BINOMIAL EDGE IDEALS WITH TWO ASSOCIATED PRIMES

SOHAIL ZAFAR and ZOHAIB ZAHID

Communicated by Vasile Brînzănescu

Abstract

We study binomial edge ideals J_{G} with $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$. We give an explicit description of the modules of deficiencies, the duals of local cohomology modules and compute the Castelnuovo-Mumford regularity. As an application, we characterize all graphs G with $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$ such that S / J_{G} is sequentially Cohen-Macaulay.

AMS 2010 Subject Classification: 05E40, 16E30. Key words: binomial edge ideal, Castelnuovo-Mumford regularity, Sequentially Cohen-Macaulay rings.

1. INTRODUCTION

The main purpose of this paper is to study the binomial edge ideal J_{G} with $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$. Let G denote a connected undirected graph on n vertices. For an arbitrary field K let $S=K\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ denote the polynomial ring in $2 n$ variables. To the graph G one can relate the binomial edge ideal $J_{G} \subset S$ generated by binomials $x_{i} y_{j}-x_{j} y_{i}, i<j$, such that $\{i, j\}$ is an edge of G. This construction was first found in [6] and independently in [8]. The algebraic properties of binomial edge ideals in terms of combinatorial properties of graphs (and vice versa) were investigated by many authors in $[4-11,14,17-$ 19]. The Cohen-Macaulay property of binomial edge ideals was studied in [4, 9] and [10]. As a certain generalization of the Cohen-Macaulay property the first author has studied approximately Cohen-Macaulay property as well as sequentially Cohen-Macaulay property in [17] and [18] respectively.

In the present paper, we investigate the sequentially Cohen-Macaulay property of binomial edge ideals with $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$. We study the modules of deficiencies, the duals of local cohomology modules and compute the Castelnuovo-Mumford regularity.

The paper is structured as follows: in Section 2, there is preliminaries and auxiliary results that we need in the rest of the paper. In Section 3, we study binomial edge ideals with $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$ and there is a proof of our main result.

2. PRELIMINARIES

First of all, we will introduce the notation used in the sequel. Moreover we summarize a few auxiliary results that we need.

Definition 2.1. For a set $T \subset[n]$ let $G_{[n] \backslash T}$ denote the graph obtained by deleting all vertices of G that belong to T.

Let $c=c(T)$ denote the number of connected components of $G_{[n] \backslash T}$. Let G_{1}, \ldots, G_{c} denote the connected components of $G_{[n] \backslash T}$. Then define

$$
P_{T}(G)=\left(\cup_{i \in T}\left\{x_{i}, y_{i}\right\}, J_{\tilde{G}_{1}}, \ldots, J_{\tilde{G}_{c}}\right),
$$

where $\tilde{G}_{i}, i=1, \ldots, c$, denotes the complete graph on $V\left(G_{i}\right), i=1, \ldots, c$.
The following result is important for the understanding of the binomial edge ideal of G.

Lemma 2.2. With the previous notation the following holds:
(a) $P_{T}(G) \subset S$ is a prime ideal of height $n-c+|T|$, where $|T|$ denotes the number of elements of T.
(b) $J_{G}=\cap_{T \subseteq[n]} P_{T}(G)$.
(c) $J_{G} \subset P_{T}(G)$ is a minimal prime if and only if either $T=\emptyset$ or $T \neq \emptyset$ and $c(T \backslash\{i\})<c(T)$ each $i \in T$.
Proof. For the proof we refer to [6].
Therefore J_{G} is an intersection of prime ideals. That is, J_{G} is a homogenous radical ideal with natural grading induced by the \mathbb{N}-grading of S.

Let M denote a finitely generated graded S-module. As an technical tool we shall use the local cohomology modules of M with respect to S_{+}, denoted by $H^{i}(M), i \in \mathbb{Z}$. For the basic properties of it we refer to the textbook of Brodmann and Sharp (see [1]). In particular the Castelnuovo-Mumford regularity reg M of M is defined as

$$
\operatorname{reg}(M):=\max \left\{e\left(H^{i}(M)\right)+i \mid \operatorname{depth}(M) \leq i \leq \operatorname{dim}(M)\right\}
$$

where $e\left(H^{i}(M)\right)$ is the least integer m such that, for all $k>m$, the degree k part of the i-th local cohomology module of M is zero. For our investigations we also need the following definition.

