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Over the (1, n)-dimensional real superspace, we compute the first differential
cohomology of the Lie superalgebra K(n) with coefficients in the superspace Fnλ
of λ-densities. Following Feigin and Fuchs, we explicitly give 1-cocycles spanning
these cohomology spaces.
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1. INTRODUCTION

Let K := R or C, we define the superspace K1|n in terms of its superalge-
bra of functions, denoted by C∞(K1|n) and which is the space spanned by the
elementary functions

fi1,...,in(x)θi11 · · · θ
in
n

where x is an arbitrary even variable, fi1,...,in ∈ C∞(K) and θ1, . . . , θn are
the odd variables, that is, θiθj = −θjθi, therefore i1, . . . , in ∈ {0, 1}. The
superspace K1|n is naturally equipped with a contact structure given by the
standard 1-form:

(1.1) αn = dx+
n∑
i=1

θidθi.

In this paper we restrict ourselves to the space of polynomial functions K[x, θ]
instead of C∞(K1|n), that is, the functions fi1,...,in are elements of K[x].

Consider the contact vector fields

η̄i =
∂

∂θi
− θi

∂

∂x

and consider the Lie superalgebra K(n) of polynomial contact vector fields
on K1|n, that is, K(n) is the superspace of polynomial vector fields on K1|n
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preserving the 1-form αn. It is well known that the Lie superalgebra K(n) is
spanned by the fields of the form:

XF = F∂x −
1

2

n∑
i=1

(−1)|F |η̄i(F )η̄i,

where F ∈ K[x, θ] and |F | is the parity of F .
Now, for any λ ∈ K, we define a structure of K(n)-module over K[x, θ] by

(1.2) LλXF = XF + λF ′ where F ′ =
∂F

∂x
.

The corresponding K(n)-module is the space of polynomial weighted densities
on K1|n of weight λ with respect to αn which we denote

(1.3) Fnλ =
{
Fαλn | F ∈ K[x, θ]

}
.

The Lie superalgebra K(n− 1) can be realized as a subalgebra of K(n):

K(n− 1) =
{
XF ∈ K(n) | ∂nF = 0

}
where ∂i =

∂

∂θi
.

Therefore, the spaces Fnλ are also K(n− 1)-modules. Note that, the Lie super-
algebra K(n− 1) is also isomorphic to

K(n− 1)i =
{
XF ∈ K(n) | ∂iF = 0

}
.

Let K[x, θ]i = {F ∈ K[x, θ] | ∂iF = 0}, thus, we have

K(n− 1)i =
{
XF ∈ K(n) | F ∈ K[x, θ]i

}
.

Our purpose in this paper is to compute the spaces H1
diff (K(n),Fnλ), where

H∗diff denotes the differential cohomology, that is, only cochains given by dif-
ferential operators are considered. Of course, the case n = 0 corresponds to
the classical setting and it was studied by Feigin and Fuchs [3], while the case
n = 1 was studied by Agrebaoui and Ben Fraj [1].

2. THE SPACE H1
diff (K(n), Fnλ)

We consider the Lie superalgebra K(n) acting on Fnλ and we compute
the first cohomology space K(n) with coefficients in Fnλ. Consider a 1-cocycle
Υ ∈ Z1(K(n); Fnλ). The cocycle relation reads (see, e.g., [4]):

(2.4)
(−1)|g||Υ|g ·Υ(h)−(−1)|h|(|g|+|Υ|)h ·Υ(g)−Υ([g, h]) = 0 for any g, h ∈ K(n).

Our main result is the following:
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Theorem 2.1. The space H1
diff(K(n);Fnλ) has the following structure:

(2.5) H1
diff(K(n);Fnλ) '



K2 if n = 2 and λ = 0,

K if


n = 0 and λ = 0, 1, 2,
n = 1 and λ = 0, 1

2 ,
3
2 ,

n = 2 and λ = 1,
n = 3 and λ = 0, 1

2 ,
n ≥ 4 and λ = 0,

0 otherwise.

