COHOMOLOGY OF THE LIE SUPERALGEBRA
OF CONTACT VECTOR FIELDS ON WEIGHTED DENSITIES
ON THE SUPERSPACE K!In

IMED BASDOURI* and SALEM OMRI
Communicated by Henri Moscovici

Over the (1,n)-dimensional real superspace, we compute the first differential
cohomology of the Lie superalgebra KC(n) with coefficients in the superspace Fy
of A-densities. Following Feigin and Fuchs, we explicitly give 1-cocycles spanning
these cohomology spaces.
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1. INTRODUCTION

Let K := R or C, we define the superspace K" in terms of its superalge-
bra of functions, denoted by C’OO(K””) and which is the space spanned by the
elementary functions

Jit oo ()T - O
where x is an arbitrary even variable, f;; ;. € C*(K) and 0y, ..., 0, are
the odd variables, that is, 6;6; = —6,0;, therefore iy,...,4, € {0, 1}. The
superspace K" is naturally equipped with a contact structure given by the
standard 1-form:

n
(1.1) an =dx+ Y _ 0;df;.
i=1
In this paper we restrict ourselves to the space of polynomial functions K[z, 6]
instead of C*°(K'I"), that is, the functions f;, ;. are elements of K[z].
Consider the contact vector fields

o0 g9
=90, Vox
and consider the Lie superalgebra IC(n) of polynomial contact vector fields
on K!" that is, K(n) is the superspace of polynomial vector fields on Kin

n
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preserving the 1-form «,,. It is well known that the Lie superalgebra K(n) is
spanned by the fields of the form:
1 n
Xp=Fo, Z;(—l)'F'm(F)m,
=
where F' € Kz, 0] and |F| is the parity of F.
Now, for any A\ € K, we define a structure of K(n)-module over K[z, 6] by

oF
(1.2) ]Lﬁ‘(F = Xp+ AF' where F'= e
The corresponding K(n)-module is the space of polynomial weighted densities
on K!I" of weight A with respect to o, which we denote

(1.3) n = {Fag | Fe K[:L',H]} .
The Lie superalgebra KC(n — 1) can be realized as a subalgebra of IC(n):
3}
Kn—-1)= {XF € K(n) | 0, F = 0} where 0; = 20,

Therefore, the spaces F} are also (n — 1)-modules. Note that, the Lie super-
algebra K(n — 1) is also isomorphic to

K(n—1)i = {XF € K(n) | ;F = o}.
Let K[z, 0] = {F € K[z,0] | 0;F = 0}, thus, we have
K(n— 1) = {XF e K(n) | Fe K[:U,G]’}.

Our purpose in this paper is to compute the spaces Héiﬁ (K(n),Fy), where
HY.4 denotes the differential cohomology, that is, only cochains given by dif-
ferential operators are considered. Of course, the case n = 0 corresponds to
the classical setting and it was studied by Feigin and Fuchs [3], while the case
n = 1 was studied by Agrebaoui and Ben Fraj [1].

2. THE SPACE H}i; (K(n),FR)

We consider the Lie superalgebra K(n) acting on F} and we compute
the first cohomology space K(n) with coefficients in F}. Consider a 1-cocycle
T € Z'(K(n); F}). The cocycle relation reads (see, e.g., [4]):

(2.4)
(—1)'9‘|T‘g-T(h) —(—1)|h|(|9‘+|T|)h-T(g)—T([g, h]) =0 for any g,h € K(n).

Our main result is the following:
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THEOREM 2.1. The space Hl.q(K(n); FY) has the following structure:

/

K2 if n=2 and A=0,
n=0 and X=0,1
n=1 and X\ =0, %, %,
(2.5) H(liig(lC(n);IF;f) ~q K f n=2and X=1
n=3 and \=0,1
n>4 and A =0,
0 otherwise.

A base for the nontrivial Hl,5(K(n); FY) is given by the cohomology classes of
the 1-cocycles which are collected in the following table:

TABLE 1
(n,\) 1-cocycles
(n,0) TH(XF)=F
(0,1) YY(XF)=F"dz*
(0,2) YY(Xp) = F"da?
(1, 3) le (Xr) =m(F)a
(1,3) Tl (Xr) = m(F")af
(2,0) TO(XF) (=)l (F)
2,0 | Ti(Xr) = (=1 lqna(F’ )
3,3) T‘?’% (Xr) = 771772773(F)a3

The proof of Theorem 2.1 will be the subject of Section 3. In fact, we
need first the description of H¢(K(n — 1), F}) and Hi(K(n), K(n — 1)1, F}).

2.1. THE SPACE H}.z(K(n — 1); F%)

The space H};5(K(n); F}) is closely related to Hl.q(K(n — 1); F%). Thus,
we first recall the description of Hl.¢(K(0), FQ) and H}.(K(1), FL). The spaces
H}.;(K(0),F9) were computed in [3]:

K if A=0,1,2,
0 otherwise.

