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1. INTRODUCTION

Multiobjective programming is an extension of mathematical program-
ming where a scaler valued objective function is replaced by a vector valued
function. Necessary optimality conditions for these problems were studied by
several authors in the smooth and nonsmooth cases; see, for instance, [1, 2,
11, 13–15, 19, 20, 23, 28, 33]. In multiobjective optimization problems, under
the same constraint qualifications used in nonlinear programming, the Karush-
Kuhn-Tucker(in short, KKT) type necessary conditions for (weakly) efficient
solutions guaranteed only that the Lagrange multiplier vector associated with
the objective function is nonzero. Thus, some multipliers corresponding to the
components of the vector objective function may be zero. This means that
the components of the vector-valued objective function have no role in the
necessary conditions for efficiency. The conditions which ensure us that all
multipliers of the vector objective function are nonzero are called strong KKT
conditions.

During the past decade, there have been a lot of papers devoted to study
the strong KKT conditions for multiobjective optimization problems, see [2,
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11, 13–15, 24, 30]. Maeda [24], Preda and Chitescu [30] derived strong Kuhn-
Tucker necessary conditions for a Pareto minimum of differentiable and con-
tinuously differentiable multiobjective optimization problems, respectively. On
the line of their work, strong Kuhn-Tucker necessary conditions were presented
in [2, 11, 13, 14] in the smooth and nonsmooth cases.

The concept of convexificators was first introduced by Demyanov [5] in
1994 as a generalization of the notion of upper convex and lower concave ap-
proximations. Convexificators can be viewed as a weaker version of the notion
of subdifferentials so that it will lead in sharper results in nonsmooth analy-
sis. In this article, we use the notion of semi-regular convexificators, which are
introduced in [6], as a particular case of the convexificators. Note that, for
a locally Lipschitz function the Clarke subdifferential [3], Michel Penot subd-
ifferential [25], Mordukhovich [26] and Treiman [36] provide examples of the
semi-regular convexificators. Recently, there have been many papers devoted
to study of the strong Karush-Kuhn-Tucker conditions for multiobjective pro-
gramming problems in terms of convexificators, we refer to [11, 14, 22, 23].
Along with (weakly) efficient solutions, many works devoted to the study of
proper efficient solutions and isolated efficient solutions/or strict efficiencies of
a vector optimization problem have been published. For instance, in [34, 35]
optimality conditions for proper efficiencies by using the Clarke and the Mor-
dukhovich subdifferentials are stated, while Ginchev et al. [10] have obtained
optimality conditions for proper efficient solutions and isolated minimizers in
terms of the Dini derivative.

Boundedness and nonemptiness of the Kuhn-Tucker multipliers set for an
optimization problem have been studied by several researchers in the smooth
and nonsmooth cases; see [7, 18, 27, 29]. Recently, using the idea of upper con-
vexificators, existence and boundedness of the multipliers set for a nonsmooth
Lipschitz multiobjective optimization problem are discussed in [21].

In this work, by using the idea of convexificators, we study the nonempti-
ness and boundedness of the strong KKT multiplier sets for local properly
efficient solutions and local isolated minimizers of a nonsmooth multiobjective
optimization problem with equality, inequality constraints and an arbitrary
set constraint. With this goal, we introduce the generalized Mangasarian-
Fromovitz constraint qualification in terms of convexificators. Then we show
that they are necessary for the existence and boundedness of the strong KKT
multipliers for local properly efficient solutions and local isolated minimizers
where the objective and inequality functions are locally Lipschitz and equality
constraints are continuously differentiable. In addition, sufficient conditions
for properly efficient solutions are presented based on convexificator.

The outline of the paper is as follows. Section 2 is devoted to notations,



3 Boundedness of KKT multipliers in fractional programming 281

basic definitions and some preliminary results to be used in the rest of the pa-
per. In Section 3, we first introduce an extended version of the Mangasarian-
Fromovitz constraint qualification for a nonsmooth optimization problem with
equality, inequality and set constraints via convexificators. Then a necessary
condition is presented for the set of strong KKT multipliers for local properly
efficient solutions and local isolated minimizers of a multiobjective optimiza-
tion problem to be nonempty and bounded. Sufficient conditions for properly
efficient solutions of such a problem are also supplied.

2. PRELIMINARIES

Throughout this paper, Rn is the usual n-dimensional Euclidean space.
The inner product and the norm of the space in question are denoted by〈·, ·〉 and
‖ · ‖, respectively. Let S be a subset of Rn. The convex hull of S, the closure
of S and interior of S are denoted by coS, cl S and int S, respectively. The
negative and strictly negative polar cones S− and Ss are defined respectively
by

S− = {u ∈ Rn : 〈x, u〉 ≤ 0 ∀x ∈ S},
Ss = {u ∈ Rn : 〈x, u〉 < 0 ∀x ∈ S}.

Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two vectors in Rn. Then,

x = y ⇐⇒ xi = yi, i = 1, . . . , n,

x ≤ y ⇐⇒ xi ≤ yi, i = 1, . . . , n, and x 6= y.

x < y ⇐⇒ xi < yi, i = 1, . . . , n.