A base for the nontrivial H1
diff(K(n);Fnλ) is given by the cohomology classes of

the 1-cocycles which are collected in the following table:

TABLE 1

(n, λ) 1-cocycles

(n, 0) Υn
λ(XF ) = F ′

(0, 1) Υ0
1(XF ) = F ′′dx1

(0, 2) Υ̃0
2(XF ) = F ′′′dx2

(1, 1
2
) Υ1

1
2
(XF ) = η̄1(F ′)α

1
2
1

(1, 3
2
) Υ1

3
2
(XF ) = η̄1(F ′′)α

3
2
1

(2, 0) Υ2
0(XF ) = (−1)|F |η̄1η̄2(F )

(2, 1) Υ2
1(XF ) = (−1)|F |η̄1η̄2(F ′)α2

(3, 1
2
) Υ3

1
2
(XF ) = η̄1η̄2η̄3(F )α

1
2
3 .

The proof of Theorem 2.1 will be the subject of Section 3. In fact, we
need first the description of H1

diff(K(n− 1),Fnλ) and H1
diff(K(n),K(n− 1)i,Fnλ).

2.1. THE SPACE H1
diff(K(n− 1);Fnλ)

The space H1
diff(K(n);Fnλ) is closely related to H1

diff(K(n− 1);Fnλ). Thus,
we first recall the description of H1

diff(K(0),F0
λ) and H1

diff(K(1),F1
λ). The spaces

H1
diff(K(0),F0

λ) were computed in [3]:

(2.6) H1
diff(K(0),F0

λ) '

{
K if λ = 0, 1, 2,

0 otherwise.

The following 1-cocycles span the corresponding cohomology spaces:

(2.7) Υ0
λ(XF ) = F (λ+1)dxλ, where λ = 0, 1, 2 .
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The spaces H1
diff(K(1);F1

λ) were computed in [1]:

(2.8) H1
diff(K(1);F1

λ) '

{
K if λ = 0, 1

2 ,
3
2 ,

0 otherwise.

The following 1-cocycles span the corresponding cohomology spaces:

(2.9) Υ1
λ(XF ) = η̄2λ

1 (F ′)αλ1 , where λ = 0, 1
2 ,

3
2 .

Proposition 2.2. As a K(n− 1)-module, we have

(2.10) Fnλ ' Fn−1
λ ⊕Π

(
Fn−1
λ+ 1

2

)
where Π stands for the parity change map.

Proof. Any element F ∈ K[x, θ] can be uniquely expressed as

F = F1 + F2θn with ∂nF1 = ∂nF2 = 0.

As in [2], we easily show that the map

Φλ : Fnλ −→ Fn−1
λ ⊕Π

(
Fn−1
λ+ 1

2

)
Fαλn 7−→

(
F1α

λ
n−1,Π

(
F2α

λ+ 1
2

n−1

))
,

is K(n− 1)-isomorphism. In fact, we easily check that

LλXH (F )αλ = (LλXH (F1) + Lλ+ 1
2

XH
(F2)θn)αλn. �

Proposition 2.3. The space H1
diff(K(1),F2

λ) has the following structure:

(2.11) H1
diff(K(1);F2

λ) '


K2 if λ = 0,

K if λ = −1
2 ,

1
2 , 1, 3

2 ,

0 otherwise.

The spaces H1
diff(K(1);F2

λ) are spanned by the cohomology classes of the
1-cocycles Θ2

j,` defined by

(2.12) Θ2
j,`(XF ) = η̄j1(F ′)θ`2α

j−`
2

2

where ` = 0, 1, j = 0, 1, 3 and λ = j−`
2 .

Proof. First, it is easy to see that we can deduce the structure of
H1

diff(K(n); Π(Fnλ)) from H1
diff(K(n);Fnλ). Indeed, to any Υ ∈ Z1

diff(K(n);Fnλ)
corresponds Π ◦ Υ ∈ Z1

diff(K(n); Π(Fnλ)). Obviously, Υ is a coboundary if and
only if Π ◦Υ is a coboundary.



5 Cohomology of the Lie superalgebra 125

Second, according to Proposition 2.2, we obtain the following isomor-
phism between cohomology spaces:

(2.13)

H1
diff (K(n− 1),Fnλ) ' H1

diff

(
K(n− 1),Fn−1

λ

)
⊕ H1

diff

(
K(n− 1),Π(Fn−1

λ+ 1
2

)

)
.

