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In this paper, we solve two problems for some nonlinear SPDE driven by Fisk-
Stratonovich stoachastic integral. The main assumption is the commuting prop-
erty of the drift and diffusion vector fields with respect of the Lie bracket. In
the first problem (P1) we construct a classical solution for some nonlinear SPDE
of parabolic type by assuming the compatibilty condition concerning the men-
tioned vector fields. The second problem (P2) is a related filtering one for a
non-markovian system of SDEs involving a backward parabolic equation of Kol-
mogorov type with parameter.
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1. INTRODUCTION

In the last 40 years the interest area for stochastic partial differential equa-
tions (SPDEs) has been broaden to equations driven by more general stochastic
perturbations and new existence and uniqueness theorems for their solutions,
making use of different approaches, for example the L2-theory as in Krylov and
Rozovskii [14], the semigroup approach as in da Prato and Zabczyk [6], the Lp-
theory as in Krylov [15], or the stochastic characteristics method as in Kunita
[19]. SPDEs have been proved useful in solving nonlinear filtering problems
of signaling processes as in Kunita [17] and Pardoux [22], or in the stochastic
control with partial information as indicated in Lions and Souganidis [20], to
mention just the most important. Other applications of linear or nonlinear
SPDEs in quantum mechanics, stochastic dinamical systems, optimal control,
mathematical finance, etc., may be found in Da Prato and Tubaro [7].

A new direction in SPDE’s study which has gone through an explosive
development belongs to the class of backward stochastic differential equations
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(BSDEs), introduced in the linear case by Bismut in [2] and studied in the
general case by Pardoux and Peng in [23]. BSDEs have have been pointed
out as having numerous applications in mathematical finance, for example in
the theory of contingent claims in a complete market by Black and Scholes
[3], in the analysis of dynamic risk measures by Barrieu and El Karoui [1], in
the theory of recursive utilities by Duffie an Epstein [8], or in the analysis of
contingent claims with constraints by El Karoui et al. [9], among others.

In a new approach, Lions and Souganidis [20] have extended the notion
of viscosity solution from ordinary PDEs to a general class of SPDEs using the
stochastic characteristics method, in order to remove the Fisk-Stratonovich
integral appearing in the SPDE so that the stochastic viscosity solution can
be studied pathwisely. Along the same line, Buckdahn and Ma (see [4], [5]),
considered a class of nonlinear SPDEs driven by Fisk-Stratonovich integrals
with the diffusion term independent of the gradient of the solution, for which
they proved the existence and the uniqueness of a stochastic viscosity solu-
tion. They used a nonlinear Doss-Sussman type transformation for which the
viscosity solutions were transform invariant and such that the SPDE has been
succesfully converted in an ordinary PDE with random coefficients, making use
of doubly stochastic backward differential equations (BDSDE) tool introduced
by Pardoux and Peng [24].

The technique of stochastic characteristics, by the way used in this paper,
has been used by Tubaro in [27] along the line pionereed by Kunita in [18]
for first order SPDE’s to study a class of seconder order (in the drift term)
SDE’s. The author used a semigroup approach based on the Kato-Tanabe
theory in order to transform the SPDE into a linear parabolic equation with
random parameter. Same technique has been used by Iftimie and Vârsan [12]
in the study of some evolution equations with stochastic perturbations of the
same form as in [4]. They considered Doss-Sussman transformations given
by Langevin’s smooth approximations of the Brownian motion, instead of the
usual ones obtained by the modification of the Brownian motion or by piecewise
linear approximations.

In this paper, we shall make use of the results obtained in [21] along the
line developed by Varsan et al. when dealing with the classical initial value
problem associated to the nonlinear SPDE

(1.1)


du(t, x) = 〈∇u(t, x), g0(x)〉 u(t, x)dt+∑m

i=1〈∇u(t, x), gi(x)〉 ◦ dWi(t),
u(0, x) = ϕ(x),

where t ∈ [0, T ], x ∈ Rn, or alternatively in an integral representation
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(1.2)

{
u(t, x) = ϕ(x) +

∫ t
0 〈∇u(s, x), g0(x) u(s, x)〉ds+∑m

i=1

∫ t
0 〈∇u(s, x), gi(x)〉 ◦ dWi(s),

where the stochastic integral “◦” is understood in the Fisk-Stratonovich sense
while the system of characteristics defined by (1.1) has been defined in analogy
to the characteristics associated to deterministic PDE’s.

