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The family G of connected graphs with second largest Laplacian eigenvalue at
most θ, where θ = 3.2470 is the largest root of the equation µ3−5µ2+6µ−1 = 0,
is characterized by Wu, Yu and Shu [Y.R. Wu, G.L. Yu and J.L. Shu, Graphs
with small second largest Laplacian eigenvalue, European J. Combin. 36 (2014)
190–197]. Let G(a, b, c, d) be a graph with order n = 2a + b + 2c + 3d + 1 that
consists of a triangle(s), b pendant edge(s), c pendant path(s) of length 2 and d
pendant path(s) of length 3, sharing a common vertex. In this paper, we first
prove that the graph G(a, b, c, d) is determined by its Laplacian spectrum. Then
we conclude that except for two graphs, all the graphs in G are determined by
their Laplacian spectra.
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1. INTRODUCTION

The graphs considered in this paper are simple and undirected. Let G =
(V (G), E(G)) be a graph with vertex set V (G) = {v1, v2, · · · , vn} and edge set
E(G), where its order and size are |V (G)| = n(G) = n and |E(G)| = m(G) =
m, respectively. Denote by di(G) the degree of a vertex vi in G. We denote the
diagonal matrix of vertex degrees by D(G) and denote the adjacency matrix by
A(G). The maximum eigenvalue of A(G) is called the index of G. The matrix
L(G) = D(G) − A(G) (Q(G) = D(G) + A(G)) is called the Laplacian matrix
(signless Laplacian matrix) of G. We use Φ(G;µ) to denote the Laplacian
characteristic polynomial of L(G). Its eigenvalues will be called the Laplacian
eigenvalues of graphG. Assume that µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G) = 0 are the
Laplacian eigenvalues of the graph G. The Laplacian spectrum of the graph
G, denoted by SpecL(G), is the multiset of its Laplacian eigenvalues. Two
graphs G and H are said to be L-cospectral, denoted by SpecL(G) = SpecL(H)
if they share the same Laplacian spectrum (i.e., equal Laplacian characteristic
polynomial). A graph G is said to be determined by the Laplacian spectrum
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(DLS for short) if for any graph H, SpecL(G) = SpecL(H) implies that H
is isomorphic to G. Similar terminology will be used for A(G) and Q(G). So
we can speak of adjacency spectrum, signless Laplacian spectrum, SpecA(G),
SpecQ(G), A-cospectral, Q-cospectral, DAS and DQS.

Gutman, Gineityte, Lepović and Petrović [7] discovered some connections
between photoelectron spectra and the Laplacian eigenvalues of the underlying
molecular graphs. Petrović, Gutman, Lepović and Milekić [15] stressed that
the results of determining graphs with a small number of Laplacian eigenvalues
can be of interest in the photoelectron spectroscopy of organic compounds
and characterized all connected bipartite graphs with µ3(G) < 2. Recently,
there has been a lot of interest in the work of determining graphs with a
small number of Laplacian eigenvalues exceeding a given value or studying the
bounds of the k-th Laplacian eigenvalue. For example, Merris [11] studied the
relations between the structure of graphs and the number of eigenvalues greater
than two. Zhang [18] studied the graphs with fourth Laplacian eigenvalue
less than two. Zhang also characterized all connected bipartite graphs whose
third largest Laplacian eigenvalue is less than three in [19]. The background
of spectral graph theory and terminology not defined can be found in [2] for
references.

van Dam and Haemers [3] asked the question Which graphs are deter-
mined by their spectra. This is a difficult problem in the theory of graph
spectra. The exact characterization of graphs with second largest eigenvalue
exceeding a given value is extensively studied, however, whether they are de-
termined by their Laplacian spectra or not is less considered. Recently, Omidi
[13] showed that graphs of index less than 2 are determined by their Laplacian
spectra. Li, Guo and Shiu [9] studied extremal graphs for the extremal val-
ues of the second largest Laplacian eigenvalue. They also showed that graphs
with second largest Laplacian eigenvalue at most 3 are determined by their
Laplacian spectra. For the detailed background and some known results on
this subject, we refer the readers to the excellent surveys [12, 5, 6, 4] and the
references therein.