The contingent cone (or the Bouligand tangent cone) TB(S, x) and the
Clarke tangent cone T c(S, x) to S at x ∈ cl S are defined respectively by

TB(S, x) = {d ∈ Rn : ∃tk ↓ 0, ∃ dk → d such that x+ tkdk ∈ S, ∀k},
T c(S, x) = {d ∈ Rn : ∀xk ∈ S, xk → x, ∀tk ↓ 0, ∃ dk → d such that

xk + tkdk ∈ S, ∀k}.

The Clarke normal cone N c(S, x) and the Fréchet normal cone N̂(S, x) at
x ∈ cl S are defined respectively by

N c(S, x) = T c(S, x)− = {ζ ∈ Rn : 〈ζ, d〉 ≤ 0 ∀d ∈ T c(S, x)},

N̂(S, x) = TB(S, x)
−

= {ζ ∈ Rn : 〈ζ, d〉 ≤ 0 ∀d ∈ TB(S, x)}.

Note that the cones T c(S, x) and N c(S, x) are nonempty, closed and convex,
N c(S, x) = T c(S, x)−, and T c(S, x) ⊆ TB(S, x). Moreover, TB(S, x) are always
closed, but not necessarily convex, and that, if S is a convex set, then T c(S, x)
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and TB(S, x) coincide and are convex. For more information on the Clarke
tangent cone and contingent cones, we refer the reader to [3].

Now we turn our attention to the notion of convexificator and some of
its important properties. As mentioned before, this notion plays a basic role
in the main results of this paper. Let f : Rn → R = R ∪ {+∞} be a given
function and x ∈ dom f := {x ∈ Rn : f(x) < ∞}. The lower and upper Dini
derivatives of f at x in the direction v ∈ Rn are given respectively as

f−(x; v) := lim inf
t↓0

f(x+ tv)− f(x)

t
,

f+(x; v) := lim sup
t↓0

f(x+ tv)− f(x)

t
.

If f+(x; v) = f−(x; v), their common value is called the directional derivative of
f at x in the direction v, and is denoted by f ′(x; v). If f is Fréchet differentiable
at x with Fréchet derivative ∇f(x), then for all v ∈ Rn, f ′(x; v) = 〈∇f(x), v〉.
It is noteworthy that if f : Rn → R is locally Lipschitz, then both the lower
and upper Dini derivatives exist finitely. Now we recall the definitions of the
upper and lower convexificators from [17]:

• f is said to have an upper convexificator at x ∈ Rn if there is a closed
set ∂∗f(x) ⊂ Rn such that for each u ∈ Rn,

f−(x;u) ≤ sup
ξ∈∂∗f(x)

〈ξ, u〉.

• f is said to have a lower convexificator at x if there is a closed set ∂∗f(x) ⊂
Rn such that for each u ∈ Rn,

f+(x;u) ≥ inf
ξ∈∂∗f(x)

〈ξ, u〉.

A closed set ∂∗f(x) ⊂ Rn is said to be a convexificator of f at x iff it is
both upper and lower convexificator of f at x.

• f is said to have an upper regular convexificator at x if there is a closed
set ∂∗f(x) ⊂ Rn such that for each u ∈ Rn,

f+(x;u) = sup
ξ∈∂∗f(x)

〈ξ, u〉.

• f is said to have a lower regular convexificator at x if there is a closed
set ∂∗f(x) ⊂ Rn such that for each u ∈ Rn,

f−(x;u) = inf
ξ∈∂∗f(x)

〈ξ, u〉.

The upper convexificator is also known as the Jeyakumar-Luc subdifferential
of f at x [37]. We point out that if a continuous function f : Rn → R admits a
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locally bounded upper convexificator at x, then it is locally Lipschitz at x (see
[17], Corollary 5.2).
In [16], the notion of convexificators was extended and used to unify and
strengthen various results in nonsmooth analysis and optimization. Along the
lines of [6], we give now the definition of upper semi-regular convexificators
which will be useful in what follows:

• The function f : Rn → R is said to have an upper semi-regular convexi-
ficator at x ∈ Rn if there is a closed set ∂∗f(x) ⊂ Rn such that for each
u ∈ Rn,

f+(x;u) ≤ sup
ξ∈∂∗f(x)

〈ξ, u〉.

• f is said to have a lower semi-regular convexificator at x ∈ Rn if there is
a closed set ∂∗f(x) ⊂ Rn such that for each u ∈ Rn,

f−(x;u) ≥ inf
ξ∈∂∗f(x)

〈ξ, u〉.

Obviously, an upper (lower) regular convexificator of f is also an upper (lower)
semi-regular convexificator of f and each upper (lower) semi-regular convexi-
ficator is an upper (lower) convexificator.