More precisely we consider that x̂ϕ(t;λ), t ∈ [0, T ], is the unique solution
of the SDE driven by the complete vector fields f ∈ (Cb ∩C1b ∩C2)(Rn;Rn) and
g ∈ (C1b ∩ C2)(Rn;Rn),

(1.3)

{
dtx̂ = ϕ(λ)f(x̂)dt+ g(x̂) ◦ dw(t),

x̂(0) = λ,

where λ ∈ Rn, ϕ ∈ (C1b ∩ C2)(Rn) and w(t) ∈ R is the scalar Wiener process
over the complete filtered probability space {Ω,F ⊃ {Ft}, P}. We recall that
the Fisk-Stratonovich integral “◦” in (1.3) is computed using the Ito stochastic
integral “·”

g(x) ◦ dw(t) = g(x) · dw(t) +
1

2
∂xg(x) · g(x)dt.

In our paper, the drift term of the SPDE (1.3) is not of Lipschitz type,
and this makes a difference with the literature cited previously where the drift
is mostly assumed (locally) Lipschitz with respect to u, ∇u (see (1.1)). In
this case the attempt to reduce the SPDE to a random PDE by making use
of the stochastics characteristics might be difficult especially when it comes to
establish the existence of solutions. In order to circumvent these difficulties
we shall consider the system of characteristics defined by (1.3) in an analogous
way to the characteristics associated to deterministic SPDE’s – the method
has been already used previously by Varsan et al., for example in [11, 21].
This approach will result in a system of SDE’s and ODE’s which don’t create
problems to prove the existence of solutions.

We are constructing the gradient representation of the stochastic flow gen-
erated by the class of SDE’s as in (1.3) driven by Fisk-Stratonovich integrals.
We are resting on the method of the stochastic characteristics but also on the
nonsingular representation of the gradient system associated with the vector
fields gj , as developed by Vârsan in [28]. This is possible by assuming that the
Lie algebra generated by gj is finite dimensional. The standing assumption is
the commuting property of the drift and diffusion vector fields with respect to
the usual Lie bracket as assumed in (2.1). The commuting hypothesis of the
diffusion vector fields with respect to the Lie bracket has been used by Kunita
[16], [18] and is reffered by some other authors as a compatibility condition (see
Buckdahn and Ma [4], Remark 3.3) concerning the mentioned vector fields.
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This leads us to a gradient representation for the stochastic flow associ-
ated with the stochastic differential equation obtained by means of the stochas-
tic system of characteristics defined by (1.3), defined in analogy to the deter-
ministic PDEs and the corresponding fundamental solution ψ(t, x) of the same
SPDE. We shall make use of ψ(t, x) as the composition between the funda-
mental solution of a deterministic nonlinear Hamilton-Jacobi equation and the
fundamental solution of a reduced SPDE.

We are next interested in computing expectations of functionals involving
the solution of some SDE, which is naturally related with the SDE obtained
by writing the system of characteristics associated to equation (1.3).

Along this line let us consider the stochastic functionals u(t, x):=h(ψ(t, x)),
S(t, x) := Eh(x̂ψ(T ; t, x)), t ∈ [0, T ], x ∈ Rn, for a fixed h ∈ (C1b ∩C2)(Rn). Here
ψ(t, x) is the unique solution satisfying the flow equation

(1.4) x̂ϕ(t;λ) = x,

with respect to the unknown λ ∈ Rn.

The evolution of the functional h(ψ(t, x)), h ∈
(
C1
b ∩ C2

)
(Rn), intro-

duced in Problem (I), is described in Theorem 2.1 of section 2. In the fil-
tering issue, introduced by Problem (II), we are computing the expectation
Eh(x̂ψ(T ; t, x)) of some functional depending on the terminal value of a non-
Markovian process. We prove that under appropriate conditions the evolution
of the conditional expectaction S(t, x) will be defined by a pameterized non-
linear backward parabolic equation considering that x̂ψ(s; t, x) for arbitrary
s ∈ [t, T ] and x ∈ Rn is the unique solution of the SDE

(1.5)

{
dsx̂ = ϕ(ψ(t, x))f(x̂)ds+ g(x̂) ◦ dw(s),

x̂(t) = x.

2. SOME PROBLEMS AND THEIR SOLUTIONS

PROBLEM (P1). Assume that g and f commute using the Lie bracket,
i.e.

(2.1) [g, f ](x) = 0,

where [g, f ](x) := [∂xg(x)]f(x)− [∂xf(x)]g(x),

(2.2) TV K = ρ ∈ [0, 1),

where V := sup{|∂xϕ(x)| : x ∈ Rn}.
Under the hypotheses (2.1) and (2.2), find the nonlinear SPDE of parabolic

type satisfied by u(t, x) = h(ψ(t, x)), t ∈ [0, T ], x ∈ Rn, h ∈ (C1b ∩ C2)(Rn),
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where ψ(t, x) is the unique continuous and Ft-adapted solution of the flow
equation (1.4).