Definition 2.3. Let M denote a finitely generated graded S-module and $d=\operatorname{dim} M$. For an integer $i \in \mathbb{Z}$ put

$$
\omega^{i}(M)=\operatorname{Ext}_{S}^{2 n-i}(M, S(-2 n))
$$

and call it the i-th module of deficiency. Moreover we define $\omega(M)=\omega^{d}(M)$ the canonical module of M. We write also $\omega_{2 \times}(M)=\omega(\omega(M))$. These modules have been introduced and studied in [12].

Note that by the graded version of Local Duality (see e.g. [1]) there is the natural graded isomorphism $\omega^{i}(M) \cong \operatorname{Hom}_{K}\left(H^{i}(M), K\right)$ for all $i \in \mathbb{Z}$. If M is Cohen-Macaulay then $\omega(M)$ is also Cohen-Macaulay but the converse is not true. An S-module M is said to be canonically Cohen-Macaulay if $\omega(M)$ is Cohen-Macaulay.

Definition 2.4. An S-module M is called sequentially Cohen-Macaulay if for all $0 \leq i<d$ the module of deficiency $\omega^{i}(M)$ is either zero or an i dimensional Cohen-Macaulay module. (see [13]).

3. BINOMIAL EDGE IDEALS WITH $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$

In this section, we assume $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$. Then $\operatorname{Ass}\left(J_{G}\right)=\left\{J_{\tilde{G}}, P_{T}(G)\right\}$ for some T because $J_{\tilde{G}}$ is always an associated prime of J_{G}. The following three results from the paper of Sharifan [15] are important for us.

Lemma 3.1 ([15]). Let G be connected graph on $[n]$ and $T=\{i \in[n]$: $\operatorname{deg}(i)=n-1\}$. Then $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$ if and only if the following conditions hold.
(1) $T \neq \emptyset$ and $G_{[n] \backslash T}$ is disconnected.
(2) $G_{[n] \backslash T}$ is a disjoint union of complete graphs.

Corollary 3.2 ([15]). Let G be a connected graph on $[n]$. Then $\left|\operatorname{Ass}\left(J_{G}\right)\right|$ $=2$ if and only if G is the join of a complete graph G_{1} and a graph G_{2} where G_{2} is a disjoint union of complete graphs.

Lemma 3.3 ([15]). Let G be a connected graph on $[n]$ with $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$. Then $\operatorname{depth}\left(S / J_{G}\right)=n-|T|+2$ where $T=\{i \in[n]: \operatorname{deg}(i)=n-1\}$. In particular, J_{G} is Cohen-Macaulay if and only if $|T|=1$ and $c(T)=2$.

The proof of all these results can be found in Section 4 of the paper [15]. The regularity of the binomial edge ideal of the disjoint union of two graphs is given by the following lemma.

Lemma 3.4. Let $J_{G_{1}} \subset S_{1}$ and $J_{G_{2}} \subset S_{2}$ be binomial edge ideals of graphs G_{1} and G_{2} where S_{1} and S_{2} are polynomial rings over the field K with the different set of variables, then:

$$
\operatorname{reg}\left(S_{1} / J_{G_{1}} \otimes S_{2} / J_{G_{2}}\right)=\operatorname{reg}\left(S_{1} / J_{G_{1}}\right)+\operatorname{reg}\left(S_{2} / J_{G_{2}}\right)
$$

Proof. Let \mathcal{F}_{\bullet} be the minimal free graded resolution of $J_{G_{1}}$ over S_{1} and let \mathcal{H}_{\bullet} be the minimal free graded resolution of $J_{G_{2}}$ over S_{2} then the double complex $\mathcal{F}_{\bullet} \otimes_{K} \mathcal{H}_{\bullet}$ is minimal free resolution of $J_{G_{1}}+J_{G_{2}}$ over S, where S
is the polynomial ring in the union of the variables of S_{1} and S_{2}. Note that $S_{1} / J_{G_{1}} \otimes S_{2} / J_{G_{2}}=S /\left(J_{G_{1}}+J_{G_{2}}\right)$ and the degree k component of $\mathcal{F}_{\bullet} \otimes_{K} \mathcal{H}_{\bullet}$ is

$$
\left(\mathcal{F}_{\bullet} \otimes_{K} \mathcal{H}_{\bullet}\right)_{k}=\bigoplus_{i+j=k} F_{i} \otimes H_{j}
$$

Now $F_{i} \otimes H_{j}=\bigoplus_{a} S_{1}(-a) \otimes \bigoplus_{b} S_{2}(-b)=\bigoplus_{a, b} S(-a-b)$ which proves the claim.