Remark 2.1. It is clear that every differentiable function has an upper
regular convexificator given by ∂∗f(x) = {∇f(x)}. Since a locally Lipschitz
function is differentiable almost everywhere, it admits upper regular convexifi-
cator over a dense set. If f : Rn → R is locally Lipschitz at x, then the Clarke
subdifferential, Michel-Penot subdifferential, Mordukhovich subdifferential and
Treiman subdifferential are examples of upper semi-regular convexificators for
f at x. Also, for a locally Lipschitz function from Rn to R, which is regular in
the sense of Clarke [3], the Clarke subdifferential is an upper regular convexi-
ficator at each x ∈ Rn (see [6]). It is worth to mention that the MichelPenot
subdifferential of a locally Lipschitz function is a convexificator of f which is
upper regular over a dense subset of Rn. Moreover, the convex hull of an up-
per semi-regular convexificator of a locally Lipschitz function may be strictly
contained in these known subdifferentials [17].

3. MAIN RESULTS

In this section, using the idea of convexificators, we propose constraint
qualification and study nonemptiness and boundedness of the strong KKT
multipliers set for a nonsmooth optimization problem at local properly effi-
cient solutions and local isolated minimizers. Indeed, we establish necessary
conditions for local properly efficient solutions and local isolated minimizers
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of a multiobjective optimization problem via convexificator. Also, by impos-
ing assumptions of ∂∗−invexity-infineness, we supply sufficient conditions for
properly efficient solution of such a problem.

Let C be a nonempty subset of Rn, and let K = {1, . . . , p}, I = {1, . . . ,m}
and J = {1, . . . , q} be index sets. Suppose that f = (fk), k ∈ K, g = (gi), i ∈ I
and h = (hj), j ∈ J are vector functions defined on Rn. Let us consider the
following constrained multiobjective optimization problem (P ):

min {f(x) | x ∈ S}.

Here the feasible set S is defined by

S = {x ∈ Rn : gi(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J, x ∈ C}.

Let x is a feasible point of (P ). We set

I(x) = {i ∈ I : gi(x) = 0},
H = {x ∈ Rn : hj(x) = 0, ∀j ∈ J}.

The following assumption is needful to derive necessary conditions for
local properly efficient solutions and local isolated efficient solutions.

Assumption 3.1. For every k ∈ K and i ∈ I, the functions fk and gi
are locally Lipschitz functions at x, and admit bounded upper semi-regular
convexificators ∂∗fk(x) and ∂∗gi(x) at x, respectively. Also hj , j ∈ J are
continuously differentiable.

Let x be a feasible point for (P ). The set of all strong Karush-Kuhn-
Tucker multiplier vectors at x is denoted by Λ(x), i.e. (λ, µ, γ) ∈ Rp×Rm×Rq
belong to Λ(x) if and only if

0 ∈
p∑

k=1

λkco∂∗fk(x) +

m∑
i=1

µico∂∗gi(x) +

q∑
j=1

γj∇hj(x) +N c(C, x),(3.1)

λk > 0, k ∈ K,
p∑

k=1

λk = 1, µi ≥ 0, µigi(x) = 0, ∀ i ∈ I.(3.2)

A point x̄ ∈ S is said a locally efficient solution (locally weakly efficient
solution) for (P ) if there exists no x ∈ S near x̄ such that

f(x) ≤ f(x̄) (f(x) < f(x̄)).

Now, we recall from [12, 9] several notions of solutions (efficiency concepts),
among them the notion of a properly efficient point and the notion of an isolated
efficient point.
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Definition 3.2. A point x̄ ∈ S is called a local isolated efficient solution of
problem (P ) iff there exists a neighborhood U of x̄ and a constant M > 0 such
that

max
1≤k≤m

{fk(x)− fk(x̄)} ≥M‖x− x̄‖, ∀x ∈ U ∩ S.

Definition 3.3. A point x̄ ∈ S is called a local properly efficient solution
of problem (P ) iff there exist a neighborhood U of x̄ and η = (η1, . . . , ηn) > 0
such that

〈η, f(x)〉 ≥ 〈η, f(x̄)〉, ∀x ∈ U ∩ S.

We denote the sets of local efficient solutions, local isolated efficient solu-
tions and local properly efficient solutions of problem (P ) by loc S(P) , locSi(P)
and loc Sp(P), respectively. When U = Rn, one has the concepts of efficient
solution, isolated efficient solutions and properly efficient solution for problem
(P ), and in this case we denote these solution sets by S(P ) , Si(P ) and Sp(P ),
respectively. It is known that (see e.g., [8, 9]) for our framework the inclusions

locSi(P) ⊂ locS(P) and loc Sp(P) ⊂ locS(P)

are valid, and the converse inclusions do not hold in general. Moreover, the
sets loc Si(P) and loc Sp(P) could be different.

To deduce our next results, the following Lemma are necessary.

Lemma 3.4 ([19]). A point x̄ ∈ S(P ) if and only if x̄ solves the scalar
program

(Pk)


Minimize fk(x)
subject to fs(x) ≤ fs(x̄), ∀s 6= k

g(x) ≤ 0, h(x) = 0, x ∈ C
for each k ∈ K.

