference scheme is stable. �

3. NUMERICAL EXAMPLE

In order to demonstrate the adaptability of the present method, we con-
sider a test example. The piecewise uniform mesh [11, 13] is used to tabulate
the maximum error. These are defined as

ENλ = max
0≤i,n≤M,N

|vM (xi, tn)− v2M (xi, tn)|, EM = max
λ

EMλ ,

where superscript indicates the number of mesh points used in the spatial
direction.

Example 1. Taking α = 1, β = 2
3 , η = 1, δ = 1 and γ = 1, we obtain a

Burgers-Huxley equation as follows
ut + uux − λuxx = 2

3(1− u)(u− 1)u , 0 < x < 1, 0 < t ≤ T,
u(x, 0) = sin(πx), 0 ≤ x ≤ 1,
u(0, t) = u(1, t) = 0, 0 < t ≤ T.

From the above given parameters, it is clear that cni = 4
3h

2(1−vni )(vni −1)
is not greater than 0. Hence, the difference scheme for this given equation is
stable by Theorem 2.1. The maximum absolute errors are given in Table 1 by
using the proposed method on a fitted piecewise uniform mesh, i.e. a Shishkin
mesh for different values of λ and M at T = 0.1 with τ = 0.001. In Table 2,
the maximum absolute errors for different values of λ and M at T = 0.1 with
τ = 0.004 are shown. We have seen from Tables 1 and 2 that the results of the
MLCN scheme (19) are good.

TABLE 1

The maximum absolute errors at T = 0.1 for τ = 0.001

M λ EM

2−2 2−4 2−10 2−20 2−30

8 0.27563 0.31077 0.37511 0.37853 0.37853 0.37853
16 0.05937 0.09198 0.10122 0.10019 0.10019 0.10122
32 0.01516 0.02225 0.02755 0.02746 0.02746 0.02755
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TABLE 2

The maximum absolute errors at T = 0.1 for τ = 0.004

M λ EM

2−2 2−4 2−10 2−20 2−30

8 0.08518 0.17972 0.31137 0.31587 0.31587 0.31587
16 0.01609 0.03033 0.01706 0.01709 0.01709 0.03033
32 0.01167 0.00606 0.00486 0.00736 0.00736 0.01167

The effect of λ can be seen from Fig. 1, and the profiles of the nu-
merical solutions for the fixed value of T and for different values of λ are
given. This figure shows the profiles for T = 0.1 and for different values of
λ = 2−1, 2−5, 2−10, 2−20. The final time on the layer behavior can be seen
from Figs. 2 and 3. In these two figures, the profiles of the numerical solutions
for the fixed value of λ and for different values of T are given. The former figure
shows the profiles for λ = 2−2 and for different values of T = 0.1, 0.5, 1.0.
The latter figure shows the profiles for λ = 2−7 and for different values of
T = 0.1, 0.5, 1.0.

Fig. 1 – Numerical solutions at T = 0.1 for

λ = 2−1, 2−5, 2−10, 2−20 and τ = 0.004.

It is well-known that one of the severe difficulties in approximating the
solution of the given problem is the presence of the parameter λ [12]. A shock
of the solution may occur after some time, even if the initial data is smooth.
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Fig. 2 – Numerical solutions at T = 0.1, 0.5, 1.0

for λ = 2−2, M = 64 and τ = 0.004.

Fig. 3 – Numerical solutions at T = 0.1, 0.5, 1.0

for λ = 2−7, M = 64 and τ = 0.004.

Hence, a robust and accurate numerical algorithm should be able to capture the
shock and the numerical solution should exhibit the correct physical behavior.
From Figs. 2 and 3, the propagation front is steeper for smaller value of λ,
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and the maximum point of the solution tilts towards the right end point. It is
clear that the method presented in this paper faithfully mimics the dynamics
of the corresponding differential equation.

4. CONCLUSION

The MLCN method for generalized Burgers-Huxley equation has been
presented. It is shown that the method is a stable explicit difference scheme,
if cni ≤ 0. In support of the given method, the test example has been con-
sidered and implemented successfully. The advantage of the proposed method
is that it is very easy to use it to solve generalized Burgers-Huxley equation
and the numerical results exhibit the correct physical behavior. Therefore, it
is suggested using the MLCN to get the numerical solution of the generalized
Burgers-Huxley equation effectively.
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