The family G of connected graphs with second largest Laplacian eigen-
value at most θ, where θ = 3.2470 is the largest root of the equation µ3−5µ2 +
6µ − 1 = 0, is characterized by Wu, Yu and Shu in [17]. Let G(a, b, c, d) be a
graph with order n = 2a+ b+ 2c+ 3d+ 1 that consists of a triangle(s), b pen-
dant edge(s), c pendant path(s) of length 2 and d pendant path(s) of length 3,
sharing a common vertex (see Figure 1). The graph G(0, b, c, d) is also known
as a starlike tree (see [8]), G(a, b, c, 0) is also known as a firefly graph (see [9])
and G(a, 0, 0, 0) is also known as a friendship graph (see [16]). It is well known
that the starlike tree G(0, b, c, d) is DLS (see [14]), the firefly graph G(a, b, c, 0)
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is also DLS (see [9]), and the friendship graph G(a, 0, 0, 0) were shown to be
DLS in [10], DQS in [16], with one exception in the case a = 16, DAS in [1].

In this paper, we first show that the graph G(a, b, c, d) is determined by
its Laplacian spectrum. Then we conclude that except for two graphs, all the
graphs in G are determined by their Laplacian spectra.

2. PRELIMINARIES

We first present some well known results which will play an important
role throughout this paper.

Lemma 2.1 ([3]). Let G and H be L-cospectral graphs. Then

(i) G and H have the same number of vertices;

(ii) G and H have the same number of edges;

(iii) G and H have the same number of spanning trees;

(iv) G and H have the same number of components;

(v)
∑n

i=1 di(G)2 =
∑n

i=1 di(H)2;

(vi) q(G) = 6n3(G)−
∑n

i=1 di(G)3 = 6n3(H)−
∑n

i=1 di(H)3 = q(H), denote
by n3(G) the number of triangles in G.

Theorem 2.2 ([14]). Let G be a starlike tree. Then G is determined by
its Laplacian spectrum.

Theorem 2.3 ([9]). The firefly graph is determined by its Laplacian spec-
trum.

Now we quote a theorem due to Wu, Yu and Shu [17] which characterizes
all connected graphs with second largest Laplacian eigenvalue no more than θ.

Theorem 2.4 ([17]). Let G be a connected graph. Then G ∈ G, i.e.
µ2(G) ≤ θ if and only if G is a subgraph of one of the graphs G(a, b, c, d)
(a, b, c, d ≥ 0), U3

3 , B1
3 , S1, B6

4 , U13
4 and H shown in Figure 1.

By Theorems 2.2, 2.3 and 2.4, G contains all the graphs, labelled in
Tables 1–4 and H, G(a, b, c, d) see Fig. 1. Denote by Pn and Cn the path and
cycle on n vertices, respectively. For convenience in the following discussion,
G can be classified as G = W0 ∪W1 ∪W2 ∪W3 ∪W4, where

(i) W0 = {P6, T1, T2} (see Table 1),

(ii) W1 = {C6, U
i
3, U

j
4} for (i = 1, 2, · · · , 13; j = 1, 2, · · · , 13) (see Tables 2

and 3 ),

(iii) W2 = {Bi
3, B

j
4} for (i = 1, 2, · · · , 5; j = 1, 2, · · · , 7) (see Table 4),

(iv) W3 = {S1, S2, S3} (see Table 1),

(v) W4 = {H,G(a, b, c, d)}, where 2a+ b+ 2c+ 3d+ 1 ≥ 11, a > 0, d > 0.
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Fig. 1 – G(a, b, c, d), U3
3 , B1

3 , S1, B6
4 , U13

4 and H.

Table 1
G ∈W0 and G ∈W3

3. GRAPHS IN G ARE NOT L-COSPECTRAL

As is known, P6 and C6 are DLS. Thus, according to (i) and (ii) of
Theorem 2.1, we have the following Lemmas 3.1–3.4.

Lemma 3.1. G ∈Wi and H ∈Wj are not L-cospectral if i 6= j.

Lemma 3.2. The graphs in W0 = {P6, T1, T2} (see Table 1) are not L-
cospectral.