Lemma 3.5. A point x̄ ∈ locSi(P) if and only if x̄ is a local isolated
minimizer of the scalar program (Pk) for each k ∈ K.

Proof. Let x̄ ∈ locSi(P) and k is arbitrary. Then, there exists M > 0 and
a neighborhood U of x̄ such that

max
1≤k≤n

{fk(x)− fk(x̄)} ≥M‖x− x̄‖, ∀x ∈ U ∩ S.(3.3)

We put Uk := U , Mk := M and

Sk := {x ∈ Rn|fj(x) ≤ fj(x̄), j 6= k, g(x) ≤ 0, h(x) = 0, x ∈ C}.

Thus, from (3.3) we have

fk(x)− fk(x̄) ≥M‖x− x̄‖, ∀x ∈ Uk ∩ Sk.
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Therefore, x̄ is a local isolated minimizer of problem (Pk).
Now, suppose that x̄ is a local isolated minimizer for (Pk) for each k ∈ K.

Thus, there exist Mk > 0 and a neighborhood Uk of x̄ such that

fk(x)− fk(x̄) ≥Mk‖x− x̄‖, ∀x ∈ Uk ∩ Sk.
We put U =

⋃n
k=1(Uk ∩ Sk) and M = min1≤k≤nMk. Let x ∈ U ∩ S, therefore

x ∈ Uk ∩ Sk for some k. Thus,

fk(x)− fk(x̄) ≥Mk‖x− x̄‖.
Therefore

max
1≤k≤n

{fk(x)− fk(x̄)} ≥ fk(x)− fk(x̄) ≥Mk‖x− x̄‖ ≥M‖x− x̄‖.

Hence, x̄ ∈ locSi(P) and the proof is complete. �

Let us now state some calculus rules for upper semi-regular convexificators
under appropriate conditions.

Lemma 3.6. Let ∂∗f(x) be an upper semi-regular convexificator and ∂∗f(x)
be a lower semi-regular convexificator of f at x. Then, λ∂∗f(x) is an upper
semi-regular convexificator for λf at x for every λ > 0 and λ∂∗f(x) is an upper
semi-regular convexificator for λf at x for every λ < 0.

Proof. This follows from the definitions of upper and lower semi-regular
convexificator. �

Lemma 3.7. Assume that the functions f1, . . . , fl : Rn → R admit up-
per semi-regular convexificators ∂∗f1(x), . . . , ∂∗fl(x) at x, respectively. Then∑l

k=1 ∂
∗fk(x) is an upper semi-regular convexificator of

∑l
k=1 fk at x.

Proof. This follows from the definitions. �

Now, we consider the following nonsmooth optimization problem:

(P̃ ) min f(x)

s.t. gi(x) ≤ 0, i ∈ I,
x ∈ Ω,

where f : Rn → R and gi : Rn → R are functions for i ∈ I, and Ω is an
arbitrary subset of Rn. Using the idea of upper semi-regular convexificators,
we first introduce a constraint qualification of Mangasarian-Fromovitz type for
(P̃ ).

Let x be a feasible point for problem (P̃ ), we say that constraint qualifi-
cation (CQ1) is satisfied at x if and only if Gs ∩ T c(Ω, x) is nonempty, where

G =
⋃

i∈I(x)

co∂∗gi(x).
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A feasible point x of problem (P̃ ) is called a local isolated minimizer
of (P̃ ) if there exist a positive real A and a neighborhood N 3 x such that
f(x) ≥ f(x) +A‖x− x‖ for all feasible point x with x ∈ N .

In order to establish our main theorems, we need the following auxiliary
result. The proof of the next lemma is based on the technique used in [13].
Let us give its proof to make the paper self contained.

Lemma 3.8. Let x be a local isolated minimizer for (P̃ ). Suppose that
f and gi are locally Lipschitz functions at x, and admit bounded upper semi-
regular convexificators ∂∗f(x) and ∂∗gi(x) for all i ∈ I. If (CQ1) holds at x,
then there exists µ ∈ Rm such that

0 ∈ co∂∗f(x) +
m∑
i=1

µico∂∗gi(x) +N c(Ω, x),(3.4)

µi ≥ 0, i ∈ I, µigi(x) = 0, i ∈ I.

Proof. Suppose by contradiction that for each µ ∈ Rm and µ ≥ 0:

0 /∈ co∂∗f(x) +
∑
i∈I(x)

µico∂∗gi(x) +N c(Ω, x).

We assert that

0 /∈ co(F ∪G) +N c(Ω, x),(3.5)

where F = co∂∗f(x). If 0 ∈ co(F ∪ G) + N c(Ω, x), then there exist µi ≥ 0,
i ∈ I(x) ∪ {0}, ξ0 ∈ co∂∗f(x) and ξi ∈ co∂∗gi(x)( i ∈ I(x)) and η ∈ N c(Ω, x),
such that ∑

i∈{0}∪I(x)

µiξi + η = 0, and
∑

i∈{0}∪I(x)

µi = 1.(3.6)

If µ0 > 0, nothing remains to prove. Otherwise, using (CQ1) together with
(3.6), we can select d ∈ Gs ∩ T c(Ω, x) and arrive at

0 =
∑
i∈I(x)

µi〈ξi, d〉+ 〈η, d〉 < 0,

which is a contradiction. Thus, the assertion (3.5) is true, or equivalently,

co(F ∪G)
⋂

(−N c(Ω, x)) = ∅.