Thus, we deduce the structure of H1
diff(K(1),F2

λ) from the knowledge of the
spaces H1

diff(K(0),F0
λ) which are given by Feigen and Fuchs [3]. �

2.2. THE SPACES H1
diff(K(n),K(n− 1)i;Fnλ)

As a first step towards the proof of Theorem 2.1, we shall need to study
the K(n−1)i-relative cohomology H1

diff(K(n),K(n−1)i;Fnλ). From the cocycle
relation (2.4) we deduce the following equations for all g, h ∈ K[x, θ]i:

(2.14)
(−1)|g||Υ|Xg ·Υ(Xhθi)− (−1)(|h|+1)(|g|+|Υ|)Xhθi ·Υ(Xg)−Υ([Xg, Xhθi ]) = 0,

(2.15) (−1)(|g|+1)|Υ|Xgθi ·Υ(Xhθi)− (−1)(|h|+1)(|g|+|Υ|+1)Xhθi ·Υ(Xgθi)−
Υ([Xgθi , Xhθi ]) = 0.

Proposition 2.4. Up to a coboundary, any 1-cocycle Υ ∈ Z1
diff(K(n);Fnλ)

has the following general form:

(2.16) Υ(XF ) =
∑

a`1`2···`n η̄
`1
1 η̄

`2
2 · · · η̄

`n
n (F ),

where the coefficients a`1`2···`n are functions of θi, not depending on x.

Proof. A priori Υ(XF ) has the following general form:

Υ(XF ) =
∑

ak,ε(x, θ)∂
k
x∂

ε1
1 · · · ∂

εn
n (F )αλn; εi = 0, 1.

But, since −η2
i = ∂x, and ∂i = ηi − θiη2

i , then Υ(XF ) can be expressed as:

Υ(XF ) =
∑

a`1`2···`n(x, θ)η̄`11 η̄
`2
2 · · · η̄

`n
n (F )αλn,

where the coefficients a`(x, θ) are arbitrary functions.

Now, from the cocycle relation (2.4), we deduce that Υ is K(n − 1)-
invariant since we have Υ(XF ) = 0 for all F ∈ K(n − 1). Especially Υ is
invariant with respect X1, therefore the functions a`1`2···`n are not depending
on x. �

We shall need the following description of K(n)-invariant mappings.
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Lemma 2.5. Let

A : Fn− 1
2

→ Fnλ, Fα
− 1

2
n 7→ A(F )αλn

be a linear differential operator. If A is K(n)-invariant then A(F ) = Fαλn.

Proof. A straightforward computation. �

Theorem 2.6. For all n ∈ N and for all i = 1, . . . , n, we have

(2.17) H1
diff(K(n),K(n− 1)i;Fnλ) ' 0.

Proof. Let Υ ∈ Z1
diff(K(n);Fnλ) and assume that the restriction of Υ to

some K(n− 1)i is a coboundary, that is, there exists b ∈ Fnλ such that

Υ(XF ) = δ(b)(XF ) = (−1)|F ||b|XF · b for all XF ∈ K(n− 1)i.

By replacing Υ by Υ− δb, we can suppose that Υ|K(n−1)i = 0. Thus, the map

Υ is K(n− 1)i-invariant and therefore the equation (2.15) becomes:

(2.18) (−1)(|g|+1)|Υ|Xgθi ·Υ(Xhθi)− (−1)(|h|+1)(|g|+|Υ|+1)Xhθi ·Υ(Xgθi) = 0.

According to the isomorphism (2.10), the map Υ is decomposed into two com-
ponents

(2.19) Π(Fn−1,i

− 1
2

) → Fn−1,i
λ , Π(Fn−1,i

− 1
2

) → Π(Fn−1,i

λ+ 1
2

).

So, each of these linear maps is K(n − 1)i-invariant. More precisely, using
equation (2.18), we get, up to a scalar factor:

Υ(F2θiα
−1
n ) '


ν1F2θiα

−1
n if λ = −1,

ν2F2α
− 1

2
n if λ = −1

2 ,
0 otherwise.

Using (2.15), we prove that ν1 = 0, therefore, for λ = −1, Υ is identically zero.

But, in the case λ = −1
2 , we show that

Υ(XF ) = δ(θn). �

Corollary 2.7. Any 1-cocycle Υ ∈ Z1
diff(K(n);Fnλ) is a coboundary if

and only its restriction to K(n− 1)i, for some i ∈ {1, . . . n}, is a coboundary.