Corollary 3.5. Let α denotes the number of connected components of $G_{[n] / T}$ with $\left|V\left(G_{i}\right)\right| \geq 2$, then:

$$
\operatorname{reg}\left(S / P_{T}(G)\right)=\alpha
$$

Proof. $\operatorname{reg}\left(S / J_{\tilde{G}_{i}}\right)=1$ for all G_{i} with $\left|V\left(G_{i}\right)\right| \geq 2$.
In the following result, we will describe the modules of deficiencies $\omega^{i}\left(S / J_{G}\right)$ of the binomial edge ideal J_{G} with two associated primes.

Theorem 3.6. Let G be a connected graph with $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$.
(1) Let $c(T)>2$ and $|T|=1$. Then the binomial edge ideal $J_{G} \subset S$ has the following properties:
(a) $\omega^{i}\left(S / J_{G}\right)=0$ if and only if $i \notin\{n+1, n-1+c(T)\}$.
(b) $\omega^{n-1+c(T)}\left(S / J_{G}\right) \cong \omega^{n-1+c(T)}\left(S / P_{T}(G)\right)$
(c) $\omega^{n+1}\left(S / J_{G}\right)$ is a $(n+1)$-dimensional Cohen-Macaulay module and there is an isomorphism $\omega^{n+1}\left(\omega^{n+1}\left(S / J_{G}\right)\right) \cong\left(J_{\tilde{G}}, P_{T}(G)\right) / J_{\tilde{G}}$.
(2) Let $c(T)=2$ and $|T|>1$. Then the binomial edge ideal $J_{G} \subset S$ has the following properties:
(a) $\omega^{i}\left(S / J_{G}\right)=0$ if and only if $i \notin\{n+1, n-|T|+2\}$.
(b) $\omega^{n+1}\left(S / J_{G}\right) \cong \omega^{n+1}\left(S / J_{\tilde{G}}\right)$
(c) $\omega^{n-|T|+2}\left(S / J_{G}\right)$ is a $(n-|T|+2)$-dimensional Cohen-Macaulay module and there is an isomorphism $\omega^{n-|T|+2}\left(\omega^{n-|T|+2}\left(S / J_{G}\right)\right) \cong$ $\left(J_{\tilde{G}}, P_{T}(G)\right) / P_{T}(G)$.
(3) Let $c(T)>2$ and $|T|>1$. Then the binomial edge ideal $J_{G} \subset S$ has the following properties:
(a) $\omega^{i}\left(S / J_{G}\right)=0$ if and only if $i \notin\{n+1, n-|T|+2, n-|T|+c(T)\}$.
(b) $\omega^{n+1}\left(S / J_{G}\right) \cong \omega^{n+1}\left(S / J_{\tilde{G}}\right)$
(c) $\omega^{n-|T|+2}\left(S / J_{G}\right) \cong \omega^{n-|T|+1}\left(S /\left(J_{\tilde{G}}, P_{T}(G)\right)\right)$
(d) $\omega^{n-|T|+c(T)}\left(S / J_{G}\right) \cong \omega^{n-|T|+c(T)}\left(S / P_{T}(G)\right)$

Proof. We use the short exact sequence

$$
\begin{equation*}
0 \rightarrow S / J_{G} \rightarrow S / J_{\tilde{G}} \oplus S / P_{T}(G) \rightarrow S /\left(J_{\tilde{G}}, P_{T}(G)\right) \rightarrow 0 \tag{3.1}
\end{equation*}
$$

It induces a short exact sequence

$$
\begin{equation*}
0 \rightarrow H^{n}\left(S /\left(J_{\tilde{G}}, P_{T}(G)\right)\right) \rightarrow H^{n+1}\left(S / J_{G}\right) \rightarrow H^{n+1}\left(S / J_{\tilde{G}}\right) \rightarrow 0 \tag{3.2}
\end{equation*}
$$

and an isomorphism

$$
\begin{equation*}
H^{n-1+c(T)}\left(S / J_{G}\right) \cong H^{n-1+c(T)}\left(S / P_{T}(G)\right) \tag{3.3}
\end{equation*}
$$

Moreover the Cohen-Macaulayness of $S / J_{\tilde{G}}, S / P_{T}(G)$ and $S /\left(J_{\tilde{G}}, P_{T}(G)\right)$ of dimensions $n+1, n-1+c(T)$ and n respectively imply that $H^{i}\left(S / J_{G}\right)=0$ if $i \notin\{n+1, n-1+c(T)\}$.