Now using the convex separation theorem, we can find a vector v ∈ Rn and
some scalar α1, α2 ∈ R satisfying

〈ζ, v〉 < α1 < α2 < 〈γ, v〉, ∀ζ ∈ co(F ∪G), ∀γ ∈ −N c(Ω, x).
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Since 0 ∈ N c(Ω, x), the above in turn implies that α2 < 0 and

v ∈ N c(Ω, x)− = T c(Ω, x) ⊆ TB(Ω, x), v ∈ (F ∪G)s.(3.7)

Since f and gis admit upper semi-regular convexificators, it follows from (3.7)
that

f+(x, v) < 0,(3.8)

g+i (x, v) < 0, i ∈ I(x).(3.9)

By the definition of the contingent cone, it follows from (3.7) that there exist
sequences tn ↓ 0 and vn → v such that

x+ tnvn ∈ Ω, ∀n ∈ N.(3.10)

Since f and gis ,i ∈ I(x), are locally Lipschitz functions at x, using the relations
(3.8)–(3.10) together with the continuity of the constraint functions, we deduce
that x+ tnvn is a feasible point for (P̃ ) for all sufficiently large n, and also,

f(x+ tnvn) < f(x).

Therefore, we have arrived at a contradiction with the assumption that x is a
local isolated minimizer. �

Remark 3.9. It is worth mentioning that Lemma 3.8 is valid if the local
isolated minimizer condition for x is replaced with the local optimal solution
of scalar program (P̃ ). Also, Lemma 3.8 is not valid if the convex hull ap-
pearing before the convexificators in (3.4) is removed and upper semi-regular
convexificator replace with an upper convexificator. See [13, Example 1,2].

By using suitable constraint qualifications we can obtain strong KKT
necessary optimality conditions of (P ), which guarantee that the lagrange mul-
tipliers corresponding to the vector valued objective function are positive. To
study nonemptiness and boundedness of these multipliers set for local prop-
erly efficient solutions and local isolated efficient solutions of (P ), the following
generalization of the Mangasarian-Fromovitz constraint qualification(CQ2) is
introduced.

Definition 3.10. Let x be a feasible point of problem (P ). We say that the
generalized Mangasarian-Fromovitz constraint qualification (CQ2) is satisfied
at x if the following assertions hold:

(1) The set {∇hj(x)}j∈J is linearly independent,

(2) For every k ∈ K, there exists a nonzero vector d ∈ int T c(C , x ) such
that

sup
ζ∈∂∗gi(x)

〈ζ, d〉 < 0, i ∈ I(x),
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〈∇hj(x), d〉 = 0, ∀j ∈ J
〈ηs, d〉 < 0, ∀ηs ∈ co∂∗fs(x), ∀s ∈ K r {k},

Obviously, if the convexificators are replaced by the classical gradient or
subdifferentials, we obtain the smooth or nonsmooth versions of the constraint
qualifications.

In the next theorem, we show that at a local isolated efficient solution x,
the qualification (CQ2) is a necessary condition for the strong KKT multipliers
set Λ(x) to be nonempty and bounded under certain conditions.

Theorem 3.11. Let x ∈ locSi(P). Suppose that Assumption 3.1 are ful-
filled. Assume that int Tc(C, x) is nonempty. If (CQ2) holds at x, then the set
Λ(x) is a nonempty bounded subset of Rp+m+q.

Proof. First, we show that (CQ2) ensures the nonemptiness of Λ(x). Since
for each j ∈ J, hj is continuously differentiable and {∇hj(x)}j∈J are linearly
independent, it can be shown that [4],

N c(H,x) = span{∇hj(x) : j ∈ J},(3.11)

and

T c(H,x) = {v ∈ Rn : 〈∇hj(x), v〉 = 0, j ∈ J}.(3.12)

Since (CQ2) holds, it follows that int Tc(C, x) ∩ Tc(H, x) is nonempty. Thus,
using [31, Theorem 5] we get

T c(H,x) ∩ T c(C, x) ⊆ T c(H ∩ C, x),(3.13)

and

N c(H ∩ C, x) ⊆ N c(H,x) +N c(C, x).(3.14)

Since x is a local isolated efficient solution for (P ), then by Lemma 3.5, x is a
local isolated minimizer of Pk for each k ∈ K. Therefore, by Lemma 3.8, there

exist λ
k
i ≥ 0, i ∈ K \ {k}, µki ≥ 0, i ∈ I, such that

0 ∈ co∂∗fk(x)+
∑

i∈K,i6=k
λ
k
i co∂∗fi(x) +

m∑
i=1

µki co∂∗gi(x) +N c(H ∩ C, x),

µki gi(x) = 0, i ∈ I.(3.15)

Therefore,

0∈
p∑

k=1

co∂∗fk(x)+

p∑
k=1

∑
i∈K,i6=k

λ
k
i co∂∗fi(x) +

p∑
k=1

m∑
i=1

µki co∂∗gi(x)+N c(H∩C, x),

µki gi(x) = 0, i ∈ I.