This description will be useful in the proof of Theorem 2.1.
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3. PROOF OF THEOREM 2.1

Consider a 1-cocycle Υ of K(n) with coefficients in Fnλ. According to
Theorem (2.6, if Υ|K(n−1)i , for i = 1, 2, · · · , n is trivial then the 1-cocycle Υ is
trivial. Thus, assume that Υ|K(n−1)i , is nontrivial. Of course, up to cobound-
ary, the general form of Υ|K(n−1)i , is given by the structure of the spaces

H1
diff(K(n−1);Fn−1

λ ) together with the isomorphism (2.13), while Υ|
Π(F(n−1), i

λ+1
2

)
,

can be essentially described by equations (2.14), (2.15) and Proposition 2.4.
Thus, we have to distinguish all these cases:

(i) The case where n = 2
Considering the Proposition (2.3), Υ|K(1)i , for i = 1, 2 is nontrivial for λ =

−1
2 , 0, 1

2 , 1, 3
2 , we deduce that, up to a coboundary, the non-zero restrictions

of the cocycle Υ on K(1)i can be expressed as:
For λ = −1

2 , 0, 1
2 , 1, 3

2 ,

Υ|K(1)i =



ε(−1)iF ′1α
− 1

2
2 if λ = −1

2 ,(
ε1F

′
1 + ε2(−1)iη̄3−i(F

′
1)θi

)
if λ = 0,

εη̄3−i(F
′
1)α

1
2
2 if λ = 1

2 ,

ε(−1)iη̄3
3−i(F

′
1)θiα2 if λ = 1,

εη̄3
3−i(F

′
1)α

3
2
2 if λ = 3

2 .

where i ∈ {1, 2} and the coefficients ε, εi are constants.
Now, by Proposition 2.4, we can write

Υ(Xhθ1θ2) =
∑
k

a0,k +

2∑
j=1

∑
1≤i1<···<ij≤2

ai1···ij ,kθi1 · · · θij

h(k)αλ2 .

For each case, we solve the equations (2.14) and (2.15) for ε, εi, a0,k,
ai1···ij ,k.

We obtain

a) For 2λ = −1, 1, 3, the coefficient ε vanishes; so, by Theorem 2.6, Υ is a
coboundary. Hence H1

diff(K(2);F2
λ) = 0.

b) For λ = 0, the coefficients εi 6= 0 and, up to a coboundary, Υ is equal
ε1Υ2

0 + ε2Υ̃2
0, see Theorem 2.1. Hence dimH1

diff(K(2);F2
0) = 2.

c) For λ = 1, the coefficient ε 6= 0 and, up to a coboundary, Υ is a multiple
of Υ2

1, see Theorem 2.1. Hence dimH1
diff(K(2);F2

1) = 1.

(ii) Note that, by Theorem (2.6), the restriction of any nontrivial dif-
ferential 1-cocycle Υ of K(3) with coefficients in F3

λ to K(2)i, for i = 1, 2, 3,
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is a nontrivial 1-cocycle. Furthermore, using arguments similar to those of
the proof of Proposition 2.3 together with the above result, we deduce that
H1

diff(K(2)i;F3
λ,µ) = 0 if 2λ 6= −1, 0, 1, 2. Then, we consider only the cases

where 2λ = −1, 0, 1, 2 and, as before, we get the result for n = 3. Hence
dimH1

diff(K(3);F3
λ) = 2 and span by the cohomology classes of the 1-cocycles

Υ defined by Υ3
0(XF ) = F ′ and Υ3

1
2

(XF ) = η̄1η̄2η̄3(F )α
1
2
3 .

(iii) Note that, by Theorem (2.6), the restriction of any nontrivial dif-
ferential 1-cocycle Υ of K(4) with coefficients in F4

λ to K(3)i, for i = 1, . . . , 4,
is a nontrivial 1-cocycle. Furthermore, using arguments similar to those of
the proof of Proposition 2.3 together with the above result, we deduce that
H1

diff(K(3)i;F4
λ) = 0 if 2λ 6= −1, 0, 1. Then, we consider only the cases where

2λ = −1, 0, 1 and, as before, we get the result for n = 4. Hence dimH1
diff(K(4);

F4
0) = 1 and dimH1

diff(K(4);F4
λ) = 0 for λ 6= 0, span by the divergence.

(iv) We proceed by recurrence over n. In a similar way as in (iii), we get
the result for n = 5. Now, we assume that it holds for some n ≥ 5. Again,
the same arguments recurrence assumption show that H1

diff(K(n)i;Fn+1
λ ) = 0 if

2λ 6= −1, 0. So, we consider only the cases where 2λ = −1, 0, we proceed as in
(i) and we get the result for n + 1. Finally, dimH1

diff(K(n);Fnλ) = 1, for n ≥ 4
and span by the divergence. �
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