Lemma 3.3. The graphs in W3 = {S1, S2, S3} (see Table 1) are not L-
cospectral.

Lemma 3.4. The graphs in W4 = {H,G(a, b, c, d)}, where 2a + b + 2c +
3d+ 1 ≥ 11, a > 0, d > 0 (see Figure 1) are not L-cospectral.

Lemma 3.5. The graphs in W1 = {C6, U
i
3, U

j
4} (i = 1, 2, · · · , 13; j =

1, 2, · · · , 13) (see Tables 2 and 3) are not L-cospectral.

Proof. Since the number of spanning trees of graph in U i
3 is 3, but the

number of spanning trees of graph in U j
4 is 4, we conclude that G ∈ U i

3 and H ∈
U j
4 are not L-cospectral. On the other hand, by Theorem 2.1 (vi), the graphs
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Table 2
G ∈ U i

3 (i = 1, 2, · · · , 13)

in U i
3 and U j

4 (i = 1, 2, · · · , 13; j = 1, 2, · · · , 13) (see Tables 2 and 3) are not
L-cospectral, except for U10

3 and U11
3 . At last, by a direct calculation, we have

SpecL(U10
3 ) = [6.1068, 3.2470, 3.0797, 3, 1.5550, 1.4469, 1, 0.3676, 0.1981, 0],

SpecL(U11
3 ) = [6.1504, 3.1871, 3, 2.6180, 2.3204, 1.4757, 0.6298, 0.3820, 0.2366, 0].

Thus, we conclude that all graphs in W1 are not L-cospectral. It completes
this proof.

By similar arguments, we have the following lemma for graphs in W2.

Lemma 3.6. The graphs in W2 = {Bi
3, B

j
4} (i = 1, 2, · · · , 5; j = 1, 2, · · · , 7)

(see Table 4) are not L-cospectral except for B1
4 and B2

4 , where SpecL(B1
4) =

SpecL(B2
4) = [5.2361, 3, 3, 2, 0.7639, 0].

4. THE LAPLACIAN SPECTRAL CHARACTERIZATION

OF G(a, b, c, d)

In this section, we will consider the DLS-graphs in G(a, b, c, d). In the
following, we first compute the Laplacian polynomial of G(a, b, c, d) and then
prove G(a, b, c, d) is DLS.
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Table 3
G ∈ U j

4 (j = 1, 2, · · · , 13)

Table 4
G ∈W2
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Lemma 4.1. Let G(a, b, c, d) be a graph with order n = 2a+b+2c+3d+1
that consists of a triangles, b pendant edges, c pendant paths of length 2 and d
pendant paths of length 3, sharing a common vertex (see Figure 1). Then

Φ(G(a, b, c, d);µ) = (µ2−4µ+3)a(µ−1)b(µ2−3µ+1)c−1(µ3−5µ2+6µ−1)d−1f(µ),

where f(µ) = µ7 − (2a + b + c + d + 9)µ6 + (16a + 8b + 8c + 8d)µ5 − (44a +
22b+ 23c+ 23d+ 46)µ4 + (48a+ 24b+ 29c+ 29d+ 33)µ3 − (18a+ 9b+ 15c+
16d+ 10)µ2 + (2a+ b+ 2c+ 3d+ 1)µ.

Proof. Let G = G(a, b, c, d) and we label the a triangles, b pendant edges,
c pendant paths of length 2 and d pendant paths of length 3 by v11v12v21v22 · · ·
va1va2; u1 · · ·ub; w11w12 · · ·wc1wc2 and s11s12s13 · · · sd1 sd2sd3, respectively,
where u is the maximum degree vertex of G(a, b, c, d) (see Fig. 1). Then the
vertices of G(a, b, c, d) can be partitioned as {u} ∪ V ∪ U ∪W ∪ S, where

V = {v11, v12, v21, v22, · · · , va1, va2}, U = {u1, ..., ub},

W = {w11, w12, · · · , wc1, wc2}, S = {s11, s12, s13, · · · , sd1, sd2, sd3}.