290 Ali Ansari Ardali and Soghra Nobakhtian 12

Now, let

λi = 1 +
∑

k∈K,k 6=i
λ
k
i , µi =

p∑
k=1

µki .

Now, set λ =
∑p

k=1 λk, λk = λk
λ
, k ∈ K and µi = µi

λ
, i ∈ I. From (3.11) and

(3.14) there exists a vector γ = (γ1, . . . , γq) ∈ Rq such that

0 ∈
p∑

k=1

λkco∂∗fk(x) +
m∑
i=1

µico∂∗gi(x) +

q∑
j=1

γj∇hj(x) +N c(C, x),

λk > 0, k ∈ K,
p∑

k=1

λk = 1, µigi(x) = 0, i ∈ I.

Thus, Λ(x) is nonempty.

Now, we show that (CQ2) ensures the boundedness of Λ(x). Since
{∇hj(x) : j ∈ J} are linearly independent, for each subset Ĵ ⊆ J , by Gor-

dan’s theorem, there exists d̂ ∈ Rn such that

〈∇hj(x), d̂〉 < 0, ∀j ∈ Ĵ ,(3.16)

and

〈∇hj(x), d̂〉 > 0, ∀j ∈ J r Ĵ .(3.17)

Let d0 ∈ int Tc(C, x) be the vector which is satisfied in (CQ2). Thus, for all
i ∈ I(x),

sup
ζ∈∂∗gi(x)

〈ζ, d0〉 < 0.

Then, there exists δ̂ > 0 such that ε̂ ∈ (0, 1) may be chosen small enough such
that for every i ∈ I(x),

(1− ε̂)〈ζi, d0〉+ ε̂〈ζi, d̂〉 ≤ −δ̂ < 0, ∀ ζi ∈ co∂∗gi(x),(3.18)

and

d = (1− ε̂)d0 + ε̂d̂ ∈ T c(C, x).

From (CQ2), we have

〈∇hj(x), d0〉 = 0, ∀j ∈ J.

By virtue of (3.16) and (3.17), we have

〈∇hj(x), d〉 = ε̂〈∇hj(x), d̂〉 ≤ −ε̂ρ̂ ≤ −β̂, ∀j ∈ Ĵ ,(3.19)

〈∇hj(x), d〉 = ε̂〈∇hj(x), d̂〉 ≥ ε̂ρ̂ ≥ β̂, ∀j ∈ J r Ĵ ,(3.20)
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and from (3.18) for all i ∈ I(x),

〈ζi, d〉 ≤ −δ̂ ≤ −β̂ < 0, ∀ζi ∈ co∂∗gi(x),(3.21)

where

ρ̂ = min
j∈J

∣∣〈∇hj(x), d̂〉
∣∣, β̂ = min{δ̂, ε̂ρ̂} > 0.

Now take arbitrary multiplier vector (λ1, . . . , λp, µ1, . . . , µm, γ1, . . . , γq) ∈ Λ(x)
and suppose that Ĵ = {j ∈ J : γj > 0}. Therefore there exist ξk ∈ co∂∗fk(x), k ∈
K, ζi ∈ co∂∗gi(x), i ∈ I and η ∈ N c(C, x) such that

0 =

p∑
k=1

λkξk +
m∑
i=1

µiζi +

q∑
j=1

γj∇hj(x) + η.

Since d ∈ T c(C, x), we have

p∑
k=1

λk〈ξk, d〉+
m∑
i=1

µi〈ζi, d〉+

q∑
j=1

γj〈∇hj(x), d〉 ≥ 0,

which combined with (3.19)–(3.21) we obtain

p∑
k=1

λk〈ξk, d〉 ≥ β̂
( m∑
i=1

µi +

q∑
j=1

|γj |
)
.

Since for each k ∈ K, co∂∗fk(x) is bounded and there are only a finite num-
ber of possible subsets Ĵ , it follows that there is a finite upper bound on∑p

k=1 λk〈ξk,d〉
β̂

independent of Ĵ which is also an upper bound for

m∑
i=1

µi +

q∑
j=1

|γj |.

Therefore, since (λ1, . . . , λp, µ1, . . . , µm, γ1, . . . , γq) was arbitrary, Λ(x) is
bounded. �

The following example illustrates that the conclusion of Theorem 3.11
may fail to hold even in the smooth case if the (CQ2) is not satisfied at the
point under consideration.