PROBLEM (P2). Using ψ(t, x) found in (P1)and h ∈ C2p(Rn), de-
scribe the evolution of a functional S(t, x) := Eh(x̂ψ(T ; t, x)) using backward
parabolic equations, where x̂ψ(s; t, x) is the unique solution of the SDE (1.5).
Here C2p(Rn) stands for all functions h ∈ C2(Rn) such that h, ∂xh and ∂2xh are
satisfying a polynomial growth condition.

2.1. SOLUTION FOR THE PROBLEM (P1)

Remark 2.1. Under the hypotheses (2.1) and (2.2) of (P1), the unique
solution of the flow equation (1.4) will be found as a composition ψ(t, x) =
ψ̂(t, ẑ(t, x)), where ẑ(t, x) := G(−w(t))[x] and λ = ψ̂(t, z) is the unique deter-
ministic solution satisfying the integral equation

(2.3) λ = F (−θ(t;λ))[z] =: V̂ (t, z;λ).

Here F (σ)[z] and G(τ)[z], σ, τ ∈ R, are the global flows generated by the
complete vector fields f and g respectively, and θ(t;λ) = tϕ(λ). The unique
solution of (2.3) is constructed in the following

Lemma 2.1. Assume that the hypothesis (2.2) is satisfied. Then there
exists a unique smooth deterministic mapping ψ̂(t, z) for arbitrary t ∈ [0, T ]
and z ∈ Rn solving the integral equation (2.3) and satisfying the estimate

F (θ(t; ψ̂(t, z)))[ψ̂(t, z)] = z,

|ψ̂(t, z)− z| ≤ TK

1− ρ
|ϕ(z)|.

Moreover ψ̂(t, z) is the unique solution of the nonlinear Hamilton-Jacobi equa-
tion

(2.4)

{
∂tψ̂(t, z) + ∂zψ̂(t, z)f(z)ϕ(ψ̂(t, z)) = 0,

ψ̂(0, z) = z.

Proof. The mapping λ ∈ Rn −→ V̂ (t, z;λ) is a contractive application
with respect to λ ∈ Rn, uniformly of (t, z) ∈ [0, T ] × Rn, which allows us
to get the unique solution of (2.3) using a standard procedure. By a direct
computation, we get

|∂λV̂ (t, z;λ)| = |f(V̂ (t, z;λ))∂λθ(t;λ)| ≤ TV K = ρ ∈ [0, 1),

for any t ∈ [0, T ], z ∈ Rn, λ ∈ Rn, where ∂λθ(t;λ) is a row vector. The corre-
sponding convergent sequence {λk(t, z) : t ∈ [0, T ], z ∈ Rn}k≥0 is constructed
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satisfying

λ0(t, z) = z, λk+1(t, z) = V̂ (t, z;λk(t, z))),{
|λk+1(t, z)− λk(t, z)| ≤ ρk|λ1(t, z)− λ0(t, z)|,

|λ1(t, z)− λ0(t, z)| ≤ |V̂ (t, z; z)− z| ≤ TK|ϕ(z)|.
By consequence we obtain that {λk(t, z)}k≥0 is convergent and

ψ̂(t, z) = lim
k→∞

λk(t, z), |ψ̂(t, z)− z| ≤ TK

1− ρ
|ϕ(z)|.

Letting k → ∞ and using the previous estimate we get the first conclusion of
the Lemma. On the other hand, notice that V̂ (t, z;λ) satisfies V̂ (t, ŷ(t, λ);λ) =
λ where ŷ(t, λ) = F (θ(t;λ))[λ]. This shows that all the components of V̂ (t, z;λ)
∈ Rn are the first integrals associated with the vector field fλ(z) = ϕ(λ)f(z),
for each λ ∈ Rn, i.e.

(2.5) ∂tV̂ (t, ŷ(t, λ);λ) + [∂zV̂ (t, ŷ(t, λ);λ)]f(ŷ(t, λ))ϕ(λ) = 0.

In particular, for λ = ψ̂(t, z) we get ŷ(t, ψ̂(t, z)) = z and (2.5) becomes the
Hamilton-Jacobi equation

(2.6) ∂tV̂ (t, z; ψ̂(t, z)) + [∂zV̂ (t, z; ψ̂(t, z)]f(z)ϕ(ψ̂(t, z)) = 0.

Combining (2.3) and (2.6), we conclude by a direct computation that ψ̂(t, z)
satisfies the nonlinear Hamilton-Jacobi equation (2.4) and the proof is com-
plete. �

Remark 2.2. Under the hypothesis (2.1), the stochastic flow x̂ϕ(t;λ) gen-
erated by the SDE (1.3) can be represented as follows

(2.7) x̂ϕ(t;λ) = G(w(t)) ◦ F (θ(t;λ))[λ] = H(t, w(t);λ).