The rows and columns of the matrix µI −L(G(a, b, c, d)) are arranged as
the ordering in accordance with the vertices in {u}, V , U , W and S, respec-
tively. And then by expanding the determinant of µI − L(G(a, b, c, d)) along
the first row, we obtain

Φ(G(a, b, c, d);µ)=(µ2−4µ+3)a(µ−1)b(µ2−3µ+1)c−1(µ3−5µ2+6µ−1)d−1f(µ),

where f(µ) = µ7 − (2a + b + c + d + 9)µ6 + (16a + 8b + 8c + 8d)µ5 − (44a +
22b+ 23c+ 23d+ 46)µ4 + (48a+ 24b+ 29c+ 29d+ 33)µ3 − (18a+ 9b+ 15c+
16d+ 10)µ2 + (2a+ b+ 2c+ 3d+ 1)µ.

Theorem 4.2. The graph G(a, b, c, d) (a > 0, d > 0 and 2a+b+2c+3d+
1 ≥ 11) (in W4) displayed in Figure 1 is determined by its Laplacian spectrum.

Proof. For G(a, b, c, d) ∈ G with n ≥ 11, if there exists a graph F which
is L-cospectral with G(a, b, c, d). Then from Theorem 2.4, we have F ∈ G. By
Lemmas 3.1 and 3.4 in section 3, we may write F = G(a′, b′, c′, d′). Moreover,
it is well known that the number of edges (or vertices) and spanning trees of a
graph can be determined by its L-spectrum by Lemma 2.1. Then by Lemma 4.1
we have

2a+ b+ 2c+ 3d = 2a′ + b′ + 2c′ + 3d′,(1)

3a = 3a′,(2)

Φ(G(a, b, c, d);µ) = Φ(G(a′, b′, c′, d′);µ).(3)
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In addition, from Eqs. (2) and (3), we have

(µ− 1)b(µ2 − 3µ+ 1)c−1(µ3 − 5µ2 + 6µ− 1)d−1f(µ)

=(µ− 1)b
′
(µ2 − 3µ+ 1)c

′−1(µ3 − 5µ2 + 6µ− 1)d
′−1g(µ),

(4)

where

f(µ) = µ7 − (2a+ b+ c+ d+ 9)µ6 + (16a+ 8b+ 8c+ 8d)µ5

− (44a+ 22b+ 23c+ 23d+ 46)µ4

+ (48a+ 24b+ 29c+ 29d+ 33)µ3

− (18a+ 9b+ 15c+ 16d+ 10)µ2 + (2a+ b+ 2c+ 3d+ 1)µ

(5)

and

g(µ) = µ7 − (2a′ + b′ + c′ + d′ + 9)µ6 + (16a′ + 8b′ + 8c′ + 8d′)µ5

− (44a′ + 22b′ + 23c′ + 23d′ + 46)µ4

+ (48a′ + 24b′ + 29c′ + 29d′ + 33)µ3

− (18a′ + 9b′ + 15c′ + 16d′ + 10)µ2

+ (2a′ + b′ + 2c′ + 3d′ + 1)µ.

(6)

By Eq. (4), we get

(7) (µ− 1)b−b
′
(µ2 − 3µ+ 1)c−c

′
(µ3 − 5µ2 + 6µ− 1)d−d

′
f(µ) = g(µ),

Clearly, the term in g(µ) with the largest exponent is µ7, and similarly for
(µ − 1)b−b

′
(µ2 − 3µ + 1)c−c

′
(µ3 − 5µ2 + 6µ − 1)d−d

′
f(µ). So Eq. (7) implies

b = b′, c = c′ and d = d′. That is G(a, b, c, d) = G(a′, b′, c′, d′). Therefore, each
G(a, b, c, d) ∈ G with n ≥ 11 is determined by its Laplacian spectrum. We
complete this proof.

Combining the Lemmas 3.1–3.6 in Section 3 with the Theorem 4.2 in
Section 4, we obtain:

Theorem 4.3. Connected graphs with µ2 ≤ θ are DLS except for B1
4

and B2
4 shown in Table 4, where θ = 3.2470 is the largest root of the equation

µ3 − 5µ2 + 6µ− 1 = 0.
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photoelectron spectrum of alkanes and its dependence on molecular structure. J. Serb.
Chem. Soc. 64 (1999), 673–680.
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