Example 3.12. Consider the following problem:

min f(x) = (f1(x), f2(x)) = (x, x2)

s.t. g(x) = x4 ≤ 0,

h(x) = 0, C = R.
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Observe that S = {0} and x ∈ Si(P ) for an arbitrary M > 0. It is easy to see
that the (CQ2) is not satisfied at x. Moreover, for any λ1, λ2 > 0 and µ ≥ 0,

0 /∈ λ1co∂∗f1(x) + λ2co∂∗f2(x) + µco∂∗g(x) +N c(C, x),

which implies that Λ(x) = ∅.

In the following theorem, we show that at the local properly efficient
solution x, (CQ2) ensures the nonemptiness and boundedness of Λ(x).

Theorem 3.13. Let x ∈ locSp(P). Suppose that Assumption 3.1 are
fulfilled. Assume that int Tc(C, x) is nonempty. If (CQ2) holds at x, then the
set Λ(x) is a nonempty bounded subset of Rp+m+q.

Proof. Let x be a local properly efficient solution of (P ). Then there exist
a neighborhood U of x and ρ = (ρ1, . . . , ρp) ∈ Rp with ρ > 0 such that

p∑
i=1

ρi[fi(x)− fi(x̄)] ≥ 0, ∀x ∈ U ∩ S.

It means that x is local minimizer of the following scalar optimization problem

min ϕ(x) =

p∑
i=1

ρifi(x)

s.t. gi(x) ≤ 0, i ∈ I,
x ∈ H ∩ C.

From Lemma 3.6 and Lemma 3.7, ϕ(x) admits
∑p

k=1 ρkco∂
∗fk(x) as an upper

semi-regular convexificator at x. Then from Lemma 3.8 (and Remark 3.9 and
(3.13) for (CQ1)) there exist µ ∈ Rm with µ ≥ 0 and µigi(x) = 0, i ∈ I such
that

0 ∈
p∑

k=1

ρkco∂∗fk(x) +
m∑
i=1

µico∂∗gi(x) +N c(H ∩ C, x),

Therefore, from relations (3.11) and (3.14), there exists γ ∈ Rq such that

0 ∈
p∑

k=1

ρkco∂∗fk(x) +

m∑
i=1

µico∂∗gi(x) +

q∑
j=1

γj∇hj(x) +N c(C, x),

µi ≥ 0, µigi(x) = 0, i ∈ I.

Now, by placing

λk =
ρk∑p
k=1 ρk

, k ∈ K, µi =
µi∑p
k=1 ρk

, i ∈ I, and γi =
γj∑p
k=1 ρk

.

We obtain Λ(x) is nonempty.
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Now, similar to the second part of the proof of Theorem 3.11, since∑p
k=1 ∂

∗fk(x) is bounded, we obtain Λ(x) is bounded. �

To establish sufficient conditions for (global) properly efficient solutions of
problem (P ) in the next theorem, we need the concept of (generalized) invexity-
infineness-type for locally Lipschitz functions. In here, we suppose that for
every k ∈ K and i ∈ I, the functions fk and gi admits upper semi-regular
convexificators ∂∗fk(x) and ∂∗gi(x) at x. Also hj , j ∈ J are continuously
differentiable.

Definition 3.14. We say that (f, g; h) is ∂∗−invex-infine on C at x ∈ C
if for any x ∈ C, ζk ∈ co∂∗fk(x), k ∈ K and ηi ∈ co∂∗gi(x), i ∈ I there exists
v ∈ N c(C, x)− such that

fk(x)− fk(x) ≥ 〈ζk, v〉, k ∈ K,
gi(x)− gi(x) ≥ 〈ηi, v〉, i ∈ I,
hj(x)− hj(x) = 〈∇hj(x), v〉, j ∈ J.

Observe that if C is convex, fk, k ∈ K, gi, i ∈ I are convex, and hj , j ∈ J
are affine, then (f, g; h) is ∂∗−invex-infine on C at any x ∈ C with v = x−x for
each x ∈ C. Moreover, since the Clarke subdifferential is itself a convexificator
that may contain some other kinds of convexificator, it is easy to see that the
class of ∂∗−invex-infine functions is larger than the one of invex-infine functions
introduced in [32]. The following example shows that the class of ∂∗−invex-
infine functions is strictly larger than the one of invex-infine functions.

Example 3.15. Let f1, f2, g, h : R → R be defined by f1(x) = g(x) =
−|x|, f2(x) = x2 and h(x) = 0 for each x ∈ R. Consider C = R and x = 0. We
have N c(C, x)− = R, ∂∗f1(x) = ∂∗g(x) = {−1, 1}, and ∂∗f2(x) = ∇h(x) =

{0}. For eny x ∈ C and ζ ∈ {−1, 1} taking v = −|x|
ζ , we have v ∈ N c(C, x)−

and

f1(x)− f1(x) = ζ · v ≥ ζ · v,
f2(x)− f2(x) = x2 ≥ 0 · v = 0,

g(x)− g(x) = ζ · v ≥ ζ · v,
h(x)− h(x) = 0 = 0 · v,

which show that (f, g; h) is ∂∗−invex-infine on C at x ∈ C where f = (f1, f2).
However, we have T c(C, x) = R, the Clark subdifferentials ∂cf1(x) = ∂cg(x) =
[−1, 1] and ∂cf2(x) = ∂ch(x) = {0}. Now let x ∈ C \ {0} and take ζ ∈ [−1, 1].
Then the inequality f1(x)− f1(x) ≥ ζ · v(and g(x)− g(x) ≥ ζ · v) fails to hold
for any v ∈ T c(C, x). So (f, g;h) is not invex-infine on C at x.
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In what follows we are going to derive sufficient optimality conditions
for local properly efficient solutions of (P ) under the generalized convexity
assumptions.