Lemma 2.2. Assume that the hypotheses (2.1) and (2.2) are satisfied and
consider the smooth mapping λ = ψ̂(t, z) determined in Lemma 2.1. Then
the stochastic flow x̂ϕ(t;λ) generated by the SDE (1.3) can be represented as

in (2.7). In addition ψ(t, x) = ψ̂(t, ẑ(t, x)) is the unique solution of the flow
equation (1.4).

Proof. Using the hypothesis (2.1), we see easily that y(θ, σ)[λ] := G(σ) ◦
F (θ)[λ], θ, σ ∈ R, λ ∈ Rn, is the unique solution of the gradient system{

∂θy(θ, σ)[λ] = f(y(θ, σ)[λ]), ∂σy(θ, σ)[λ] = g(y(θ, σ)[λ]),

y(0, 0)[λ] = λ

Applying the standard rule of stochastic derivation with respect to the smooth
mapping ϕ(θ, σ) := y(θ, σ)[λ] and the continuous process θ = θ(t;λ), where
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σ = w(t), we get that ŷϕ(t;λ) = y(θ(t;λ), w(t)), satisfies the SDE (1.3), i.e.{
dtŷϕ(t;λ) = ϕ(λ)f(ŷϕ(t;x))dt+ g(ŷϕ(t;λ)) ◦ dw(t),

ŷϕ(0;λ) = λ.

On the other hand, the unicity of the solution satisfying (1.3) leads us to the
conclusion that x̂ϕ(t;λ) = ŷϕ(t;λ), and the first statement of the Lemma is

proved. The second one is a direct consequence of the fact that ψ̂(t, z) is the
solution defined in Lemma 2.1. The proof is complete. �

Lemma 2.3. Under the hypotheses in Lemma 2.2, consider the continuous
and Ft-adapted process ẑ(t, x) = G(−w(t))[x]. Then the following SPDE of
parabolic type is valid

(2.8)

{
dtẑ(t, x) + ∂xẑ(t, x)g(x)◦̂dw(t) = 0,

ẑ(0, x) = x

where the nonstandard Fisk-Stratonovich integral “◦̂” is computed using Ito
stochastic integral “·”

h(t, x)◦̂dw(t) = h(t, x) · dw(t)− 1

2
∂xh(t, x)g(x)dt.

Proof. The conclusion (2.8) is a direct consequence of applying the stan-
dard rule of stochastic derivation with respect to σ = w(t) and the smooth
deterministic mapping H(σ)[x] := G(−σ)[x]. Along this line, using H(σ) ◦
G(σ)[λ] = λ, for any x = G(σ)[λ], we get

∂σ{H(σ)[x]} = −∂x{H(σ)[x]} · g(x),

∂2σ{H(σ)[x]} = ∂σ{∂σ{H(σ)[x]}} = ∂σ{−∂x{H(σ)[x]} · g(x)}
= ∂x{∂x{H(σ)[x]} · g(x)} · g(x).

The standard rule of stochastic derivation leads us to the SDE

dtẑ(t, x) = ∂σ{H(σ)[x]}σ=w(t) · dw(t) +
1

2
∂2σ{H(σ)[x]}σ=w(t)dt,

and rewritting the right hand side in the last relation we get the SPDE of
parabolic type required. The proof is complete. �

Lemma 2.4. Assume that hypotheses (2.1) and (2.2) are satisfied and
consider ψ(t, x) defined in Lemma (2.2). Then u(t, x) := h(ψ(t, x)), h ∈ (C1b ∩
C2)(Rn), satisfies the following nonlinear SPDE of parabolic type

(2.9)


dtu(t, x) + 〈∂xu(t, x), f(x)〉ϕ(ψ(t, x))dt

+ 〈∂xu(t, x), g(x)〉◦̂dw(t) = 0

u(0, x) = h(x).
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Proof. By definition ψ(t, x) = ψ̂(t, ẑ(t, x)), where ẑ(t, x) = G(−w(t))[x]
satisfies the SPDE (2.8) and ψ̂(t, z) satisfies the nonlinear Hamilton-Jacobi
equation (2.4). Applying the standard rule of stochastic derivation with respect
to the smooth mapping ψ̂(t, z) and the stochastic process ẑ(t, x) we get the
following nonlinear SPDE{

dtψ(t, x) + ∂xψ(t, x)f(x)ϕ(ψ(t, x))dt+ ∂xψ(t, x)g(x)◦̂dw(t) = 0,

ψ(0, x) = x.