(2.6) Hji (KC(0), FY) =~ {

The following 1-cocycles span the corresponding cohomology spaces:

(2.7) T (Xp) = FODdz, where A =0,1,2 .
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The spaces H}.4(K(1); F}) were computed in [1]:
K if A=0,3,32,
0 otherwise.

28) hotc(0e) =
The following 1-cocycles span the corresponding cohomology spaces:
(2.9) Ti(XFp) = P22 (F)ay, where A=0,3,3 .

PROPOSITION 2.2. As a K(n — 1)-module, we have

2

(2.10) TPl oTl (IE‘;L+11>
where 11 stands for the parity change map.
Proof. Any element F' € K[z, 0] can be uniquely expressed as
F=F| + Fy0, with 0,F) =0,F>=0.

As in [2], we easily show that the map

A3
1
Fa) — <F1a7>‘l_1,H <F2a;\:12>> ;

is KL(n — 1)-isomorphism. In fact, we easily check that

Dy FY — F’;l@n(wl)

A3
Ly, (F)o? = (L, (F1) + Ly 2 (F2)fn)a,. O
PROPOSITION 2.3. The space Hl.4(K(1),F3) has the following structure:
K2 if A=0,
0  otherwise.

The spaces Hiyg(KC(1);F3) are spanned by the cohomology classes of the
1-cocycles @?z defined by

. i—t
(2.12) 07 (Xr) = 7 (F") 0507
where £ =0,1, 7=0,1, 3 and)\:%.

Proof. First, it is easy to see that we can deduce the structure of
H (K(n); II(FY)) from HYg(K(n);FY). Indeed, to any T € Z}z(K(n);F})
corresponds 1o T € ZLs(K(n); II(FY)). Obviously, T is a coboundary if and
only if ITo T is a coboundary.
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Second, according to Proposition 2.2, we obtain the following isomor-
phism between cohomology spaces:

(2.13)
Hl (K(n— 1),F}) = Hly (K(n— 1), 5 & Hdﬂ(ian >H<F:;>).

Thus, we deduce the structure of HY«(K(1),F3) from the knowledge of the
spaces H.(KC(0), F) which are given by Feigen and Fuchs [3]. O

2.2. THE SPACES H};(K(n), K(n — 1)%; F%)

As a first step towards the proof of Theorem 2.1, we shall need to study
the K(n — 1)%-relative cohomology H.q(K(n), K(n —1)% F}). From the cocycle
relation (2.4) we deduce the following equations for all g, h € K[z, 0]

(2.14)
(_1)\gllTlxg Y (Xpg,) — (_1)(Ih|+1)(lgl+|T\)Xh0i Y (X,) — T([ Xy, Xpo,]) =0

(2.15) (_1)(|g|+1)\T|Xg0i Y (Xpg,) — (_1)(|h|+1)(\g|+\T\+1)Xh9i “T(Xgo,)—
T([X99i7Xh9i]) = 0.

PROPOSITION 2.4. Up to a coboundary, any 1-cocycle Y € Z}.o(K(n); FY)
has the following general form:

(2.16) = anp, M T (F),
where the coefficients ag, g, ..o, are functions of 0;, not depending on x.

Proof. A priori T(Xr) has the following general form:
T(Xp) =Y ape(w,0)0805 - 05 (F)aj; € = 0,1.
But, since —n? = 9;, and 8; = n; — 0;n?, then T(XF) can be expressed as:

0y 0 —ln
XF) =Yttt (@, 0)i1 05 - 7 (F)ay,

where the coefficients ay(x, ) are arbitrary functions.

Now, from the cocycle relation (2.4), we deduce that Y is K(n — 1)-
invariant since we have Y(Xr) = 0 for all F € K(n — 1). Especially T is
invariant with respect X, therefore the functions ay,y,...,, are not depending
onz. [

We shall need the following description of IC(n)-invariant mappings.



126 Imed Basdouri and Salem Omri 6

LEMMA 2.5. Let

_1
A:F", - FY, Fay?— A(F)a)

N

be a linear differential operator. If A is KK(n)-invariant then A(F) = Fa;\.

n

Proof. A straightforward computation. [
THEOREM 2.6. For all n € N and for alli =1, ..., n, we have
(2.17) Hig (KC(n), K(n — 1) F}) ~ 0.

Proof. Let T € Z1+(K(n);§%}) and assume that the restriction of Y to
some K(n — 1)* is a coboundary, that is, there exists b € Fy such that

T(Xp) =00b)(Xp) = (—)FlXp. b forall XpeK(n—1).

By replacing T by Y — 6b, we can suppose that T],C(n_l)i = 0. Thus, the map
Y is K(n — 1)*-invariant and therefore the equation (2.15) becomes:

(2.18) (,1)(|9|+1)\T|ngi Y (Xpp,) — (,1)(|hl+1)(\gl+\T|+1)Xh6i “T(X,p,) = 0.