Theorem 3.16. Let x ∈ S and (f, g; h) be ∂∗−invex-infine on C at x.
If Λ(x) be a nonempty set, then x ∈ Sp(P ).

Proof. Since Λ(x) is nonempty, thus there exist λk > 0, k ∈ K, µi ≥
0, i ∈ I and γj ∈ R, j ∈ J such that (3.1) and (3.2) hold. Then, there exist
ζk ∈ co∂∗fk(x), k ∈ K and ηi ∈ co∂∗gi(x), i ∈ I such that

−
( p∑
k=1

λkζk +

m∑
i=1

µiηi +

q∑
j=1

γj∇hj(x)

)
∈ N c(C, x).(3.22)

By the ∂∗−invex-infine property of (f, g; h) on C at x, for each x ∈ C, there
is v ∈ N c(C, x)− such that

p∑
k=1

λk〈ζk, v〉+

m∑
i=1

µi〈ηi, v〉+

q∑
j=1

γj〈∇hj(x), v〉

≤
p∑

k=1

λk[fk(x)− fk(x)] +
m∑
i=1

µi[gi(x)− gi(x)] +

q∑
j=1

γj [hj(x)− hj(x)]

Due to the definition of Clarke normal cone, it follows from (3.22) and the
relation v ∈ N c(C, x)− that

0 ≤
p∑

k=1

λk〈ζk, v〉+

m∑
i=1

µi〈ηi, v〉+

q∑
j=1

γj〈∇hj(x), v〉.

Since µigi(x) = 0, i ∈ I and hj(x) = 0, j ∈ J for each x ∈ S, it follows that

p∑
k=1

λkfk(x) =

p∑
k=1

λkfk(x) +
m∑
i=1

µigi(x) +

q∑
j=1

γjhj(x)

≤
p∑

k=1

λkfk(x) +

m∑
i=1

µigi(x) +

q∑
j=1

γjhj(x)

≤
p∑

k=1

λkfk(x).

This shows that x ∈ Sp(P ) which completes the proof. �

The following example shows that if (f, g; h) is not ∂∗−invex-infine on
C at x ∈ C, Theorem 3.16 is not satisfied even in the smooth case. Therefore,
the condition “(f, g; h) be ∂∗−invex-infine on C at x ∈ C ” is necessary.
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Example 3.17. Consider the following problem:

min f(x) = (f1(x), f2(x)) = (x5, x5)

s.t. g(x) = −x2 ≤ 0,

h(x) = 0, C = R.

We have S = R and thus x = 0 ∈ S. It is easy to see that Λ(x) be a nonempty
set. However, x /∈ Sp(P ).

Next let us provide an example illustrating Theorem 3.13.

Example 3.18. Consider the nonsmooth optimization problem (P), where
f1, f2, g, h : R3 → R are defined by

f1(x, y, z) = | sin z|+ x, f2(x, y, z) =
−x
2
,

g(x, y, z) =


−|y|| sin( 1

x2+y2+z2
)| (x, y, z) 6= (0, 0, 0)

0 (x, y, z) = (0, 0, 0),

h(x, y, z) = x2 + y2 + y + z,

(x, y, z) ∈ S = [−π, π]× [−π, π]× [−π, 0].

Choosing x = (0, 0, 0), and η = (1, 2) > 0, we have

f1(x, y, z) + 2f2(x, y, z) = | sin z| ≥ 0 = f1(x) + 2f2(x), ∀ (x, y, z) ∈ S.

This shows that x ∈ loc Sp(P). Moreover, for all V = (v1, v2, v3) ∈ R3,

f+1 (x, V ) = |v3|+ v1, f+2 (x, V ) =
−v1

2
,

g+(x, V ) = −|v2|, ∇h(x) = (0, 1, 1).

Hence, the objective and constraint functions admit bounded upper semi-
regular convexificators as follows:

∂∗f1(x) = {(1, 0, 1), (1, 0,−1)}, ∂∗f2(x) = {(−1

2
, 0, 0)},

∂∗g(x) = {(0,−1, 0), (0,−1

2
, 0, )}.

Obviously, TC(S, x) = R×R×R− and (CQ2) holds with the vector (3, 1,−1)
for k = 1 and vector (−3, 1,−1) for k = 2 . Thus, Λ(x) is nonempty, for
example (1, 2, 1, 1) ∈ Λ(x).
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