In addition, the functional u(t, x) can be rewritten u(t, x) = û(t, ẑ(t, x)), where
û(t, z) := h(ψ̂(t, z)) is a smooth deterministic functional satisfying the nonlin-
ear Hamilton-Jacobi equation{

∂tû(t, z) + 〈∂zû(t, z), f(z)〉ϕ(ψ̂(t, z)) = 0,

û(0, z) = h(z).

Using (2.8) we obtain the SDPE satisfied by u(t, x),
dtu(t, x) + 〈∂zû(t, ẑ(t, x)), f(ẑ(t, x))〉ϕ(ψ(t, x))dt+
〈∂xu(t, x), g(x)〉◦̂dw(t) = 0,
u(0, x) = h(x).

The hypothesis (2.1) allows us to write

〈∂zû(t, ẑ(t, x)), f(ẑ(t, x))〉 = ∂zû(t, ẑ(t, x))[∂xẑ(t, x)][∂xẑ(t, x)]−1f(ẑ(t, x))

= 〈∂xu(t, x), f(x)〉,

from where we get the conclusion (2.9). The proof is complete. �

Remark 2.3. The complete solution of Problem (P1) is contained in Lem-
mas 2.1–2.4. We are now in position to state the main result of this section.

Theorem 2.1. Assume that the vector fields f ∈ (Cb ∩ C1b ∩ C2)(Rn;Rn),
g ∈ (C1b ∩ C2)(Rn;Rn), and the scalar function ϕ ∈ (C1b ∩ C2)(Rn) satisfy the
hypotheses (2.1) and (2.2). Consider the continuous and Ft-adapted process
ψ(t, x), t ∈ [0, T ], x ∈ Rn satisfying the flow equation (1.4). Then u(t, x) :=
h(ψ(t, x)), satisfies the nonlinear SPDE of parabolic type (2.9), for each h ∈
(C1b ∩ C2)(Rn).

2.2. SOLUTION FOR THE PROBLEM (P2)

Using the same notations as in subsection 2.1, we consider the unique
solution x̂ψ(s; t, x), s ∈ [t, T ] satisfying the SDE (1.5) for each 0 ≤ t ≤ T and
x ∈ Rn. As far as the SDE (1.5) is a non-markovian system, the evolution of
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the functional S(t, x) := Eh(x̂ψ(T ; t, x)), h ∈ C2p(Rn), will be described using
the pathwise representation of the conditional mean values functional

(2.10) v(t, x) = E{h(x̂ψ(T ; t, x)) | ψ(t, x)}.

Assuming the hypotheses (2.1) and (2.2) we may write the following integral
representation

(2.11) x̂ψ(T ; t, x) = G(w(T )− w(t)) ◦ F [(T − t)ϕ(ψ(t, x))][x],

for a solution of the SDE (1.5). We notice that the right hand side of (2.11) is
a continuous mapping of the two independent random variables, z1 = [w(T )−
w(t)] and z2 = ψ(t, x) which is Ft-measurable. A direct consequence of this
remark is to use the parameterized random variable y(t, x;λ) = G(w(T ) −
w(t)) ◦ F [(T − t)ϕ(λ)][x], and to compute the conditional mean values (2.10)
as

(2.12) v(t, x) = [Eh(y(t, x;λ))](λ = ψ(t, x)).

Here the functional u(t, x;λ) := Eh(y(t, x;λ)), satisfies a backward parabolic
equation (Kolmogorov’s equation) for each parameter λ ∈ Rn and we rewrite
(2.12) as v(t, x) = u(t, x;ψ(t, x)). In conclusion, the functional {S(t, x)} can
be written as

(2.13) S(t, x) = E[E{h(x̂ψ(T ; t, x)) | ψ(t, x)} = Eu(t, x;ψ(t, x)),

where u(t, x;λ) satisfies the next backward parabolic equations with parame-
ter λ,

(2.14)


∂tu(t, x;λ) + 〈∂xu(t, x;λ), f(x, λ)〉
+1

2〈∂
2
xu(t, x;λ)g(x), g(x)〉 = 0

u(T, x;λ) = h(x),

where f(x, λ) := ϕ(λ)f(x) + 1
2 [∂xg(x)]g(x). We conclude these remarks in the

next theorem.

Theorem 2.2. Assume that the vector fields f, g and the scalar function
ϕ of the SDE (1.5) satisfy the hypotheses (2.1) and (2.2), where the continuous
and Ft-adapted process ψ(t, x) is defined in Theorem 2.1. Then the evolution
of the functional S(t, x) := Eh(x̂ψ(T ; t, x)), t ∈ [0, T ], x ∈ Rn, h ∈ C2p(Rn) can
be described as in (2.13), where u(t, x) satisfies the linear backward parabolic
equations (2.14) for each λ ∈ Rn.
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3. MULTIPLE VECTOR FIELDS CASE

Consider the case of several vector fields defining both the drift and the
diffusion parts of the SDE (1.3), i.e.