According to the isomorphism (2.10), the map T is decomposed into two com-
ponents

(2.19) H(anl’i) N F;lfl,i’ H(Fﬂfl,i) N H(anl,i)‘

1 _1 1
2 3 At3

So, each of these linear maps is K(n — 1)%-invariant. More precisely, using
equation (2.18), we get, up to a scalar factor:

1/1F29@-a;1 if A=-1,
_ _1
T(FRbion') = vaFhan®  if A= -3

0 otherwise.

Using (2.15), we prove that v; = 0, therefore, for A = —1, T is identically zero.
But, in the case A\ = —%, we show that

Y(Xp) =6(0,). O

COROLLARY 2.7. Any I-cocycle T € Z1o(K(n);FY) is a coboundary if
and only its restriction to K(n — 1)¢, for some i € {1,...n}, is a coboundary.

This description will be useful in the proof of Theorem 2.1.
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3. PROOF OF THEOREM 2.1

Consider a l-cocycle T of K(n) with coefficients in §%. According to
Theorem (2.6, if Y|jc(,—1yi, for i = 1,2,--+ ,n is trivial then the 1-cocycle T is
trivial. Thus, assume that Y| K(n—1)i, 1s nontrivial. Of course, up to cobound-
ary, the general form of Y| K(n—1)i» 18 given by the structure of the spaces
Hl(K(n—1); F;\L_l) together with the isomorphism (2.13), while T‘H(Fi7ir_11)’ iy
can be essentially described by equations (2.14), (2.15) and Propositiorf 2.4.
Thus, we have to distinguish all these cases:

(i) The case where n = 2

Considering the Proposition (2.3), T|x1):, for i = 1,2 is nontrivial for A =
—%, 0, %, 1, %, we deduce that, up to a coboundary, the non-zero restrictions
of the cocycle T on (1) can be expressed as:

ForA=-101,1,32

5 99 Ly 9
. _1
e(=1)"Flay ? if A= —1,
(e1F] +e2(=1)'"T3-i(F1)0;) i A =0,
3 .
Ty =4 EMb-i(Faz ifA=1
6(—1)2'775’_1.(1?‘1’)91.% ifA=1,
3
eify_i(F{)a3 if A =3,

where i € {1, 2} and the coefficients ¢, ¢; are constants.
Now, by Proposition 2.4, we can write

2
T(Xh9192) = Z apk + Z Z ail...iwk@il cee Qij h(k)a%\

k G=1 1< << <2

For each case, we solve the equations (2.14) and (2.15) for €, &;, agp,
ail...ij,k.
We obtain
a) For 2\ = —1, 1, 3, the coefficient ¢ vanishes; so, by Theorem 2.6, T is a
coboundary. Hence H}.+(K(2); F3) = 0.
b) For A = 0, the coefficients ¢; # 0 and, up to a coboundary, T is equal
e1 13 + EQT(Z), see Theorem 2.1. Hence dimH}.(KC(2); F3) = 2.
c) For A = 1, the coefficient € # 0 and, up to a coboundary, T is a multiple
of T%, see Theorem 2.1. Hence dimH}.+(K(2);F?) = 1.
(ii) Note that, by Theorem (2.6), the restriction of any nontrivial dif-
ferential 1-cocycle T of K(3) with coefficients in F§ to K(2)%, for i = 1,2,3,
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is a nontrivial 1-cocycle. Furthermore, using arguments similar to those of
the proof of Proposition 2.3 together with the above result, we deduce that
HéiH(IC(2)i;F?\7M) = 0if 2\ # —1,0, 1, 2. Then, we consider only the cases
where 2\ = —1, 0, 1, 2 and, as before, we get the result for n = 3. Hence
dimH};(K(3); F3) = 2 and span by the cohomology classes of the 1-cocycles
T defined by T3(Xr) = F' and T3 (Xr) = ma3(F)a

(iii) Note that, by T heorem2(2.6), the restriction of any nontrivial dif-
ferential 1-cocycle T of K(4) with coefficients in F to K(3)?, for i = 1,...,4,
is a nontrivial 1-cocycle. Furthermore, using arguments similar to those of
the proof of Proposition 2.3 together with the above result, we deduce that
HéiH(IC(?))";F‘i) =0 if 2\ # —1, 0, 1. Then, we consider only the cases where
2\ = —1, 0, 1 and, as before, we get the result for n = 4. Hence dimHéiH(lC(él);
F3) = 1 and dimH}.4(K(4); F}) = 0 for A # 0, span by the divergence.

(iv) We proceed by recurrence over n. In a similar way as in (iii), we get
the result for n = 5. Now, we assume that it holds for some n > 5. Again,
the same arguments recurrence assumption show that Hl4 (K (n); Fit!) = 0 if
2X\ # —1, 0. So, we consider only the cases where 2\ = —1, 0, we proceed as in
(i) and we get the result for n + 1. Finally, dimH}4(K(n); F}) = 1, for n > 4
and span by the divergence. [
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