The short exact sequence on local cohomology induces the following exact sequence

$$
0 \rightarrow \omega^{n+1}\left(S / J_{\tilde{G}}\right) \rightarrow \omega^{n+1}\left(S / J_{G}\right) \rightarrow \omega^{n}\left(S /\left(J_{\tilde{G}}, P_{T}(G)\right)\right) \rightarrow 0
$$

by Local Duality. Taking into account that both $\omega^{n+1}\left(S / J_{\tilde{G}}\right)$ and $\omega^{n}\left(S /\left(J_{\tilde{G}}\right.\right.$, $\left.P_{T}(G)\right)$) are Cohen-Macaulay modules of dimension $n+1$ and n respectively, then depth $\omega^{n+1}\left(S / J_{G}\right) \geq n$. By applying local cohomology and dualizing again it induces the following exact sequence

$$
0 \rightarrow \omega^{n+1}\left(\omega^{n+1}\left(S / J_{G}\right)\right) \rightarrow S / J_{\tilde{G}} \xrightarrow{f} S /\left(J_{\tilde{G}}, P_{T}(G)\right) \rightarrow \omega^{n}\left(\omega^{n+1}\left(S / J_{G}\right)\right) \rightarrow 0 .
$$

The homomorphism f is induced by the commutative diagram

$$
\begin{array}{clcc}
S / J_{\tilde{G}} & \rightarrow & S /\left(J_{\tilde{G}}, P_{T}(G)\right) \\
\downarrow & & \downarrow \\
\omega_{2 \times}\left(S / J_{\tilde{G}}\right) & \rightarrow & \omega_{2 \times}\left(S / J_{\tilde{G}}, P_{T}(G)\right) .
\end{array}
$$

Note that the vertical maps are isomorphisms. Since the upper horizontal map is surjective the lower horizontal map is surjective too. Therefore $\omega^{n}\left(\omega^{n+1}\left(S / J_{G}\right)\right)=0$. That is depth $\omega^{n+1}\left(S / J_{G}\right)=n+1$ and hence $\omega^{n+1}\left(S / J_{G}\right)$ is a Cohen-Macaulay module. Moreover $\omega^{n+1}\left(\omega^{n+1}\left(S / J_{G}\right)\right) \cong\left(J_{\tilde{G}}, P_{T}(G)\right) / J_{\tilde{G}}$. This finally proves all the statements in (1). Similar arguments work also for the proofs of (2) and (3).

Lemma 3.7. Let I be a graded ideal in S. Let S / I is Cohen-Macaulay with $\operatorname{dim}(S / I)=d$ and $\operatorname{reg}(S / I)=r$ then $e\left(H^{d}(S / I)\right)=r-d$.

Proof. Note that $H^{i}(S / I)=0$ for all $i \neq d$.
Corollary 3.8. Let G be a connected graph with $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$. Then

$$
\operatorname{reg}\left(S / J_{G}\right)=\max \{2, \alpha\}
$$

Proof. Let $c(T)>2$ and $|T|=1$. In this case $H^{i}\left(S / J_{G}\right)=0$ if and only if $i \notin\{n+1, n-1+c(T)\}$. In the view of Lemma 3.7, we have $e\left(H^{n-1+c(T)}\left(S / P_{T}(G)\right)\right)=\alpha-n+1-c(T), e\left(H^{n+1}\left(S / J_{\tilde{G}}\right)\right)=-n$ and $e\left(H^{n}\left(S /\left(J_{\tilde{G}}\right.\right.\right.$, $\left.\left.\left.P_{T}(G)\right)\right)\right)=-n+1$. By using short exact sequence 3.2 and an isomorphism 3.3,
we get $e\left(H^{n+1}\left(S / J_{G}\right)\right)=-n+1$ and $e\left(H^{n-1+c(T)}\left(S / J_{G}\right)\right)=\alpha-n+1-c(T)$. By similar arguments the remaining cases can be proved. We omit the details.