(3.1)

dtx̂ = [

m∑
i=1

ϕi(λ)fi(x̂)]dt+

m∑
i=1

gi(x̂) ◦ dwi(t),

x̂(0) = λ.

In what will follow the analysis presented in Theorems 2.1 and 2.2 will be
extended to this multiple vector fields case.

We are given two finite sets of vector fields {f1, . . . , fm} ⊂ (Cb ∩ C1b ∩
C2)(Rn;Rn) and {g1, . . . , gm} ⊂ (C1b∩C2)(Rn;Rn) and let us consider the unique
solution x̂ϕ(t, λ) of the SDE (3.1), where ϕ =: (ϕ1, . . . , ϕm), {ϕ1, . . . , ϕm} ⊂
(C1b ∩ C2)(Rn) are fixed scalar functions and w = (w1(t), . . . , wm(t)) ∈ Rm is a
standard Wiener process over the complete filtered probability space {Ω,F ⊃
{Ft}, P}. Each Fisk-Stratonovich integral “◦” in (3.1) is computed using Ito
integral “·” by

(3.2) gi(x) ◦ dwi(t) = gi(x) · dwi(t) +
1

2
[∂xgi(x)]gi(x)dt.

Assume that ψ(t, x) is the unique continuous and Ft-adapted solution
with respect to λ satisfying the flow equation

(3.3) x̂ϕ(t;λ) = x.

For each h ∈ (C1b∩C2)(Rn), consider the stochastic functional u(t, x)=h(ψ(t, x))
and the deterministic mapping S(t, x) = Eh(x̂ψ(T ; t, x)), where x̂ψ(s; t, x), s ∈
[t, T ] satisfies the following SDE

(3.4)

 dsx̂ = [

m∑
i=1

ϕi(ψ(t, x))fi(x̂)]ds+

m∑
i=1

gi(x̂) ◦ dwi(t),

x̂(t) = x.

PROBLEM (P1). Assume that

(3.5)


M = {f1, . . . , fm, g1, . . . , gm}
commute with respect to the Lie bracket,

i .e. [X1, X2](x) = 0 for any pair X1, X2 ∈M,

(3.6) TViKi = ρi ∈ [0,
1

m
),

where Vi := sup{|∂xϕi(x)| : x ∈ Rn} andKi := {|fi(x)| : x ∈ Rn}, i = 1, . . . ,m.
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Under the hypotheses (3.5) and (3.6), find the nonlinear SPDE of
parabolic type satisfied by u(t, x) = h(ψ(t, x)), t ∈ [0, T ], x ∈ Rn, h ∈ (C1b ∩
C2)(Rn), where ψ(t, x) is the unique continuous and Ft-adapted solution with
respect to λ of the flow equation (3.3).

PROBLEM (P2). Considering λ = ψ(t, x) found in (P1) and h ∈
C2p(Rn), describe the evolution of the functional S(t, x) = Eh(x̂ψ(T ; t, x)) mak-
ing use of backward parabolic equations, where x̂ψ(s; t, x), s ∈ [t, T ] is the
unique solution of the SDE (3.4).

3.1. SOLUTION FOR (P1)

Under the hypotheses (3.5) and (3.6), the unique solution of the SPDE
(3.4) can be represented by

(3.7) x̂ϕ(t;λ) = G(w(t)) ◦ F (θ(t;λ))[λ] =: H(t, w(t);λ),

where G(σ)[z] = G1(σ1)◦ · · · ◦Gm(σm)[z], σ = (σ1, . . . , σm), F (σ)[z] = F1(σ1)◦
· · · ◦ Fm(σm)[z], θ(t;λ) := (tϕ1(λ), . . . , tϕm(λ)) and ((Fi(σi)[z], Gi(σi)[z]) are
the global flows generated by (fi, gi), i ∈ {1, . . . ,m}.

The arguments for solving (P1) in the case of one pair (f, g) of vector
fields as in subsection (2.1) can be also used here to get similar results. Under
the representation (3.7), the unique continuous and Ft-adapted solution ψ(t, x)
with respect to λ of equation (3.3) will be found as a composition ψ(t, x) =
ψ̂(t, ẑ(t, x)), ẑ(t, x) := G(−w(t))[x], where ψ̂(t, z) is the unique solution with
respect to λ satisfying the deterministic integral equation

(3.8) λ = F (−θ(t;λ))[z] =: V̂ (t, z;λ).

Lemma 3.1. Asume that hypotheses (3.5) and (3.6) are satisfied. Then
there exists a unique smooth mapping ψ̂(t, z) solving the integral equation (3.8)
and satisfying the estimate

(3.9)


F (θ(t; ψ̂(t, z)))[ψ̂(t, z)] = z,

|ψ̂(t, z)− z| ≤ r(T, z)

1− ρ
,

where ρ = ρ1 + · · ·+ ρm ∈ [0, 1) and r(T, z) = T
∑m

i=1Ki|ϕi(z)|.
Moreover ψ̂(t, z) is the unique solution of the nonlinear Hamilton-Jacobi

equation

(3.10)


∂tψ̂(t, z) + ∂zψ̂(t, z)[

m∑
i=1

ϕi(ψ̂(t, z))fi(z)] = 0,

ψ̂(0, z) = z.
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The proof is based on the arguments of Lemma 2.1 in subsection 2.1.

Lemma 3.2. Assume that hypotheses (3.5) and (3.6) are satisfied and
consider ψ̂(t, z) found in Lemma (3.1). Then the stochastic flow x̂ϕ(t;λ) gen-
erated by the SDE (3.1) can be represented as in (3.7). In addition ψ(t, x) =
ψ̂(t, ẑ(t, x)), is the unique solution of the stochastic flow equation (3.3).

The proof follows the arguments used in Lemma 2.2 of subsection 2.1.

Lemma 3.3. Under the hypothesis (3.5), consider the continuous and Ft-
adapted process ẑ(t, x). Then the following SPDE of parabolic type is validdtẑ(t, x) +

m∑
i=1

∂xẑ(t, x)gi(x)◦̂dwi(t) = 0,

ẑ(0, x) = x,

where the Fisk-Stratonovich integral “◦̂” is computed using the Ito stochastic
integral “·”

hi(t, x)◦̂dwi(t) = hi(t, x) · dwi(t)−
1

2
∂xhi(t, x)gi(x)dt

Proof. The conclusion is a direct consequence of applying the standard
rule of stochastic derivation with respect to σ = w(t) and the smooth determin-
istic mapping H(σ)[x] = G(−σ)[x]. In this respect, using that H(σ)◦G(σ)[λ] =
λ for any x = G(σ)[λ], we get

∂σiH(σ)[x] = −∂x{H(σ)[x]}gi(x),

∂2σi{H(σ)[x]} = ∂σi{∂σi{H(σ)[x]}} = ∂σi{−∂x{H(σ)[x]}gi(x)}
= ∂x{∂x{H(σ)[x]}gi(x)}gi(x),

for σ ∈ Rm, x ∈ Rn and each i ∈ {1, . . . ,m}. Recall that the standard rule of
stochastic derivation leads us to the SDE

dtẑ(t, x) =
m∑
i=1

∂σi{H(σ)[x]}(σ=w(t)) · dwi(t) +
1

2

m∑
i=1

∂2σi{H(σ)[x]}(σ=w(t))dt.

Rewritting the right hand side in the last equality we get the SPDE of parabolic
type required. �

Lemma 3.4. Assume the hypotheses (3.5) and (3.6) are satisfied and con-
sider ψ(t, x) defined in Lemma 3.2. Then u(t, x) := h(ψ(t, x)), for arbitrary
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h ∈ (C1b ∩ C2)(Rn), satisfies the following nonlinear SPDE of parabolic type

(3.11)



dtu(t, x)+〈∂xu(t, x),
m∑
i=1

ϕi(ψ(t, x)fi(x))〉dt

+
m∑
i=1

〈∂xu(t, x), gi(x)〉◦̂dwi(t) = 0,

u(0, x) = h(x)

The proof uses the same arguments as in lemma 2.4 of subsection 2.1.

Remark 3.1. The complete solution of Problem (P1) is contained in lem-
mas 2.1–2.4. We are now in position to state the main result of this section.

Theorem 3.3. Assume that the vector fields {f1, . . . , fm} ⊂ (Cb ∩ C1b ∩
C2)(Rn;Rn), {g1, . . . , gm} ⊂ (C1b ∩ C2)(Rn;Rn) and scalar functions
{ϕ1, . . . , ϕm} ⊂ (C1b ∩ C2)(Rn) satisfy the hypotheses 3.5 and 3.6.

Consider the continuous and Ft-adapted process ψ(t, x) satisfying the flow
equation (3.3). Then u(t, x) := h(ψ(t, x)) satisfies the nonlinear SPDE of
parabolic type (3.11) for each h ∈ (C1b ∩ C2)(Rn).