Corollary 3.9. Let G be a connected graph with $\left|\operatorname{Ass}\left(J_{G}\right)\right|=2$. Then
(a) S / J_{G} is a Cohen-Macaulay canonical ring and depth $\omega^{i}\left(S / J_{G}\right) \geq i-1$ for all depth $S / J_{G} \leq i \leq \operatorname{dim} S / J_{G}$.
(b) S / J_{G} is a sequentially Cohen-Macaulay ring if and only if either $c(T)=2$ or $|T|=1$.
Proof. Let $c(T)>2$ and $|T|>1$ then by Theorem 3.6 (3), $\omega^{n-|T|+2}\left(S / J_{G}\right)$ is Cohen-Macaulay of dimension $n-|T|+1$. Therefore S / J_{G} is not sequentially Cohen-Macaulay. The converse is easily seen from the statements in (1) and (2) of Theorem 3.6.

Acknowledgments. The authors are grateful to the reviewer for suggestions to improve the presentation of the manuscript.

REFERENCES

[1] M. Brodmann and R. Sharp, Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Stud. Adv. Math. 60, Cambridge University Press, 1998.
[2] W. Bruns and J. Herzog, Cohen-Macaulay Rings. Cambridge Univ. Press, 1993.
[3] The CoCoA Team, CoCoA, A system for doing Computations in Commutative Algebra. Available at http://cocoa.dima.unige.it.
[4] V. Ene, J. Herzog and T. Hibi, Cohen-Macaulay binomial edge ideals. Nagoya Math. J. 204 (2011), 57-68.
[5] V. Ene and A. Zarojanu, On the regularity of binomial edge ideals. Math. Nach. 288(1) (2015), 19-24.
[6] J. Herzog, T. Hibi, F. Hreinsdotir, T. Kahle and J, Rauh, Binomial edge ideals and conditional independence statements. Adv. Appl. Math. 45 (2010), 317-333.
[7] K. Matsuda and S. Murai, Regularity bounds for binomial edge ideals. J. Commut. Algebra. 5(1) (2013), 141-149.
[8] M. Ohtani, Graphs and ideals generated by some 2-minors. Comm. Algebra 39 (2011), 905-917.
[9] A. Rauf and G. Rinaldo, Construction of Cohen-Macaulay binomial edge ideals. Comm. Algebra 42 (2014), 238-252.
[10] G. Rinaldo, Cohen-Macaulay binomial edge ideals of small deviation. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 56(104) (2013), 497-503.
[11] S. Saeedi, D. Kiani, Binomial edge ideals of graphs. Electron. J. Combin. 19(2) (2012), \#P44.
[12] P. Schenzel, On The Use of Local Cohomology in Algebra and Geometry. In: J. Elias, J. M. Giral, R. M. Miró-Roig, S. Zarzuela, Six Lectures in Commutative Algebra, Proc. Summer School on Commutative Algebra at Centre de Recerca Matemàtica, Progr. Math. 166 (1998), 241-292.
[13] P. Schenzel, On the dimension filtration and Cohen-Macaulay filtered modules. In: Freddy Van Oystaeyen (ed.), Commutative algebra and algebraic geometry. Proc. of the Ferrara meeting in honor of Mario Fiorentini on the occasion of his retirement, Ferrara, Italy. New York, NY: Marcel Dekker. Lect. Notes Pure Appl. Math. 206 (1999), 245-264.
[14] P. Schenzel and S. Zafar, Algebraic properties of the binomial edge ideal of complete bipartite graph. An. Ştiinţ. Univ. Ovidius Constanţa, Ser. Mat. 22(2) (2014), 217-237.
[15] L. Sharifan, Binomial edge ideals with special set of associated primes. Comm. Algebra. 43(2) (2015), 503-520.
[16] R.H. Villarreal, Monomial Algebras. New York: Marcel Dekker Inc. (2001).
[17] S. Zafar, On approximately Cohen-Macaulay binomial edge ideal. Bull. Math. Soc. Sci. Math. Roumanie (N.S.) 55(103) (2012), 429-442.
[18] S. Zafar, Some new classes of sequentially Cohen-Macaulay binomial edge ideals. To appear in Util. Math.
[19] S. Zafar and Z. Zahid, On the Betti numbers of some classes of binomial edge ideals. Electron. J. Combin 20(4) (2013), \#P37.

Received 15 May 2014
University of Management and Technology, Department of Mathematics, Lahore Pakistan sohailahmad04@gmail.com sohail.zafar@umt.edu.pk zohaib_zahid@hotmail.com zohaib.zahid@umt.edu.pk