3.2. SOLUTION FOR (P2)

Using the same notations as in subsection 2.1, we consider the unique
solution x̂ψ(s; t, x), s ∈ [t, T ] satisfying the SDE (3.4) for each 0 ≤ t ≤ T and
x ∈ Rn. As far as SDE (3.4) is a non-markovian system, the evolution of the
functional S(t, x) := Eh(x̂ψ(T ; t, x)) will be described for each h ∈ C2p(Rn)
using the pathwise representation of the conditioned mean values functional
v(t, x) := E{h(x̂ψ(T ; t, x)) | ψ(t, x)}.

Assuming the hypotheses 3.5 and 3.6 we may write the following integral
representation

(3.12) x̂ψ(T ; t, x) = G(w(T )− w(t)) ◦ F [(T − t)ϕ(ψ(t, x))](x).

The right hand side of (3.12) is a continuous mapping of the two inde-
pendent random variables, z1 = w(T )− w(t) and z2 = ψ(t, x), Ft-measurable.
Using the parameterized random variable y(t, x;λ) = G(w(T )−w(t)) ◦F [(T −
t)ϕ(λ)](x) we may obtain that v(t, x) = [Eh(y(t, x;λ))](λ = ψ(t, x)). Here, the
functional u(t, x;λ) = Eh(y(t, x;λ)) satisfies a backward parabolic equation
(Kolmogorov‘s equation) for each parameter λ and we shall obtain the repre-
sentation v(t, x) = u(t, x;ψ(t, x)).
In conclusion, the functional S(t, x) = Eh(x̂ψ(T ; t, x)) can be reprezented by

(3.13) S(t, x) = E[E{h(x̂ψ(T ; t, x)) | ψ(t, x)}] = Eu(t, x;ψ(t, x)),
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where u(t, x;λ) satisfies the corresponding backward parabolic equation with
parameter λ
(3.14)

∂tu(t, x;λ) + 〈∂xu(t, x;λ), f(x, λ)〉+
1

2

m∑
i=1

〈∂2xu(t, x;λ)gi(x), gi(x)〉 = 0

u(T, x;λ) = h(x), f(x, λ) =
m∑
i=1

ϕi(λ)fi(x) +
1

2

m∑
i=1

[∂xgi(x)]gi(x).

We conclude these remarks by the next theorem.

Theorem 3.4. Assume that the vector fields {f1, . . . , fm} ⊂ (Cb ∩ C1b ∩
C2)(Rn;Rn), {g1, . . . , gm} ⊂ (C1b ∩ C2)(Rn;Rn), and scalar functions
{ϕ1, . . . , ϕm} ⊂ (C1b ∩ C2)(Rn) of the SDE (3.4) satisfy the hypotheses (3.5)
and (3.6). Then the evolution of the functional S(t, x) := Eh(x̂ψ(T ; t, x)), for
an arbitrary h ∈ C2p(Rn), can be described as in (3.13), where u(t, x;λ) satisfies
the linear backward parabolic equations (3.14), for each parameter λ.

Final remark. One may wonder about the meaning of the martingale
representation associated with the non-markovian functionals h(x̂ψ(T ; t, x)),
h ∈ C2p(Rn) Along this line, we may use the parameterized functional u(t, x;λ)
satisfying the backward parabolic equation (3.14). Writing h(x̂ψ(T ; t, x)) =

u(T, x̂ψ(T ; t, x) for λ̂ = ψ(t, x)) and applying the standard rule of stochastic

derivation with respect to the smooth mapping u(s, x; λ̂) and the stochastic
process x̂ψ(s; t, x) we get

(3.15)


h(x̂ψ(T ; t, x)) = u(t, x; λ̂)

+
∫ T
t (∂s + L

λ̂
)(u)(s, x̂ψ(s; t, x); λ̂)ds

+
∑m

i=1

∫ T
t 〈∂xu(s, x̂ψ(s; t, x); λ̂), gi(x)〉dwi(s),

where L
λ̂
(u)(s, x; λ̂) := 〈∂xu(s, x; λ̂), f(x, λ̂)〉+ 1

2

∑m
i=1〈∂2xu(s, x; λ̂)gi(x), gi(x)〉

coincides with the parabolic operator in the PDE (3.14). Moreover we obtain
the following martingale representation

(3.16)

{
h(x̂ψ(T ; t, x)) = u(t, x;ψ(t, x))

+
∑m

i=1

∫ T
t 〈∂xu(s, x̂ψ(s; t, x); λ̂), gi(x)〉 · dwi(s),

which shows that the standard constant in the markovian case is replaced by
the Ft-measurable random variable u(t, x;ψ(t, x)). In addition, the backward
evolution of the stochastic functional Q(t, x) := h(x̂ψ(T ; t, x)) given in (3.16)
depends essentially on the forward evolution process ψ(t, x).
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